Properties

Label 63.4.h
Level $63$
Weight $4$
Character orbit 63.h
Rep. character $\chi_{63}(25,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $44$
Newform subspaces $1$
Sturm bound $32$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.h (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(63, [\chi])\).

Total New Old
Modular forms 52 52 0
Cusp forms 44 44 0
Eisenstein series 8 8 0

Trace form

\( 44 q - 2 q^{2} - q^{3} + 158 q^{4} - 19 q^{5} - 20 q^{6} - 7 q^{7} - 24 q^{8} + 11 q^{9} - 18 q^{10} + 5 q^{11} - 62 q^{12} - 14 q^{13} - 52 q^{14} + 119 q^{15} + 494 q^{16} - 162 q^{17} - 188 q^{18} + 58 q^{19}+ \cdots - 5395 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(63, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
63.4.h.a 63.h 63.h $44$ $3.717$ None 63.4.g.a \(-2\) \(-1\) \(-19\) \(-7\) $\mathrm{SU}(2)[C_{3}]$