Properties

Label 63.4.h.a.25.11
Level $63$
Weight $4$
Character 63.25
Analytic conductor $3.717$
Analytic rank $0$
Dimension $44$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 25.11
Character \(\chi\) \(=\) 63.25
Dual form 63.4.h.a.58.11

$q$-expansion

\(f(q)\) \(=\) \(q-0.438515 q^{2} +(4.98047 + 1.48153i) q^{3} -7.80770 q^{4} +(8.04659 - 13.9371i) q^{5} +(-2.18401 - 0.649674i) q^{6} +(16.9337 - 7.49990i) q^{7} +6.93192 q^{8} +(22.6101 + 14.7574i) q^{9} +O(q^{10})\) \(q-0.438515 q^{2} +(4.98047 + 1.48153i) q^{3} -7.80770 q^{4} +(8.04659 - 13.9371i) q^{5} +(-2.18401 - 0.649674i) q^{6} +(16.9337 - 7.49990i) q^{7} +6.93192 q^{8} +(22.6101 + 14.7574i) q^{9} +(-3.52855 + 6.11163i) q^{10} +(13.2763 + 22.9953i) q^{11} +(-38.8860 - 11.5674i) q^{12} +(-7.29221 - 12.6305i) q^{13} +(-7.42570 + 3.28882i) q^{14} +(60.7240 - 57.4920i) q^{15} +59.4219 q^{16} +(-17.3158 + 29.9918i) q^{17} +(-9.91488 - 6.47136i) q^{18} +(-65.3508 - 113.191i) q^{19} +(-62.8254 + 108.817i) q^{20} +(95.4493 - 12.2652i) q^{21} +(-5.82187 - 10.0838i) q^{22} +(-33.0087 + 57.1728i) q^{23} +(34.5242 + 10.2698i) q^{24} +(-66.9951 - 116.039i) q^{25} +(3.19774 + 5.53866i) q^{26} +(90.7454 + 106.997i) q^{27} +(-132.214 + 58.5570i) q^{28} +(-102.374 + 177.316i) q^{29} +(-26.6284 + 25.2111i) q^{30} -253.184 q^{31} -81.5127 q^{32} +(32.0541 + 134.197i) q^{33} +(7.59322 - 13.1519i) q^{34} +(31.7320 - 296.356i) q^{35} +(-176.533 - 115.222i) q^{36} +(111.689 + 193.451i) q^{37} +(28.6573 + 49.6359i) q^{38} +(-17.6062 - 73.7094i) q^{39} +(55.7783 - 96.6108i) q^{40} +(42.4951 + 73.6037i) q^{41} +(-41.8559 + 5.37846i) q^{42} +(-16.6287 + 28.8017i) q^{43} +(-103.658 - 179.540i) q^{44} +(387.610 - 196.373i) q^{45} +(14.4748 - 25.0711i) q^{46} +525.268 q^{47} +(295.949 + 88.0354i) q^{48} +(230.503 - 254.003i) q^{49} +(29.3784 + 50.8848i) q^{50} +(-130.674 + 123.719i) q^{51} +(56.9354 + 98.6151i) q^{52} +(-196.071 + 339.604i) q^{53} +(-39.7932 - 46.9196i) q^{54} +427.317 q^{55} +(117.383 - 51.9887i) q^{56} +(-157.782 - 660.563i) q^{57} +(44.8924 - 77.7559i) q^{58} -649.934 q^{59} +(-474.115 + 448.881i) q^{60} +38.7912 q^{61} +111.025 q^{62} +(493.553 + 80.3249i) q^{63} -439.631 q^{64} -234.710 q^{65} +(-14.0562 - 58.8472i) q^{66} -180.281 q^{67} +(135.196 - 234.167i) q^{68} +(-249.102 + 235.844i) q^{69} +(-13.9149 + 129.956i) q^{70} +624.366 q^{71} +(156.732 + 102.297i) q^{72} +(155.911 - 270.046i) q^{73} +(-48.9773 - 84.8312i) q^{74} +(-161.752 - 677.184i) q^{75} +(510.240 + 883.761i) q^{76} +(397.280 + 289.825i) q^{77} +(7.72058 + 32.3227i) q^{78} -487.091 q^{79} +(478.143 - 828.169i) q^{80} +(293.436 + 667.335i) q^{81} +(-18.6347 - 32.2763i) q^{82} +(345.777 - 598.904i) q^{83} +(-745.240 + 95.7627i) q^{84} +(278.666 + 482.663i) q^{85} +(7.29193 - 12.6300i) q^{86} +(-772.568 + 731.449i) q^{87} +(92.0304 + 159.401i) q^{88} +(-525.186 - 909.649i) q^{89} +(-169.973 + 86.1123i) q^{90} +(-218.212 - 159.190i) q^{91} +(257.722 - 446.388i) q^{92} +(-1260.97 - 375.099i) q^{93} -230.338 q^{94} -2103.40 q^{95} +(-405.972 - 120.764i) q^{96} +(-86.6015 + 149.998i) q^{97} +(-101.079 + 111.384i) q^{98} +(-39.1718 + 715.851i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44q - 2q^{2} - q^{3} + 158q^{4} - 19q^{5} - 20q^{6} - 7q^{7} - 24q^{8} + 11q^{9} + O(q^{10}) \) \( 44q - 2q^{2} - q^{3} + 158q^{4} - 19q^{5} - 20q^{6} - 7q^{7} - 24q^{8} + 11q^{9} - 18q^{10} + 5q^{11} - 62q^{12} - 14q^{13} - 52q^{14} + 119q^{15} + 494q^{16} - 162q^{17} - 188q^{18} + 58q^{19} - 362q^{20} - 59q^{21} - 18q^{22} - 93q^{23} + 30q^{24} - 349q^{25} - 266q^{26} + 272q^{27} - 172q^{28} + 248q^{29} + 85q^{30} - 122q^{31} + 326q^{32} + 77q^{33} + 6q^{34} + 289q^{35} - 806q^{36} - 86q^{37} - 761q^{38} - 256q^{39} - 18q^{40} - 692q^{41} - 364q^{42} - 86q^{43} - 443q^{44} + 527q^{45} - 270q^{46} + 2010q^{47} - 1013q^{48} + 317q^{49} + 239q^{50} + 1209q^{51} - 335q^{52} + 258q^{53} + 577q^{54} - 870q^{55} - 1752q^{56} + 566q^{57} + 237q^{58} + 3330q^{59} + 1669q^{60} - 878q^{61} + 1812q^{62} + 2872q^{63} + 872q^{64} + 1226q^{65} + 1330q^{66} - 590q^{67} - 1374q^{68} + 1389q^{69} + 1251q^{70} + 636q^{71} - 5970q^{72} - 338q^{73} + 1119q^{74} + 2737q^{75} + 1006q^{76} + 2269q^{77} + 157q^{78} - 266q^{79} - 4817q^{80} - 505q^{81} + 6q^{82} - 1356q^{83} - 6013q^{84} + 483q^{85} - 3343q^{86} - 5755q^{87} + 369q^{88} - 2200q^{89} + 2665q^{90} + 1552q^{91} - 396q^{92} - 129q^{93} + 2382q^{94} - 6166q^{95} - 5941q^{96} - 266q^{97} + 3601q^{98} - 5395q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.438515 −0.155038 −0.0775192 0.996991i \(-0.524700\pi\)
−0.0775192 + 0.996991i \(0.524700\pi\)
\(3\) 4.98047 + 1.48153i 0.958492 + 0.285121i
\(4\) −7.80770 −0.975963
\(5\) 8.04659 13.9371i 0.719709 1.24657i −0.241407 0.970424i \(-0.577609\pi\)
0.961115 0.276148i \(-0.0890579\pi\)
\(6\) −2.18401 0.649674i −0.148603 0.0442047i
\(7\) 16.9337 7.49990i 0.914336 0.404957i
\(8\) 6.93192 0.306350
\(9\) 22.6101 + 14.7574i 0.837412 + 0.546572i
\(10\) −3.52855 + 6.11163i −0.111583 + 0.193267i
\(11\) 13.2763 + 22.9953i 0.363906 + 0.630304i 0.988600 0.150566i \(-0.0481096\pi\)
−0.624694 + 0.780870i \(0.714776\pi\)
\(12\) −38.8860 11.5674i −0.935452 0.278267i
\(13\) −7.29221 12.6305i −0.155577 0.269467i 0.777692 0.628645i \(-0.216390\pi\)
−0.933269 + 0.359179i \(0.883057\pi\)
\(14\) −7.42570 + 3.28882i −0.141757 + 0.0627838i
\(15\) 60.7240 57.4920i 1.04526 0.989625i
\(16\) 59.4219 0.928467
\(17\) −17.3158 + 29.9918i −0.247041 + 0.427887i −0.962703 0.270559i \(-0.912791\pi\)
0.715663 + 0.698446i \(0.246125\pi\)
\(18\) −9.91488 6.47136i −0.129831 0.0847396i
\(19\) −65.3508 113.191i −0.789079 1.36673i −0.926532 0.376217i \(-0.877225\pi\)
0.137453 0.990508i \(-0.456109\pi\)
\(20\) −62.8254 + 108.817i −0.702409 + 1.21661i
\(21\) 95.4493 12.2652i 0.991845 0.127451i
\(22\) −5.82187 10.0838i −0.0564194 0.0977213i
\(23\) −33.0087 + 57.1728i −0.299252 + 0.518320i −0.975965 0.217927i \(-0.930070\pi\)
0.676713 + 0.736247i \(0.263404\pi\)
\(24\) 34.5242 + 10.2698i 0.293634 + 0.0873468i
