# Properties

 Label 63.4.f.b.43.7 Level $63$ Weight $4$ Character 63.43 Analytic conductor $3.717$ Analytic rank $0$ Dimension $16$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$63 = 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 63.f (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.71712033036$$ Analytic rank: $$0$$ Dimension: $$16$$ Relative dimension: $$8$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{16} - \cdots)$$ Defining polynomial: $$x^{16} - 3 x^{15} + 58 x^{14} - 129 x^{13} + 2107 x^{12} - 4455 x^{11} + 42901 x^{10} - 76404 x^{9} + 599392 x^{8} - 1089732 x^{7} + 4808401 x^{6} - 7939134 x^{5} + 26225236 x^{4} - 39450864 x^{3} + 62254768 x^{2} - 39660672 x + 21307456$$ Coefficient ring: $$\Z[a_1, \ldots, a_{4}]$$ Coefficient ring index: $$2^{2}\cdot 3^{7}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 43.7 Root $$-1.96709 + 3.40709i$$ of defining polynomial Character $$\chi$$ $$=$$ 63.43 Dual form 63.4.f.b.22.7

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(1.96709 - 3.40709i) q^{2} +(1.35403 - 5.01663i) q^{3} +(-3.73885 - 6.47588i) q^{4} +(1.21571 + 2.10567i) q^{5} +(-14.4286 - 14.4814i) q^{6} +(3.50000 - 6.06218i) q^{7} +2.05480 q^{8} +(-23.3332 - 13.5853i) q^{9} +O(q^{10})$$ $$q+(1.96709 - 3.40709i) q^{2} +(1.35403 - 5.01663i) q^{3} +(-3.73885 - 6.47588i) q^{4} +(1.21571 + 2.10567i) q^{5} +(-14.4286 - 14.4814i) q^{6} +(3.50000 - 6.06218i) q^{7} +2.05480 q^{8} +(-23.3332 - 13.5853i) q^{9} +9.56561 q^{10} +(-21.0862 + 36.5223i) q^{11} +(-37.5496 + 9.98793i) q^{12} +(19.7866 + 34.2714i) q^{13} +(-13.7696 - 23.8496i) q^{14} +(12.2095 - 3.24763i) q^{15} +(33.9528 - 58.8079i) q^{16} -2.07697 q^{17} +(-92.1849 + 52.7750i) q^{18} +96.1013 q^{19} +(9.09070 - 15.7456i) q^{20} +(-25.6726 - 25.7666i) q^{21} +(82.9566 + 143.685i) q^{22} +(-36.8754 - 63.8701i) q^{23} +(2.78225 - 10.3082i) q^{24} +(59.5441 - 103.133i) q^{25} +155.688 q^{26} +(-99.7463 + 98.6594i) q^{27} -52.3439 q^{28} +(-9.60379 + 16.6342i) q^{29} +(12.9521 - 47.9871i) q^{30} +(119.748 + 207.410i) q^{31} +(-125.357 - 217.124i) q^{32} +(154.668 + 155.234i) q^{33} +(-4.08557 + 7.07642i) q^{34} +17.0199 q^{35} +(-0.737407 + 201.897i) q^{36} -144.310 q^{37} +(189.039 - 327.426i) q^{38} +(198.718 - 52.8577i) q^{39} +(2.49803 + 4.32672i) q^{40} +(36.1409 + 62.5979i) q^{41} +(-138.289 + 36.7840i) q^{42} +(-240.274 + 416.167i) q^{43} +315.352 q^{44} +(0.239772 - 65.6478i) q^{45} -290.148 q^{46} +(-147.354 + 255.224i) q^{47} +(-249.045 - 249.956i) q^{48} +(-24.5000 - 42.4352i) q^{49} +(-234.257 - 405.745i) q^{50} +(-2.81227 + 10.4194i) q^{51} +(147.958 - 256.271i) q^{52} -627.210 q^{53} +(139.932 + 533.916i) q^{54} -102.538 q^{55} +(7.19179 - 12.4565i) q^{56} +(130.124 - 482.105i) q^{57} +(37.7829 + 65.4420i) q^{58} +(-74.8093 - 129.573i) q^{59} +(-66.6807 - 66.9246i) q^{60} +(315.358 - 546.216i) q^{61} +942.221 q^{62} +(-164.023 + 93.9016i) q^{63} -443.106 q^{64} +(-48.1094 + 83.3279i) q^{65} +(833.141 - 221.610i) q^{66} +(-2.02124 - 3.50089i) q^{67} +(7.76547 + 13.4502i) q^{68} +(-370.343 + 98.5087i) q^{69} +(33.4796 - 57.9884i) q^{70} -798.373 q^{71} +(-47.9450 - 27.9150i) q^{72} +444.022 q^{73} +(-283.871 + 491.679i) q^{74} +(-436.758 - 438.356i) q^{75} +(-359.309 - 622.341i) q^{76} +(147.603 + 255.656i) q^{77} +(210.805 - 781.027i) q^{78} +(287.769 - 498.431i) q^{79} +165.107 q^{80} +(359.879 + 633.978i) q^{81} +284.369 q^{82} +(-645.117 + 1117.38i) q^{83} +(-70.8751 + 262.590i) q^{84} +(-2.52498 - 4.37340i) q^{85} +(945.280 + 1637.27i) q^{86} +(70.4441 + 70.7019i) q^{87} +(-43.3278 + 75.0459i) q^{88} +750.701 q^{89} +(-223.196 - 129.952i) q^{90} +277.012 q^{91} +(-275.744 + 477.602i) q^{92} +(1202.64 - 319.895i) q^{93} +(579.714 + 1004.09i) q^{94} +(116.831 + 202.357i) q^{95} +(-1258.97 + 334.877i) q^{96} +(-209.774 + 363.339i) q^{97} -192.774 q^{98} +(988.175 - 565.721i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} + O(q^{10})$$ $$16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} - 28q^{10} - 24q^{11} + 268q^{12} - 68q^{13} + 21q^{14} + 56q^{15} - 103q^{16} + 336q^{17} - 479q^{18} + 352q^{19} - 330q^{20} + 70q^{21} - 151q^{22} - 228q^{23} - 195q^{24} - 244q^{25} + 1590q^{26} + 272q^{27} - 602q^{28} - 618q^{29} + 1030q^{30} - 72q^{31} - 786q^{32} - 700q^{33} + 261q^{34} - 420q^{35} + 727q^{36} + 420q^{37} - 1032q^{38} - 22q^{39} + 375q^{40} - 420q^{41} - 175q^{42} + 2q^{43} + 774q^{44} + 1406q^{45} + 804q^{46} - 570q^{47} + 1864q^{48} - 392q^{49} - 1110q^{50} - 2940q^{51} + 431q^{52} + 1056q^{53} + 2269q^{54} - 1676q^{55} + 42q^{56} + 122q^{57} - 37q^{58} + 150q^{59} - 6350q^{60} - 578q^{61} + 2340q^{62} - 350q^{63} - 224q^{64} + 366q^{65} + 5812q^{66} + 898q^{67} - 2526q^{68} - 2166q^{69} - 98q^{70} + 1764q^{71} + 1350q^{72} + 1944q^{73} + 222q^{74} - 2096q^{75} - 1423q^{76} + 168q^{77} - 5558q^{78} + 158q^{79} + 4950q^{80} + 476q^{81} - 422q^{82} - 2958q^{83} + 1715q^{84} + 774q^{85} + 114q^{86} + 44q^{87} - 1317q^{88} + 8760q^{89} - 3659q^{90} - 952q^{91} - 4629q^{92} + 3954q^{93} + 3234q^{94} - 930q^{95} - 5923q^{96} + 60q^{97} + 294q^{98} + 1214q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/63\mathbb{Z}\right)^\times$$.

 $$n$$ $$10$$ $$29$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.96709 3.40709i 0.695470 1.20459i −0.274552 0.961572i $$-0.588530\pi$$
0.970022 0.243017i $$-0.0781371\pi$$
$$3$$ 1.35403 5.01663i 0.260583 0.965452i
$$4$$ −3.73885 6.47588i −0.467357 0.809485i
$$5$$ 1.21571 + 2.10567i 0.108736 + 0.188337i 0.915259 0.402867i $$-0.131986\pi$$
−0.806522 + 0.591204i $$0.798653\pi$$
$$6$$ −14.4286 14.4814i −0.981745 0.985337i
$$7$$ 3.50000 6.06218i 0.188982 0.327327i
$$8$$ 2.05480 0.0908100
$$9$$ −23.3332 13.5853i −0.864193 0.503160i
$$10$$ 9.56561 0.302491
$$11$$ −21.0862 + 36.5223i −0.577975 + 1.00108i 0.417737 + 0.908568i $$0.362823\pi$$
−0.995711 + 0.0925133i $$0.970510\pi$$
$$12$$ −37.5496 + 9.98793i −0.903304 + 0.240272i
$$13$$ 19.7866 + 34.2714i 0.422139 + 0.731166i 0.996148 0.0876824i $$-0.0279460\pi$$
−0.574009 + 0.818849i $$0.694613\pi$$
$$14$$ −13.7696 23.8496i −0.262863 0.455292i
$$15$$ 12.2095 3.24763i 0.210165 0.0559023i
$$16$$ 33.9528 58.8079i 0.530512 0.918874i
$$17$$ −2.07697 −0.0296317 −0.0148158 0.999890i $$-0.504716\pi$$
−0.0148158 + 0.999890i $$0.504716\pi$$
$$18$$ −92.1849 + 52.7750i −1.20712 + 0.691066i
$$19$$ 96.1013 1.16038 0.580188 0.814483i $$-0.302979\pi$$
0.580188 + 0.814483i $$0.302979\pi$$