\(25\) −66.9951 116.039i −0.535961 0.928312i
\(26\) 3.19774 + 5.53866i 0.0241204 + 0.0417777i
\(27\) 90.7454 + 106.997i 0.646814 + 0.762648i
\(28\) −132.214 + 58.5570i −0.892358 + 0.395223i
\(29\) −102.374 + 177.316i −0.655528 + 1.13541i 0.326234 + 0.945289i \(0.394220\pi\)
−0.981761 + 0.190118i \(0.939113\pi\)
\(30\) −26.6284 + 25.2111i −0.162055 + 0.153430i
\(31\) −253.184 −1.46688 −0.733438 0.679757i \(-0.762085\pi\)
−0.733438 + 0.679757i \(0.762085\pi\)
\(32\) −81.5127 −0.450298
\(33\) 32.0541 + 134.197i 0.169088 + 0.707898i
\(34\) 7.59322 13.1519i 0.0383008 0.0663389i
\(35\) 31.7320 296.356i 0.153248 1.43124i
\(36\) −176.533 115.222i −0.817283 0.533434i
\(37\) 111.689 + 193.451i 0.496258 + 0.859545i 0.999991 0.00431513i \(-0.00137355\pi\)
−0.503732 + 0.863860i \(0.668040\pi\)
\(38\) 28.6573 + 49.6359i 0.122338 + 0.211895i
\(39\) −17.6062 73.7094i −0.0722883 0.302640i
\(40\) 55.7783 96.6108i 0.220483 0.381888i
\(41\) 42.4951 + 73.6037i 0.161869 + 0.280365i 0.935539 0.353224i \(-0.114915\pi\)
−0.773670 + 0.633589i \(0.781581\pi\)
\(42\) −41.8559 + 5.37846i −0.153774 + 0.0197599i
\(43\) −16.6287 + 28.8017i −0.0589733 + 0.102145i −0.894005 0.448057i \(-0.852116\pi\)
0.835031 + 0.550202i \(0.185449\pi\)
\(44\) −103.658 179.540i −0.355159 0.615153i
\(45\) 387.610 196.373i 1.28403 0.650522i
\(46\) 14.4748 25.0711i 0.0463956 0.0803595i
\(47\) 525.268 1.63018 0.815088 0.579337i \(-0.196688\pi\)
0.815088 + 0.579337i \(0.196688\pi\)
\(48\) 295.949 + 88.0354i 0.889928 + 0.264725i
\(49\) 230.503 254.003i 0.672020 0.740533i
\(50\) 29.3784 + 50.8848i 0.0830946 + 0.143924i
\(51\) −130.674 + 123.719i −0.358786 + 0.339690i
\(52\) 56.9354 + 98.6151i 0.151837 + 0.262989i
\(53\) −196.071 + 339.604i −0.508158 + 0.880156i 0.491797 + 0.870710i \(0.336340\pi\)
−0.999955 + 0.00944599i \(0.996993\pi\)
\(54\) −39.7932 46.9196i −0.100281 0.118240i
\(55\) 427.317 1.04762
\(56\) 117.383 51.9887i 0.280107 0.124059i
\(57\) −157.782 660.563i −0.366644 1.53498i
\(58\) 44.8924 77.7559i 0.101632 0.176032i
\(59\) −649.934 −1.43414 −0.717069 0.697002i \(-0.754517\pi\)
−0.717069 + 0.697002i \(0.754517\pi\)
\(60\) −474.115 + 448.881i −1.02013 + 0.965837i
\(61\) 38.7912 0.0814213 0.0407106 0.999171i \(-0.487038\pi\)
0.0407106 + 0.999171i \(0.487038\pi\)
\(62\) 111.025 0.227422
\(63\) 493.553 + 80.3249i 0.987014 + 0.160635i
\(64\) −439.631 −0.858653
\(65\) −234.710 −0.447879
\(66\) −14.0562 58.8472i −0.0262152 0.109751i
\(67\) −180.281 −0.328729 −0.164364 0.986400i \(-0.552557\pi\)
−0.164364 + 0.986400i \(0.552557\pi\)
\(68\) 135.196 234.167i 0.241103 0.417602i
\(69\) −249.102 + 235.844i −0.434614 + 0.411482i
\(70\) −13.9149 + 129.956i −0.0237593 + 0.221897i
\(71\) 624.366 1.04364 0.521821 0.853055i \(-0.325253\pi\)
0.521821 + 0.853055i \(0.325253\pi\)
\(72\) 156.732 + 102.297i 0.256541 + 0.167442i
\(73\) 155.911 270.046i 0.249973 0.432965i −0.713545 0.700609i \(-0.752912\pi\)
0.963518 + 0.267644i \(0.0862450\pi\)
\(74\) −48.9773 84.8312i −0.0769391 0.133262i
\(75\) −161.752 677.184i −0.249033 1.04259i
\(76\) 510.240 + 883.761i 0.770112 + 1.33387i
\(77\) 397.280 + 289.825i 0.587978 + 0.428943i
\(78\) 7.72058 + 32.3227i 0.0112075 + 0.0469208i
\(79\) −487.091 −0.693696 −0.346848 0.937921i \(-0.612748\pi\)
−0.346848 + 0.937921i \(0.612748\pi\)
\(80\) 478.143 828.169i 0.668226 1.15740i
\(81\) 293.436 + 667.335i 0.402519 + 0.915412i
\(82\) −18.6347 32.2763i −0.0250959 0.0434674i
\(83\) 345.777 598.904i 0.457277 0.792027i −0.541539 0.840676i \(-0.682158\pi\)
0.998816 + 0.0486488i \(0.0154915\pi\)
\(84\) −745.240 + 95.7627i −0.968004 + 0.124388i
\(85\) 278.666 + 482.663i 0.355595 + 0.615908i
\(86\) 7.29193 12.6300i 0.00914313 0.0158364i
\(87\) −772.568 + 731.449i −0.952046 + 0.901374i
\(88\) 92.0304 + 159.401i 0.111483 + 0.193094i
\(89\) −525.186 909.649i −0.625501 1.08340i −0.988444 0.151588i \(-0.951561\pi\)
0.362942 0.931812i \(-0.381772\pi\)
\(90\) −169.973 + 86.1123i −0.199075 + 0.100856i
\(91\) −218.212 159.190i −0.251372 0.183381i
\(92\) 257.722 446.388i 0.292059 0.505861i
\(93\) −1260.97 375.099i −1.40599 0.418237i
\(94\) −230.338 −0.252740
\(95\) −2103.40 −2.27163
\(96\) −405.972 120.764i −0.431607 0.128389i
\(97\) −86.6015 + 149.998i −0.0906500 + 0.157010i −0.907785 0.419436i \(-0.862228\pi\)
0.817135 + 0.576447i \(0.195561\pi\)
\(98\) −101.079 + 111.384i −0.104189 + 0.114811i
\(99\) −39.1718 + 715.851i −0.0397668 + 0.726725i
\(100\) 523.078 + 905.998i 0.523078 + 0.905998i
\(101\) 890.006 + 1541.54i 0.876821 + 1.51870i 0.854810 + 0.518941i \(0.173674\pi\)
0.0220114 + 0.999758i \(0.492993\pi\)
\(102\) 57.3027 54.2528i 0.0556256 0.0526650i
\(103\) −667.965 + 1156.95i −0.638996 + 1.10677i 0.346658 + 0.937992i \(0.387317\pi\)
−0.985653 + 0.168781i \(0.946017\pi\)
\(104\) −50.5490 87.5534i −0.0476609 0.0825512i
\(105\) 597.100 1428.98i 0.554962 1.32813i
\(106\) 85.9799 148.922i 0.0787841 0.136458i
\(107\) 581.127 + 1006.54i 0.525044 + 0.909403i 0.999575 + 0.0291638i \(0.00928446\pi\)
−0.474531 + 0.880239i \(0.657382\pi\)
\(108\) −708.514 835.398i −0.631266 0.744316i
\(109\) 874.447 1514.59i 0.768412 1.33093i −0.170012 0.985442i \(-0.554381\pi\)
0.938424 0.345486i \(-0.112286\pi\)
\(110\) −187.385 −0.162422
\(111\) 269.660 + 1128.95i 0.230585 + 0.965360i
\(112\) 1006.23 445.658i 0.848931 0.375989i
\(113\) −337.178 584.009i −0.280699 0.486185i 0.690858 0.722991i \(-0.257233\pi\)
−0.971557 + 0.236805i \(0.923900\pi\)
\(114\) 69.1897 + 289.667i 0.0568439 + 0.237981i
\(115\) 531.215 + 920.092i 0.430748 + 0.746078i
\(116\) 799.303 1384.43i 0.639771 1.10812i
\(117\) 21.5157 393.191i 0.0170011 0.310688i
\(118\) 285.006 0.222347
\(119\) −68.2853 + 637.740i −0.0526025 + 0.491273i
\(120\) 420.934 398.530i 0.320215 0.303172i
\(121\) 312.978 542.094i 0.235145 0.407283i
\(122\) −17.0105 −0.0126234
\(123\) 102.599 + 429.539i 0.0752120 + 0.314880i
\(124\) 1976.78 1.43162
\(125\) −144.682 −0.103526
\(126\) −216.431 35.2237i −0.153025 0.0249045i
\(127\) −2697.17 −1.88453 −0.942265 0.334868i \(-0.891308\pi\)
−0.942265 + 0.334868i \(0.891308\pi\)
\(128\) 844.886 0.583423
\(129\) −125.489 + 118.810i −0.0856490 + 0.0810903i
\(130\) 102.924 0.0694385
\(131\) 374.903 649.350i 0.250041 0.433084i −0.713496 0.700660i \(-0.752889\pi\)
0.963537 + 0.267576i \(0.0862225\pi\)
\(132\) −250.269 1047.77i −0.165024 0.690882i
\(133\) −1955.55 1426.62i −1.27495 0.930103i
\(134\) 79.0559 0.0509656
\(135\) 2221.41 403.771i 1.41621 0.257415i
\(136\) −120.031 + 207.901i −0.0756810 + 0.131083i
\(137\) −340.884 590.428i −0.212581 0.368202i 0.739940 0.672673i \(-0.234854\pi\)
−0.952522 + 0.304471i \(0.901520\pi\)
\(138\) 109.235 103.421i 0.0673819 0.0637955i
\(139\) −986.785 1709.16i −0.602144 1.04294i −0.992496 0.122279i \(-0.960980\pi\)
0.390352 0.920666i \(-0.372353\pi\)
\(140\) −247.754 + 2313.86i −0.149564 + 1.39683i
\(141\) 2616.08 + 778.202i 1.56251 + 0.464797i
\(142\) −273.794 −0.161805
\(143\) 193.628 335.373i 0.113231 0.196121i
\(144\) 1343.54 + 876.915i 0.777510 + 0.507474i
\(145\) 1647.52 + 2853.58i 0.943578 + 1.63432i
\(146\) −68.3693 + 118.419i −0.0387554 + 0.0671263i
\(147\) 1524.33 923.555i 0.855267 0.518187i
\(148\) −872.035 1510.41i −0.484330 0.838884i
\(149\) 460.391 797.421i 0.253132 0.438438i −0.711254 0.702935i \(-0.751873\pi\)
0.964387 + 0.264497i \(0.0852059\pi\)
\(150\) 70.9306 + 296.955i 0.0386097 + 0.161642i
\(151\) −552.254 956.533i −0.297628 0.515507i 0.677965 0.735094i \(-0.262862\pi\)
−0.975593 + 0.219588i \(0.929529\pi\)
\(152\) −453.006 784.630i −0.241735 0.418697i
\(153\) −834.114 + 422.582i −0.440746 + 0.223292i
\(154\) −174.213 127.093i −0.0911592 0.0665027i
\(155\) −2037.26 + 3528.65i −1.05572 + 1.82857i
\(156\) 137.464 + 575.501i 0.0705508 + 0.295365i
\(157\) −76.9810 −0.0391322 −0.0195661 0.999809i \(-0.506228\pi\)
−0.0195661 + 0.999809i \(0.506228\pi\)
\(158\) 213.597 0.107550
\(159\) −1479.66 + 1400.90i −0.738016 + 0.698735i
\(160\) −655.899 + 1136.05i −0.324084 + 0.561329i
\(161\) −130.171 + 1215.71i −0.0637199 + 0.595102i
\(162\) −128.676 292.637i −0.0624059 0.141924i
\(163\) −753.588 1305.25i −0.362120 0.627210i 0.626190 0.779671i \(-0.284614\pi\)
−0.988310 + 0.152461i \(0.951280\pi\)
\(164\) −331.789 574.676i −0.157978 0.273626i
\(165\) 2128.24 + 633.083i 1.00414 + 0.298700i
\(166\) −151.629 + 262.628i −0.0708955 + 0.122795i
\(167\) −732.556 1268.82i −0.339443 0.587932i 0.644885 0.764279i \(-0.276905\pi\)
−0.984328 + 0.176348i \(0.943572\pi\)
\(168\) 661.646 85.0210i 0.303852 0.0390447i
\(169\) 992.147 1718.45i 0.451592 0.782180i
\(170\) −122.199 211.655i −0.0551308 0.0954894i
\(171\) 192.818 3523.67i 0.0862288 1.57580i
\(172\) 129.832 224.875i 0.0575557 0.0996895i
\(173\) 671.590 0.295145 0.147572 0.989051i \(-0.452854\pi\)
0.147572 + 0.989051i \(0.452854\pi\)
\(174\) 338.783 320.751i 0.147604 0.139748i
\(175\) −2004.76 1462.52i −0.865974 0.631748i
\(176\) 788.905 + 1366.42i 0.337875 + 0.585216i
\(177\) −3236.97 962.897i −1.37461 0.408903i
\(178\) 230.302 + 398.895i 0.0969768 + 0.167969i
\(179\) −1974.19 + 3419.39i −0.824345 + 1.42781i 0.0780743 + 0.996948i \(0.475123\pi\)
−0.902419 + 0.430859i \(0.858210\pi\)
\(180\) −3026.35 + 1533.22i −1.25317 + 0.634886i
\(181\) 785.659 0.322638 0.161319 0.986902i \(-0.448425\pi\)
0.161319 + 0.986902i \(0.448425\pi\)
\(182\) 95.6891 + 69.8074i 0.0389723 + 0.0284311i
\(183\) 193.198 + 57.4703i 0.0780416 + 0.0232149i
\(184\) −228.814 + 396.317i −0.0916759 + 0.158787i
\(185\) 3594.86 1.42865
\(186\) 552.956 + 164.487i 0.217982 + 0.0648428i
\(187\) −919.560 −0.359598
\(188\) −4101.14 −1.59099
\(189\) 2339.12 + 1131.27i 0.900244 + 0.435385i
\(190\) 922.374 0.352190
\(191\) −3070.51 −1.16322 −0.581608 0.813469i \(-0.697576\pi\)
−0.581608 + 0.813469i \(0.697576\pi\)
\(192\) −2189.57 651.326i −0.823012 0.244820i
\(193\) 3605.70 1.34479 0.672394 0.740194i \(-0.265266\pi\)
0.672394 + 0.740194i \(0.265266\pi\)
\(194\) 37.9760 65.7764i 0.0140542 0.0243426i
\(195\) −1168.96 347.730i −0.429289 0.127700i
\(196\) −1799.70 + 1983.18i −0.655867 + 0.722733i
\(197\) 1957.74 0.708035 0.354018 0.935239i \(-0.384815\pi\)
0.354018 + 0.935239i \(0.384815\pi\)
\(198\) 17.1774 313.911i 0.00616539 0.112670i
\(199\) −646.023 + 1118.94i −0.230127 + 0.398592i −0.957845 0.287284i \(-0.907248\pi\)
0.727718 + 0.685876i \(0.240581\pi\)
\(200\) −464.405 804.372i −0.164192 0.284389i
\(201\) −897.884 267.092i −0.315084 0.0937274i
\(202\) −390.281 675.987i −0.135941 0.235457i
\(203\) −403.713 + 3770.42i −0.139582 + 1.30360i
\(204\) 1020.27 965.964i 0.350162 0.331525i
\(205\) 1367.76 0.465994
\(206\) 292.913 507.340i 0.0990689 0.171592i
\(207\) −1590.06 + 805.560i −0.533896 + 0.270485i
\(208\) −433.317 750.527i −0.144448 0.250191i
\(209\) 1735.24 3005.52i 0.574301 0.994719i
\(210\) −261.837 + 626.629i −0.0860405 + 0.205912i
\(211\) 1127.87 + 1953.53i 0.367989 + 0.637376i 0.989251 0.146227i \(-0.0467131\pi\)
−0.621262 + 0.783603i \(0.713380\pi\)
\(212\) 1530.86 2651.53i 0.495944 0.859000i
\(213\) 3109.64 + 925.018i 1.00032 + 0.297564i
\(214\) −254.833 441.384i −0.0814020 0.140992i
\(215\) 267.608 + 463.511i 0.0848872 + 0.147029i
\(216\) 629.040 + 741.691i 0.198152 + 0.233637i
\(217\) −4287.35 + 1898.85i −1.34122 + 0.594021i
\(218\) −383.458 + 664.169i −0.119133 + 0.206345i
\(219\) 1176.59 1113.97i 0.363044 0.343721i
\(220\) −3336.36 −1.02244
\(221\) 505.081 0.153735
\(222\) −118.250 495.060i −0.0357496 0.149668i
\(223\) 2742.75 4750.58i 0.823623 1.42656i −0.0793436 0.996847i \(-0.525282\pi\)
0.902967 0.429710i \(-0.141384\pi\)
\(224\) −1380.32 + 611.337i −0.411724 + 0.182351i
\(225\) 197.669 3612.33i 0.0585686 1.07032i
\(226\) 147.857 + 256.097i 0.0435192 + 0.0753774i
\(227\) −1127.40 1952.72i −0.329641 0.570955i 0.652800 0.757531i \(-0.273594\pi\)
−0.982441 + 0.186576i \(0.940261\pi\)
\(228\) 1231.91 + 5157.48i 0.357831 + 1.49808i
\(229\) −666.860 + 1155.04i −0.192434 + 0.333305i −0.946056 0.324002i \(-0.894971\pi\)
0.753622 + 0.657308i \(0.228305\pi\)
\(230\) −232.946 403.474i −0.0667826 0.115671i
\(231\) 1549.26 + 2032.05i 0.441271 + 0.578783i
\(232\) −709.645 + 1229.14i −0.200821 + 0.347832i
\(233\) 363.055 + 628.830i 0.102080 + 0.176807i 0.912541 0.408985i \(-0.134117\pi\)
−0.810462 + 0.585792i \(0.800784\pi\)
\(234\) −9.43495 + 172.420i −0.00263582 + 0.0481687i
\(235\) 4226.62 7320.72i 1.17325 2.03213i
\(236\) 5074.49 1.39967
\(237\) −2425.94 721.640i −0.664902 0.197787i
\(238\) 29.9441 279.658i 0.00815541 0.0761662i
\(239\) 1187.71 + 2057.18i 0.321450 + 0.556768i 0.980788 0.195079i \(-0.0624963\pi\)
−0.659337 + 0.751847i \(0.729163\pi\)
\(240\) 3608.34 3416.28i 0.970488 0.918834i
\(241\) 1161.61 + 2011.96i 0.310480 + 0.537768i 0.978466 0.206406i \(-0.0661768\pi\)
−0.667986 + 0.744174i \(0.732843\pi\)
\(242\) −137.246 + 237.716i −0.0364565 + 0.0631445i
\(243\) 472.771 + 3758.38i 0.124808 + 0.992181i
\(244\) −302.870 −0.0794642
\(245\) −1685.30 5256.40i −0.439468 1.37069i
\(246\) −44.9914 188.359i −0.0116608 0.0488185i
\(247\) −953.104 + 1650.82i −0.245525 + 0.425261i
\(248\) −1755.05 −0.449378
\(249\) 2609.43 2470.54i 0.664119 0.628772i
\(250\) 63.4450 0.0160505
\(251\) 2583.93 0.649785 0.324892 0.945751i \(-0.394672\pi\)
0.324892 + 0.945751i \(0.394672\pi\)
\(252\) −3853.52 627.153i −0.963289 0.156773i
\(253\) −1752.94 −0.435598
\(254\) 1182.75 0.292175
\(255\) 672.805 + 2816.74i 0.165226 + 0.691730i
\(256\) 3146.55 0.768200
\(257\) 2608.94 4518.82i 0.633235 1.09679i −0.353651 0.935377i \(-0.615060\pi\)
0.986886 0.161418i \(-0.0516066\pi\)
\(258\) 55.0289 52.1001i 0.0132789 0.0125721i
\(259\) 3342.18 + 2438.19i 0.801825 + 0.584949i
\(260\) 1832.54 0.437114
\(261\) −4931.41 + 2498.37i −1.16953 + 0.592511i
\(262\) −164.400 + 284.750i −0.0387660 + 0.0671447i
\(263\) −1936.20 3353.60i −0.453960 0.786282i 0.544668 0.838652i \(-0.316656\pi\)
−0.998628 + 0.0523701i \(0.983322\pi\)
\(264\) 222.197 + 930.239i 0.0518002 + 0.216865i
\(265\) 3155.40 + 5465.31i 0.731452 + 1.26691i
\(266\) 857.540 + 625.595i 0.197666 + 0.144202i
\(267\) −1268.00 5308.56i −0.290638 1.21677i
\(268\) 1407.58 0.320827
\(269\) −1426.02 + 2469.94i −0.323219 + 0.559831i −0.981150 0.193246i \(-0.938098\pi\)
0.657931 + 0.753078i \(0.271432\pi\)
\(270\) −974.123 + 177.060i −0.219567 + 0.0399093i
\(271\) 1806.92 + 3129.67i 0.405027 + 0.701527i 0.994325 0.106389i \(-0.0339288\pi\)
−0.589298 + 0.807916i \(0.700595\pi\)
\(272\) −1028.94 + 1782.17i −0.229369 + 0.397279i
\(273\) −850.951 1116.13i −0.188652 0.247441i
\(274\) 149.483 + 258.911i 0.0329583 + 0.0570854i
\(275\) 1778.90 3081.14i 0.390079 0.675636i
\(276\) 1944.92 1841.40i 0.424167 0.401591i
\(277\) 349.435 + 605.240i 0.0757961 + 0.131283i 0.901432 0.432920i \(-0.142517\pi\)
−0.825636 + 0.564203i \(0.809184\pi\)
\(278\) 432.720 + 749.493i 0.0933555 + 0.161697i
\(279\) −5724.52 3736.34i −1.22838 0.801753i
\(280\) 219.963 2054.31i 0.0469476 0.438460i
\(281\) 521.719 903.644i 0.110759 0.191840i −0.805318 0.592843i \(-0.798005\pi\)
0.916076 + 0.401004i \(0.131339\pi\)
\(282\) −1147.19 341.253i −0.242249 0.0720614i
\(283\) 4202.06 0.882638 0.441319 0.897350i \(-0.354511\pi\)
0.441319 + 0.897350i \(0.354511\pi\)
\(284\) −4874.87 −1.01856
\(285\) −10475.9 3116.26i −2.17734 0.647688i
\(286\) −84.9087 + 147.066i −0.0175551 + 0.0304063i
\(287\) 1271.62 + 927.677i 0.261538 + 0.190798i
\(288\) −1843.01 1202.92i −0.377085 0.246120i
\(289\) 1856.83 + 3216.12i 0.377942 + 0.654614i
\(290\) −722.461 1251.34i −0.146291 0.253383i
\(291\) −653.543 + 618.758i −0.131654 + 0.124647i
\(292\) −1217.31 + 2108.44i −0.243964 + 0.422558i
\(293\) −3078.94 5332.88i −0.613903 1.06331i −0.990576 0.136965i \(-0.956265\pi\)
0.376672 0.926347i \(-0.377068\pi\)
\(294\) −668.440 + 404.993i −0.132599 + 0.0803390i
\(295\) −5229.75 + 9058.19i −1.03216 + 1.78776i
\(296\) 774.219 + 1340.99i 0.152029 + 0.263322i
\(297\) −1255.65 + 3507.24i −0.245320 + 0.685221i
\(298\) −201.888 + 349.681i −0.0392452 + 0.0679748i
\(299\) 962.827 0.186226
\(300\) 1262.91 + 5287.25i 0.243047 + 1.01753i
\(301\) −65.5757 + 612.434i −0.0125572 + 0.117276i
\(302\) 242.172 + 419.454i 0.0461438 + 0.0799234i
\(303\) 2148.81 + 8996.15i 0.407413 + 1.70566i
\(304\) −3883.27 6726.02i −0.732634 1.26896i
\(305\) 312.136 540.636i 0.0585996 0.101497i
\(306\) 365.771 185.309i 0.0683326 0.0346189i
\(307\) 178.133 0.0331159 0.0165580 0.999863i \(-0.494729\pi\)
0.0165580 + 0.999863i \(0.494729\pi\)
\(308\) −3101.85 2262.87i −0.573845 0.418633i
\(309\) −5040.84 + 4772.54i −0.928036 + 0.878642i
\(310\) 893.371 1547.36i 0.163678 0.283498i
\(311\) 6712.84 1.22396 0.611978 0.790875i \(-0.290374\pi\)
0.611978 + 0.790875i \(0.290374\pi\)
\(312\) −122.045 510.947i −0.0221456 0.0927137i
\(313\) −3131.70 −0.565540 −0.282770 0.959188i \(-0.591253\pi\)
−0.282770 + 0.959188i \(0.591253\pi\)
\(314\) 33.7573 0.00606699
\(315\) 5090.92 6232.36i 0.910605 1.11477i
\(316\) 3803.06 0.677022
\(317\) −7187.23 −1.27342 −0.636712 0.771102i \(-0.719706\pi\)
−0.636712 + 0.771102i \(0.719706\pi\)
\(318\) 648.852 614.318i 0.114421 0.108331i
\(319\) −5436.58 −0.954202
\(320\) −3537.53 + 6127.17i −0.617980 + 1.07037i
\(321\) 1403.06 + 5874.01i 0.243961 + 1.02136i
\(322\) 57.0819 533.108i 0.00987903 0.0922637i
\(323\) 4526.40 0.779738
\(324\) −2291.06 5210.36i −0.392843 0.893408i
\(325\) −977.085 + 1692.36i −0.166766 + 0.288847i
\(326\) 330.459 + 572.373i 0.0561425 + 0.0972417i
\(327\) 6599.07 6247.83i 1.11599 1.05659i
\(328\) 294.573 + 510.215i 0.0495886 + 0.0858899i
\(329\) 8894.76 3939.46i 1.49053 0.660151i
\(330\) −933.264 277.616i −0.155680 0.0463099i
\(331\) −396.656 −0.0658677 −0.0329338 0.999458i \(-0.510485\pi\)
−0.0329338 + 0.999458i \(0.510485\pi\)
\(332\) −2699.73 + 4676.06i −0.446285 + 0.772989i
\(333\) −329.538 + 6022.20i −0.0542300 + 0.991034i
\(334\) 321.237 + 556.399i 0.0526267 + 0.0911520i
\(335\) −1450.65 + 2512.59i −0.236589 + 0.409784i
\(336\) 5671.78 728.819i 0.920895 0.118334i
\(337\) −4261.47 7381.09i −0.688835 1.19310i −0.972215 0.234089i \(-0.924789\pi\)
0.283381 0.959008i \(-0.408544\pi\)
\(338\) −435.071 + 753.566i −0.0700141 + 0.121268i
\(339\) −814.076 3408.18i −0.130426 0.546038i
\(340\) −2175.74 3768.49i −0.347047 0.601103i
\(341\) −3361.35 5822.03i −0.533805 0.924577i
\(342\) −84.5534 + 1545.18i −0.0133688 + 0.244310i
\(343\) 1998.28 6029.96i 0.314569 0.949235i
\(344\) −115.269 + 199.651i −0.0180665 + 0.0312921i
\(345\) 1282.56 + 5369.50i 0.200146 + 0.837925i
\(346\) −294.503 −0.0457588
\(347\) −5356.80 −0.828726 −0.414363 0.910112i \(-0.635996\pi\)
−0.414363 + 0.910112i \(0.635996\pi\)
\(348\) 6031.98 5710.93i 0.929162 0.879707i
\(349\) −1272.35 + 2203.78i −0.195150 + 0.338010i −0.946950 0.321382i \(-0.895853\pi\)
0.751799 + 0.659392i \(0.229186\pi\)
\(350\) 879.117 + 641.335i 0.134259 + 0.0979452i
\(351\) 689.683 1926.40i 0.104879 0.292945i
\(352\) −1082.19 1874.41i −0.163866 0.283825i
\(353\) −359.317 622.355i −0.0541770 0.0938374i 0.837665 0.546184i \(-0.183920\pi\)
−0.891842 + 0.452347i \(0.850587\pi\)
\(354\) 1419.46 + 422.245i 0.213117 + 0.0633956i
\(355\) 5024.02 8701.85i 0.751119 1.30098i
\(356\) 4100.50 + 7102.27i 0.610466 + 1.05736i
\(357\) −1284.92 + 3075.08i −0.190491 + 0.455883i
\(358\) 865.711 1499.46i 0.127805 0.221365i
\(359\) −902.203 1562.66i −0.132636 0.229733i 0.792056 0.610449i \(-0.209011\pi\)
−0.924692 + 0.380716i \(0.875678\pi\)
\(360\) 2686.88 1361.24i 0.393364 0.199288i
\(361\) −5111.96 + 8854.17i −0.745292 + 1.29088i
\(362\) −344.523 −0.0500214
\(363\) 2361.91 2236.19i 0.341509 0.323333i
\(364\) 1703.73 + 1242.91i 0.245329 + 0.178973i
\(365\) −2509.10 4345.90i −0.359815 0.623218i
\(366\) −84.7203 25.2016i −0.0120995 0.00359920i
\(367\) 350.583 + 607.228i 0.0498645 + 0.0863679i 0.889880 0.456194i \(-0.150788\pi\)
−0.840016 + 0.542562i \(0.817454\pi\)
\(368\) −1961.44 + 3397.31i −0.277846 + 0.481243i
\(369\) −125.382 + 2291.31i −0.0176887 + 0.323254i
\(370\) −1576.40 −0.221495
\(371\) −773.211 + 7221.28i −0.108202 + 1.01054i
\(372\) 9845.31 + 2928.67i 1.37219 + 0.408183i
\(373\) −713.383 + 1235.62i −0.0990284 + 0.171522i −0.911283 0.411781i \(-0.864907\pi\)
0.812254 + 0.583303i \(0.198240\pi\)
\(374\) 403.241 0.0557516
\(375\) −720.582 214.350i −0.0992285 0.0295173i
\(376\) 3641.12 0.499405
\(377\) 2986.12 0.407939
\(378\) −1025.74 496.079i −0.139572 0.0675014i
\(379\) −3715.17 −0.503524 −0.251762 0.967789i \(-0.581010\pi\)
−0.251762 + 0.967789i \(0.581010\pi\)
\(380\) 16422.8 2.21703
\(381\) −13433.2 3995.94i −1.80631 0.537319i
\(382\) 1346.46 0.180343
\(383\) −2746.12 + 4756.42i −0.366371 + 0.634574i −0.988995 0.147948i \(-0.952733\pi\)
0.622624 + 0.782521i \(0.286067\pi\)
\(384\) 4207.93 + 1251.73i 0.559206 + 0.166346i
\(385\) 7236.07 3204.83i 0.957881 0.424243i
\(386\) −1581.15 −0.208494
\(387\) −801.017 + 405.814i −0.105214 + 0.0533041i
\(388\) 676.159 1171.14i 0.0884710 0.153236i
\(389\) 2637.01 + 4567.44i 0.343707 + 0.595317i 0.985118 0.171880i \(-0.0549841\pi\)
−0.641411 + 0.767197i \(0.721651\pi\)
\(390\) 512.608 + 152.485i 0.0665562 + 0.0197984i
\(391\) −1143.14 1979.98i −0.147855 0.256092i
\(392\) 1597.83 1760.73i 0.205874 0.226862i
\(393\) 2829.22 2678.64i 0.363144 0.343815i
\(394\) −858.497 −0.109773
\(395\) −3919.42 + 6788.63i −0.499259 + 0.864742i
\(396\) 305.842 5589.15i 0.0388110 0.709256i
\(397\) 3198.57 + 5540.09i 0.404362 + 0.700375i 0.994247 0.107112i \(-0.0341603\pi\)
−0.589885 + 0.807487i \(0.700827\pi\)
\(398\) 283.291 490.674i 0.0356786 0.0617971i
\(399\) −7625.99 10002.5i −0.956835 1.25501i
\(400\) −3980.98 6895.25i −0.497622 0.861907i
\(401\) −2564.30 + 4441.50i −0.319339 + 0.553112i −0.980350 0.197264i \(-0.936794\pi\)
0.661011 + 0.750376i \(0.270128\pi\)
\(402\) 393.735 + 117.124i 0.0488501 + 0.0145314i
\(403\) 1846.27 + 3197.83i 0.228211 + 0.395274i
\(404\) −6948.91 12035.9i −0.855745 1.48219i
\(405\) 11661.9 + 1280.12i 1.43082 + 0.157061i
\(406\) 177.034 1653.39i 0.0216406 0.202109i
\(407\) −2965.64 + 5136.64i −0.361183 + 0.625587i
\(408\) −905.824 + 857.612i −0.109914 + 0.104064i
\(409\) 2945.92 0.356152 0.178076 0.984017i \(-0.443013\pi\)
0.178076 + 0.984017i \(0.443013\pi\)
\(410\) −599.784 −0.0722469
\(411\) −823.023 3445.64i −0.0987755 0.413530i
\(412\) 5215.27 9033.12i 0.623636 1.08017i
\(413\) −11005.8 + 4874.44i −1.31128 + 0.580764i
\(414\) 697.263 353.250i 0.0827744 0.0419355i
\(415\) −5564.65 9638.26i −0.658212 1.14006i
\(416\) 594.408 + 1029.54i 0.0700559 + 0.121340i
\(417\) −2382.48 9974.38i −0.279785 1.17134i
\(418\) −760.928 + 1317.97i −0.0890388 + 0.154220i
\(419\) 2927.69 + 5070.91i 0.341353 + 0.591241i 0.984684 0.174347i \(-0.0557815\pi\)
−0.643331 + 0.765588i \(0.722448\pi\)
\(420\) −4661.98 + 11157.0i −0.541623 + 1.29621i
\(421\) 2807.10 4862.05i 0.324964 0.562854i −0.656541 0.754290i \(-0.727981\pi\)
0.981505 + 0.191436i \(0.0613145\pi\)
\(422\) −494.587 856.650i −0.0570525 0.0988177i
\(423\) 11876.4 + 7751.62i 1.36513 + 0.891008i
\(424\) −1359.15 + 2354.11i −0.155674 + 0.269636i
\(425\) 4640.29 0.529617
\(426\) −1363.62 405.634i −0.155089 0.0461339i
\(427\) 656.879 290.930i 0.0744464 0.0329721i
\(428\) −4537.27 7858.78i −0.512424 0.887544i
\(429\) 1461.22 1383.45i 0.164449 0.155696i
\(430\) −117.350 203.257i −0.0131608 0.0227951i
\(431\) 8108.76 14044.8i 0.906230 1.56964i 0.0869726 0.996211i \(-0.472281\pi\)
0.819257 0.573426i \(-0.194386\pi\)
\(432\) 5392.27 + 6357.94i 0.600545 + 0.708094i
\(433\) 6768.71 0.751232 0.375616 0.926775i \(-0.377431\pi\)
0.375616 + 0.926775i \(0.377431\pi\)
\(434\) 1880.07 832.675i 0.207940 0.0920961i
\(435\) 3977.73 + 16653.0i 0.438431 + 1.83552i
\(436\) −6827.43 + 11825.5i −0.749941 + 1.29894i
\(437\) 8628.59 0.944534
\(438\) −515.953 + 488.492i −0.0562858 + 0.0532900i
\(439\) −433.063 −0.0470819 −0.0235410 0.999723i \(-0.507494\pi\)
−0.0235410 + 0.999723i \(0.507494\pi\)
\(440\) 2962.12 0.320940
\(441\) 8960.13 2341.40i 0.967512 0.252824i
\(442\) −221.486 −0.0238348
\(443\) −12019.5 −1.28909 −0.644543 0.764568i \(-0.722952\pi\)
−0.644543 + 0.764568i \(0.722952\pi\)
\(444\) −2105.42 8814.49i −0.225043 0.942156i
\(445\) −16903.8 −1.80071
\(446\) −1202.74 + 2083.20i −0.127693 + 0.221171i
\(447\) 3474.37 3289.45i 0.367633 0.348066i
\(448\) −7444.59 + 3297.19i −0.785098 + 0.347717i
\(449\) 3398.15 0.357168 0.178584 0.983925i \(-0.442848\pi\)
0.178584 + 0.983925i \(0.442848\pi\)
\(450\) −86.6809 + 1584.06i −0.00908039 + 0.165941i
\(451\) −1128.36 + 1954.37i −0.117810 + 0.204053i
\(452\) 2632.58 + 4559.77i 0.273952 + 0.474499i
\(453\) −1333.35 5582.16i −0.138292 0.578969i
\(454\) 494.384 + 856.298i 0.0511070 + 0.0885200i
\(455\) −3974.51 + 1760.30i −0.409512 + 0.181372i
\(456\) −1093.73 4578.97i −0.112321 0.470241i
\(457\) 4865.73 0.498050 0.249025 0.968497i \(-0.419890\pi\)
0.249025 + 0.968497i \(0.419890\pi\)
\(458\) 292.428 506.501i 0.0298347 0.0516752i
\(459\) −4780.35 + 868.891i −0.486116 + 0.0883580i
\(460\) −4147.57 7183.80i −0.420395 0.728145i
\(461\) −3631.43 + 6289.82i −0.366882 + 0.635458i −0.989076 0.147405i \(-0.952908\pi\)
0.622194 + 0.782863i \(0.286241\pi\)
\(462\) −679.373 891.083i −0.0684140 0.0897336i
\(463\) 1457.81 + 2525.00i 0.146329 + 0.253449i 0.929868 0.367893i \(-0.119921\pi\)
−0.783539 + 0.621343i \(0.786588\pi\)
\(464\) −6083.23 + 10536.5i −0.608636 + 1.05419i
\(465\) −15374.3 + 14556.0i −1.53326 + 1.45166i
\(466\) −159.205 275.752i −0.0158263 0.0274119i
\(467\) 451.790 + 782.523i 0.0447673 + 0.0775393i 0.887541 0.460729i \(-0.152412\pi\)
−0.842773 + 0.538268i \(0.819079\pi\)
\(468\) −167.988 + 3069.92i −0.0165924 + 0.303220i
\(469\) −3052.83 + 1352.09i −0.300569 + 0.133121i
\(470\) −1853.44 + 3210.24i −0.181899 + 0.315059i
\(471\) −383.401 114.050i −0.0375079 0.0111574i
\(472\) −4505.28 −0.439349
\(473\) −883.072 −0.0858429
\(474\) 1063.81 + 316.450i 0.103085 + 0.0306646i
\(475\) −8756.37 + 15166.5i −0.845831 + 1.46502i
\(476\) 533.151 4979.28i 0.0513381 0.479464i
\(477\) −9444.88 + 4785.00i −0.906606 + 0.459308i
\(478\) −520.829 902.102i −0.0498372 0.0863205i
\(479\) −9919.07 17180.3i −0.946167 1.63881i −0.753398 0.657564i \(-0.771587\pi\)
−0.192768 0.981244i \(-0.561747\pi\)
\(480\) −4949.78 + 4686.33i −0.470678 + 0.445626i
\(481\) 1628.92 2821.37i 0.154412 0.267450i
\(482\) −509.383 882.277i −0.0481364 0.0833747i
\(483\) −2449.43 + 5861.96i −0.230751 + 0.552233i
\(484\) −2443.64 + 4232.51i −0.229493 + 0.397493i
\(485\) 1393.69 + 2413.95i 0.130483 + 0.226003i
\(486\) −207.317 1648.10i −0.0193500 0.153826i
\(487\) −2882.72 + 4993.02i −0.268231 + 0.464590i −0.968405 0.249382i \(-0.919773\pi\)
0.700174 + 0.713972i \(0.253106\pi\)
\(488\) 268.897 0.0249434
\(489\) −1819.45 7617.23i −0.168258 0.704423i
\(490\) 739.028 + 2305.01i 0.0681345 + 0.212510i
\(491\) −8163.09 14138.9i −0.750295 1.29955i −0.947680 0.319223i \(-0.896578\pi\)
0.197385 0.980326i \(-0.436755\pi\)
\(492\) −801.066 3353.71i −0.0734042 0.307311i
\(493\) −3545.36 6140.74i −0.323884 0.560983i
\(494\) 417.950 723.911i 0.0380657 0.0659318i
\(495\) 9661.69 + 6306.10i 0.877294 + 0.572602i
\(496\) −15044.7 −1.36195
\(497\) 10572.9 4682.69i 0.954240 0.422630i
\(498\) −1144.27 + 1083.37i −0.102964 + 0.0974838i
\(499\) 5703.40 9878.59i 0.511662 0.886225i −0.488246 0.872706i \(-0.662363\pi\)
0.999909 0.0135191i \(-0.00430339\pi\)
\(500\) 1129.63 0.101037
\(501\) −1768.67 7404.65i −0.157721 0.660310i
\(502\) −1133.09 −0.100742
\(503\) 17309.5 1.53438 0.767191 0.641418i \(-0.221654\pi\)
0.767191 + 0.641418i \(0.221654\pi\)
\(504\) 3421.27 + 556.805i 0.302372 + 0.0492105i
\(505\) 28646.1 2.52422
\(506\) 768.690 0.0675345
\(507\) 7487.29 7088.79i 0.655863 0.620955i
\(508\) 21058.7 1.83923
\(509\) −9807.96 + 16987.9i −0.854087 + 1.47932i 0.0234022 + 0.999726i \(0.492550\pi\)
−0.877489 + 0.479596i \(0.840783\pi\)
\(510\) −295.035 1235.18i −0.0256164 0.107245i
\(511\) 614.840 5742.20i 0.0532268 0.497104i
\(512\) −8138.90 −0.702523
\(513\) 6180.75 17263.9i 0.531943 1.48581i
\(514\) −1144.06 + 1981.57i −0.0981758 + 0.170045i
\(515\) 10749.7 + 18619.0i 0.919782 + 1.59311i
\(516\) 979.783 927.635i 0.0835902 0.0791412i
\(517\) 6973.64 + 12078.7i 0.593231 + 1.02751i
\(518\) −1465.59 1069.18i −0.124314 0.0906897i
\(519\) 3344.84 + 994.982i 0.282894 + 0.0841520i
\(520\) −1626.99 −0.137208
\(521\) 2877.20 4983.45i 0.241943 0.419058i −0.719325 0.694674i \(-0.755549\pi\)
0.961268 + 0.275616i \(0.0888820\pi\)
\(522\) 2162.50 1095.57i 0.181322 0.0918620i
\(523\) −10161.3 17599.9i −0.849566 1.47149i −0.881596 0.472004i \(-0.843531\pi\)
0.0320306 0.999487i \(-0.489803\pi\)
\(524\) −2927.13 + 5069.93i −0.244031 + 0.422674i
\(525\) −7817.87 10254.1i −0.649905 0.852432i
\(526\) 849.055 + 1470.61i 0.0703813 + 0.121904i
\(527\) 4384.07 7593.43i 0.362378 0.627657i
\(528\) 1904.72 + 7974.21i 0.156993 + 0.657260i
\(529\) 3904.35 + 6762.53i 0.320897 + 0.555809i
\(530\) −1383.69 2396.62i −0.113403 0.196420i
\(531\) −14695.1 9591.35i −1.20096 0.783859i
\(532\) 15268.4 + 11138.6i 1.24430 + 0.907746i
\(533\) 619.767 1073.47i 0.0503660 0.0872365i
\(534\) 556.037 + 2327.88i 0.0450601 + 0.188647i
\(535\) 18704.4 1.51151
\(536\) −1249.69 −0.100706
\(537\) −14898.3 + 14105.4i −1.19722 + 1.13350i
\(538\) 625.330 1083.10i 0.0501113 0.0867954i
\(539\) 8901.10 + 1928.26i 0.711313 + 0.154093i
\(540\) −17344.1 + 3152.52i −1.38217 + 0.251228i
\(541\) 4945.74 + 8566.28i 0.393039 + 0.680763i 0.992849 0.119379i \(-0.0380904\pi\)
−0.599810 + 0.800143i \(0.704757\pi\)
\(542\) −792.359 1372.41i −0.0627947 0.108764i
\(543\) 3912.95 + 1163.98i 0.309246 + 0.0919909i
\(544\) 1411.46 2444.71i 0.111242 0.192677i
\(545\) −14072.6 24374.5i −1.10606 1.91576i
\(546\) 373.155 + 489.440i 0.0292483 + 0.0383628i
\(547\) 7131.62 12352.3i 0.557452 0.965535i −0.440256 0.897872i \(-0.645112\pi\)
0.997708 0.0676629i \(-0.0215543\pi\)
\(548\) 2661.52 + 4609.89i 0.207472 + 0.359351i
\(549\) 877.073 + 572.458i 0.0681832 + 0.0445026i
\(550\) −780.074 + 1351.13i −0.0604772 + 0.104750i
\(551\) 26760.8 2.06905
\(552\) −1726.76 + 1634.85i −0.133144 + 0.126058i
\(553\) −8248.26 + 3653.13i −0.634271 + 0.280917i
\(554\) −153.233 265.407i −0.0117513 0.0203539i
\(555\) 17904.1 + 5325.90i 1.36934 + 0.407337i
\(556\) 7704.53 + 13344.6i 0.587671 + 1.01788i
\(557\) 5896.82 10213.6i 0.448575 0.776955i −0.549718 0.835350i \(-0.685265\pi\)
0.998294 + 0.0583951i \(0.0185983\pi\)
\(558\) 2510.29 + 1638.44i 0.190446 + 0.124302i
\(559\) 485.040 0.0366995
\(560\) 1885.57 17610.0i 0.142286 1.32886i
\(561\) −4579.84 1362.36i −0.344672 0.102529i
\(562\) −228.782 + 396.262i −0.0171718 + 0.0297425i
\(563\) −15016.7 −1.12412 −0.562059 0.827097i \(-0.689991\pi\)
−0.562059 + 0.827097i \(0.689991\pi\)
\(564\) −20425.6 6075.97i −1.52495 0.453625i
\(565\) −10852.5 −0.808087
\(566\) −1842.67 −0.136843
\(567\) 9973.92 + 9099.74i 0.738739 + 0.673991i
\(568\) 4328.05 0.319720
\(569\) 8951.58 0.659525 0.329762 0.944064i \(-0.393031\pi\)
0.329762 + 0.944064i \(0.393031\pi\)
\(570\) 4593.86 + 1366.53i 0.337571 + 0.100417i
\(571\) −17570.7 −1.28776 −0.643881 0.765126i \(-0.722677\pi\)
−0.643881 + 0.765126i \(0.722677\pi\)
\(572\) −1511.79 + 2618.49i −0.110509 + 0.191407i
\(573\) −15292.6 4549.05i −1.11493 0.331657i
\(574\) −557.625 406.800i −0.0405485 0.0295810i
\(575\) 8845.69 0.641549
\(576\) −9940.10 6487.82i −0.719047 0.469316i
\(577\) −896.900 + 1553.48i −0.0647113 + 0.112083i −0.896566 0.442910i \(-0.853946\pi\)
0.831855 + 0.554994i \(0.187279\pi\)
\(578\) −814.247 1410.32i −0.0585955 0.101490i
\(579\) 17958.1 + 5341.96i 1.28897 + 0.383427i
\(580\) −12863.3 22279.9i −0.920897 1.59504i
\(581\) 1363.58 12735.0i 0.0973682 0.909356i
\(582\) 286.588 271.335i 0.0204115 0.0193251i
\(583\) −10412.4 −0.739687
\(584\) 1080.76 1871.94i 0.0765792 0.132639i
\(585\) −5306.82 3463.71i −0.375060 0.244798i
\(586\) 1350.16 + 2338.55i 0.0951786 + 0.164854i
\(587\) −3718.25 + 6440.19i −0.261446 + 0.452837i −0.966626 0.256191i \(-0.917533\pi\)
0.705181 + 0.709028i \(0.250866\pi\)
\(588\) −11901.5 + 7210.85i −0.834709 + 0.505732i
\(589\) 16545.8 + 28658.1i 1.15748 + 2.00482i
\(590\) 2293.32 3972.15i 0.160025 0.277171i
\(591\) 9750.44 + 2900.45i 0.678646 + 0.201876i
\(592\) 6636.77 + 11495.2i 0.460759 + 0.798059i
\(593\) −1306.49 2262.91i −0.0904742 0.156706i 0.817237 0.576302i \(-0.195505\pi\)
−0.907711 + 0.419596i \(0.862172\pi\)
\(594\) 550.621 1537.98i 0.0380341 0.106236i
\(595\) 8338.78 + 6083.33i 0.574549 + 0.419146i
\(596\) −3594.60 + 6226.03i −0.247048 + 0.427899i
\(597\) −4875.25 + 4615.76i −0.334222 + 0.316433i
\(598\) −422.214 −0.0288723
\(599\) 23764.8 1.62104 0.810520 0.585710i \(-0.199184\pi\)
0.810520 + 0.585710i \(0.199184\pi\)
\(600\) −1121.25 4694.18i −0.0762914 0.319399i
\(601\) −1913.39 + 3314.09i −0.129865 + 0.224933i −0.923624 0.383300i \(-0.874788\pi\)
0.793759 + 0.608232i \(0.208121\pi\)
\(602\) 28.7559 268.562i 0.00194685 0.0181823i
\(603\) −4076.18 2660.49i −0.275281 0.179674i
\(604\) 4311.84 + 7468.32i 0.290474 + 0.503116i
\(605\) −5036.81 8724.01i −0.338472 0.586250i
\(606\) −942.288 3944.94i −0.0631647 0.264443i
\(607\) −2661.96 + 4610.64i −0.177999 + 0.308303i −0.941195 0.337864i \(-0.890296\pi\)
0.763196 + 0.646167i \(0.223629\pi\)
\(608\) 5326.92 + 9226.50i 0.355321 + 0.615434i
\(609\) −7596.68 + 18180.3i −0.505473 + 1.20970i
\(610\) −136.876 + 237.077i −0.00908519 + 0.0157360i
\(611\) −3830.37 6634.39i −0.253617 0.439278i
\(612\) 6512.51 3299.40i 0.430152 0.217925i
\(613\) 6715.58 11631.7i 0.442479 0.766396i −0.555394 0.831587i \(-0.687432\pi\)
0.997873 + 0.0651915i \(0.0207658\pi\)
\(614\) −78.1140 −0.00513424
\(615\) 6812.10 + 2026.38i 0.446651 + 0.132864i
\(616\) 2753.91 + 2009.04i 0.180127 + 0.131407i
\(617\) −671.958 1163.86i −0.0438444 0.0759407i 0.843270 0.537490i \(-0.180627\pi\)
−0.887115 + 0.461549i \(0.847294\pi\)
\(618\) 2210.48 2092.83i 0.143881 0.136223i
\(619\) −831.110 1439.52i −0.0539663 0.0934723i 0.837780 0.546008i \(-0.183853\pi\)
−0.891747 + 0.452535i \(0.850520\pi\)
\(620\) 15906.4 27550.6i 1.03035 1.78461i
\(621\) −9112.68 + 1656.35i −0.588856 + 0.107032i
\(622\) −2943.68 −0.189760
\(623\) −15715.6 11464.9i −1.01065 0.737291i
\(624\) −1046.19 4379.95i −0.0671173 0.280991i
\(625\) 7210.20 12488.4i 0.461453 0.799259i
\(626\) 1373.30 0.0876804
\(627\) 13095.1 12398.1i 0.834078 0.789684i
\(628\) 601.045 0.0381916
\(629\) −7735.92 −0.490384
\(630\) −2232.44 + 2732.98i −0.141179 + 0.172833i
\(631\) −25046.0 −1.58014 −0.790068 0.613019i \(-0.789955\pi\)
−0.790068 + 0.613019i \(0.789955\pi\)
\(632\) −3376.47 −0.212514
\(633\) 2723.11 + 11400.4i 0.170985 + 0.715841i
\(634\) 3151.71 0.197430
\(635\) −21703.0 + 37590.8i −1.35631 + 2.34920i
\(636\) 11552.7 10937.8i 0.720276 0.681940i
\(637\) −4889.05 1059.12i −0.304099 0.0658775i
\(638\) 2384.02 0.147938
\(639\) 14117.0 + 9214.05i 0.873959 + 0.570426i
\(640\) 6798.45 11775.3i 0.419894 0.727278i
\(641\) 10179.0 + 17630.6i 0.627220 + 1.08638i 0.988107 + 0.153767i \(0.0491406\pi\)
−0.360887 + 0.932610i \(0.617526\pi\)
\(642\) −615.264 2575.84i −0.0378233 0.158349i
\(643\) −3959.18 6857.51i −0.242823 0.420581i 0.718694 0.695326i \(-0.244740\pi\)
−0.961517 + 0.274745i \(0.911407\pi\)
\(644\) 1016.34 9491.91i 0.0621883 0.580798i
\(645\) 646.109 + 2704.97i 0.0394426 + 0.165129i
\(646\) −1984.89 −0.120889
\(647\) −13879.2 + 24039.5i −0.843351 + 1.46073i 0.0436953 + 0.999045i \(0.486087\pi\)
−0.887046 + 0.461681i \(0.847246\pi\)
\(648\) 2034.07 + 4625.91i 0.123312 + 0.280437i
\(649\) −8628.74 14945.4i −0.521891 0.903942i
\(650\) 428.467 742.126i 0.0258551 0.0447824i
\(651\) −24166.2 + 3105.34i −1.45491 + 0.186955i
\(652\) 5883.79 + 10191.0i 0.353416 + 0.612134i
\(653\) −8471.97 + 14673.9i −0.507709 + 0.879378i 0.492251 + 0.870453i \(0.336174\pi\)
−0.999960 + 0.00892446i \(0.997159\pi\)
\(654\) −2893.79 + 2739.77i −0.173022 + 0.163813i
\(655\) −6033.37 10450.1i −0.359913 0.623388i
\(656\) 2525.14 + 4373.67i 0.150290 + 0.260310i
\(657\) 7510.35 3804.92i 0.445977 0.225943i
\(658\) −3900.49 + 1727.51i −0.231089 + 0.102349i
\(659\) 507.539 879.082i 0.0300014 0.0519639i −0.850635 0.525757i \(-0.823782\pi\)
0.880636 + 0.473793i \(0.157116\pi\)
\(660\) −16616.6 4942.92i −0.980003 0.291520i
\(661\) −26396.7 −1.55327 −0.776635 0.629950i \(-0.783075\pi\)
−0.776635 + 0.629950i \(0.783075\pi\)
\(662\) 173.940 0.0102120
\(663\) 2515.54 + 748.293i 0.147354 + 0.0438330i
\(664\) 2396.90 4151.55i 0.140087 0.242638i
\(665\) −35618.5 + 15775.3i −2.07703 + 0.919911i
\(666\) 144.508 2640.82i 0.00840774 0.153648i
\(667\) −6758.44 11706.0i −0.392336 0.679546i
\(668\) 5719.58 + 9906.61i 0.331283 + 0.573800i
\(669\) 20698.3 19596.6i 1.19618 1.13251i
\(670\) 636.130 1101.81i 0.0366804 0.0635323i
\(671\) 515.004 + 892.014i 0.0296297 + 0.0513201i
\(672\) −7780.33 + 999.766i −0.446626 + 0.0573911i
\(673\) 6298.15 10908.7i 0.360737 0.624814i −0.627346 0.778741i \(-0.715859\pi\)
0.988082 + 0.153927i \(0.0491920\pi\)
\(674\) 1868.72 + 3236.72i 0.106796 + 0.184976i
\(675\) 6336.27 17698.3i 0.361308 1.00919i
\(676\) −7746.39 + 13417.1i −0.440737 + 0.763379i
\(677\) −6579.40 −0.373511 −0.186756 0.982406i \(-0.559797\pi\)
−0.186756 + 0.982406i \(0.559797\pi\)
\(678\) 356.984 + 1494.54i 0.0202211 + 0.0846568i
\(679\) −341.515 + 3189.53i −0.0193022 + 0.180269i
\(680\) 1931.69 + 3345.78i 0.108936 + 0.188684i
\(681\) −2721.98 11395.8i −0.153167 0.641243i
\(682\) 1474.00 + 2553.05i 0.0827602 + 0.143345i
\(683\) −10341.5 + 17912.0i −0.579365 + 1.00349i 0.416188 + 0.909279i \(0.363366\pi\)
−0.995552 + 0.0942103i \(0.969967\pi\)
\(684\) −1505.46 + 27511.8i −0.0841561 + 1.53792i
\(685\) −10971.8 −0.611987
\(686\) −876.277 + 2644.23i −0.0487703 + 0.147168i
\(687\) −5032.50 + 4764.65i −0.279479 + 0.264603i
\(688\) −988.108 + 1711.45i −0.0547547 + 0.0948380i
\(689\) 5719.16 0.316230
\(690\) −562.420 2354.61i −0.0310304 0.129911i
\(691\) −2528.41 −0.139197 −0.0695985 0.997575i \(-0.522172\pi\)
−0.0695985 + 0.997575i \(0.522172\pi\)
\(692\) −5243.58 −0.288051
\(693\) 4705.49 + 12415.8i 0.257932 + 0.680574i
\(694\) 2349.04 0.128484
\(695\) −31761.0 −1.73347
\(696\) −5355.38 + 5070.34i −0.291660 + 0.276136i
\(697\) −2943.34 −0.159953
\(698\) 557.946 966.390i 0.0302558 0.0524046i
\(699\) 876.554 + 3669.75i 0.0474311 + 0.198573i
\(700\) 15652.6 + 11418.9i 0.845159 + 0.616562i
\(701\) 9775.87 0.526718 0.263359 0.964698i \(-0.415170\pi\)
0.263359 + 0.964698i \(0.415170\pi\)
\(702\) −302.436 + 844.756i −0.0162603 + 0.0454177i
\(703\) 14597.9 25284.4i 0.783174 1.35650i
\(704\) −5836.68 10109.4i −0.312469 0.541212i
\(705\) 31896.4 30198.7i 1.70395 1.61326i
\(706\) 157.566 + 272.912i 0.00839953 + 0.0145484i
\(707\) 26632.5 + 19429.0i 1.41672 + 1.03353i
\(708\) 25273.3 + 7518.01i 1.34157 + 0.399074i
\(709\) 29133.9 1.54322 0.771612 0.636094i \(-0.219451\pi\)
0.771612 + 0.636094i \(0.219451\pi\)
\(710\) −2203.11 + 3815.89i −0.116452 + 0.201701i
\(711\) −11013.2 7188.21i −0.580909 0.379155i
\(712\) −3640.55 6305.61i −0.191623 0.331900i
\(713\) 8357.27 14475.2i 0.438965 0.760310i
\(714\) 563.458 1348.47i 0.0295335 0.0706794i
\(715\) −3116.08 5397.22i −0.162986 0.282300i
\(716\) 15413.9 26697.6i 0.804530 1.39349i
\(717\) 2867.59 + 12005.3i 0.149361 + 0.625310i
\(718\) 395.630 + 685.251i 0.0205637 + 0.0356175i
\(719\) 965.597 + 1672.46i 0.0500844 + 0.0867488i 0.889981 0.455998i \(-0.150718\pi\)
−0.839896 + 0.542747i \(0.817384\pi\)
\(720\) 23032.5 11668.8i 1.19218 0.603988i
\(721\) −2634.14 + 24601.2i −0.136062 + 1.27073i
\(722\) 2241.67 3882.69i 0.115549 0.200137i
\(723\) 2804.57 + 11741.5i 0.144264 + 0.603970i
\(724\) −6134.19 −0.314883
\(725\) 27434.1 1.40535
\(726\) −1035.73 + 980.605i −0.0529471 + 0.0501290i
\(727\) 3741.78 6480.95i 0.190887 0.330626i −0.754657 0.656119i \(-0.772197\pi\)
0.945544 + 0.325493i \(0.105530\pi\)
\(728\) −1512.63 1103.49i −0.0770077 0.0561789i
\(729\) −3213.53 + 19418.9i −0.163264 + 0.986582i
\(730\) 1100.28 + 1905.74i 0.0557852 + 0.0966228i
\(731\) −575.877 997.448i −0.0291376 0.0504678i
\(732\) −1508.43 448.711i −0.0761657 0.0226569i
\(733\) −3481.86 + 6030.76i −0.175451 + 0.303890i −0.940317 0.340299i \(-0.889472\pi\)
0.764866 + 0.644189i \(0.222805\pi\)
\(734\) −153.736 266.278i −0.00773092 0.0133904i
\(735\) −606.057 28676.1i −0.0304146 1.43910i
\(736\) 2690.63 4660.31i 0.134753 0.233398i
\(737\) −2393.47 4145.61i −0.119626 0.207199i
\(738\) 54.9818 1004.77i 0.00274242 0.0501168i
\(739\) −16992.7 + 29432.3i −0.845856 + 1.46507i 0.0390198 + 0.999238i \(0.487576\pi\)
−0.884876 + 0.465827i \(0.845757\pi\)
\(740\) −28067.6 −1.39431
\(741\) −7192.65 + 6809.83i −0.356584 + 0.337605i
\(742\) 339.064 3166.64i 0.0167755 0.156673i
\(743\) −16728.8 28975.1i −0.826003 1.43068i −0.901150 0.433507i \(-0.857276\pi\)
0.0751472 0.997172i \(-0.476057\pi\)
\(744\) −8740.96 2600.16i −0.430725 0.128127i
\(745\) −7409.16 12833.0i −0.364363 0.631095i
\(746\) 312.829 541.836i 0.0153532 0.0265925i
\(747\) 16656.4 8438.51i 0.815829 0.413318i
\(748\) 7179.65 0.350955
\(749\) 17389.6 + 12686.1i 0.848335 + 0.618880i
\(750\) 315.986 + 93.9958i 0.0153842 + 0.00457632i
\(751\) 10556.4 18284.3i 0.512929 0.888419i −0.486959 0.873425i \(-0.661894\pi\)
0.999888 0.0149939i \(-0.00477289\pi\)
\(752\) 31212.4 1.51356
\(753\) 12869.2 + 3828.17i 0.622813 + 0.185267i
\(754\) −1309.46 −0.0632463
\(755\) −17775.0 −0.856822
\(756\) −18263.2 8832.62i −0.878605 0.424920i
\(757\) −15379.0 −0.738388 −0.369194 0.929352i \(-0.620366\pi\)
−0.369194 + 0.929352i \(0.620366\pi\)
\(758\) 1629.16 0.0780656
\(759\) −8730.46 2597.03i −0.417517 0.124198i
\(760\) −14580.6 −0.695914
\(761\) 3461.61 5995.68i 0.164892 0.285602i −0.771725 0.635957i \(-0.780606\pi\)
0.936617 + 0.350355i \(0.113939\pi\)
\(762\) 5890.65 + 1752.28i 0.280047 + 0.0833051i
\(763\) 3448.41 32205.9i 0.163618 1.52809i
\(764\) 23973.6 1.13526
\(765\) −822.203 + 15025.5i −0.0388586 + 0.710127i
\(766\) 1204.22 2085.76i 0.0568016 0.0983833i
\(767\) 4739.45 + 8208.98i 0.223118 + 0.386452i
\(768\) 15671.3 + 4661.71i 0.736314 + 0.219030i
\(769\) −16115.3 27912.5i −0.755698 1.30891i −0.945026 0.326994i \(-0.893964\pi\)
0.189328 0.981914i \(-0.439369\pi\)
\(770\) −3173.12 + 1405.37i −0.148508 + 0.0657739i
\(771\) 19688.5 18640.6i 0.919669 0.870720i
\(772\) −28152.2 −1.31246
\(773\) −3777.77 + 6543.30i −0.175779 + 0.304458i −0.940431