$$20$$ 9.09070 15.7456i 0.101637 0.176041i
$$21$$ −25.6726 25.7666i −0.266773 0.267749i
$$22$$ 82.9566 + 143.685i 0.803928 + 1.39244i
$$23$$ −36.8754 63.8701i −0.334307 0.579036i 0.649045 0.760750i $$-0.275169\pi$$
−0.983351 + 0.181714i $$0.941836\pi$$
$$24$$ 2.78225 10.3082i 0.0236635 0.0876727i
$$25$$ 59.5441 103.133i 0.476353 0.825067i
$$26$$ 155.688 1.17434
$$27$$ −99.7463 + 98.6594i −0.710970 + 0.703222i
$$28$$ −52.3439 −0.353288
$$29$$ −9.60379 + 16.6342i −0.0614958 + 0.106514i −0.895134 0.445797i $$-0.852920\pi$$
0.833638 + 0.552311i $$0.186254\pi$$
$$30$$ 12.9521 47.9871i 0.0788239 0.292040i
$$31$$ 119.748 + 207.410i 0.693788 + 1.20168i 0.970587 + 0.240749i $$0.0773930\pi$$
−0.276799 + 0.960928i $$0.589274\pi$$
$$32$$ −125.357 217.124i −0.692505 1.19945i
$$33$$ 154.668 + 155.234i 0.815885 + 0.818871i
$$34$$ −4.08557 + 7.07642i −0.0206079 + 0.0356940i
$$35$$ 17.0199 0.0821968
$$36$$ −0.737407 + 201.897i −0.00341392 + 0.934707i
$$37$$ −144.310 −0.641202 −0.320601 0.947214i $$-0.603885\pi$$
−0.320601 + 0.947214i $$0.603885\pi$$
$$38$$ 189.039 327.426i 0.807007 1.39778i
$$39$$ 198.718 52.8577i 0.815908 0.217026i
$$40$$ 2.49803 + 4.32672i 0.00987434 + 0.0171029i
$$41$$ 36.1409 + 62.5979i 0.137665 + 0.238443i 0.926612 0.376018i $$-0.122707\pi$$
−0.788947 + 0.614461i $$0.789374\pi$$
$$42$$ −138.289 + 36.7840i −0.508060 + 0.135140i
$$43$$ −240.274 + 416.167i −0.852128 + 1.47593i 0.0271568 + 0.999631i $$0.491355\pi$$
−0.879284 + 0.476297i $$0.841979\pi$$
$$44$$ 315.352 1.08048
$$45$$ 0.239772 65.6478i 0.000794291 0.217471i
$$46$$ −290.148 −0.930001
$$47$$ −147.354 + 255.224i −0.457313 + 0.792090i −0.998818 0.0486079i $$-0.984522\pi$$
0.541505 + 0.840698i $$0.317855\pi$$
$$48$$ −249.045 249.956i −0.748886 0.751626i
$$49$$ −24.5000 42.4352i −0.0714286 0.123718i
$$50$$ −234.257 405.745i −0.662578 1.14762i
$$51$$ −2.81227 + 10.4194i −0.00772150 + 0.0286079i
$$52$$ 147.958 256.271i 0.394579 0.683431i
$$53$$ −627.210 −1.62555 −0.812773 0.582580i $$-0.802043\pi$$
−0.812773 + 0.582580i $$0.802043\pi$$
$$54$$ 139.932 + 533.916i 0.352636 + 1.34550i
$$55$$ −102.538 −0.251387
$$56$$ 7.19179 12.4565i 0.0171615 0.0297246i
$$57$$ 130.124 482.105i 0.302374 1.12029i
$$58$$ 37.7829 + 65.4420i 0.0855370 + 0.148154i
$$59$$ −74.8093 129.573i −0.165074 0.285916i 0.771608 0.636098i $$-0.219453\pi$$
−0.936681 + 0.350183i $$0.886119\pi$$
$$60$$ −66.6807 66.9246i −0.143474 0.143999i
$$61$$ 315.358 546.216i 0.661926 1.14649i −0.318183 0.948029i $$-0.603073\pi$$
0.980109 0.198460i $$-0.0635939\pi$$
$$62$$ 942.221 1.93004
$$63$$ −164.023 + 93.9016i −0.328015 + 0.187785i
$$64$$ −443.106 −0.865442
$$65$$ −48.1094 + 83.3279i −0.0918036 + 0.159009i
$$66$$ 833.141 221.610i 1.55383 0.413307i
$$67$$ −2.02124 3.50089i −0.00368558 0.00638361i 0.864177 0.503188i $$-0.167840\pi$$
−0.867862 + 0.496805i $$0.834506\pi$$
$$68$$ 7.76547 + 13.4502i 0.0138486 + 0.0239864i
$$69$$ −370.343 + 98.5087i −0.646146 + 0.171870i
$$70$$ 33.4796 57.9884i 0.0571654 0.0990134i
$$71$$ −798.373 −1.33450 −0.667249 0.744835i $$-0.732528\pi$$
−0.667249 + 0.744835i $$0.732528\pi$$
$$72$$ −47.9450 27.9150i −0.0784774 0.0456919i
$$73$$ 444.022 0.711902 0.355951 0.934505i $$-0.384157\pi$$
0.355951 + 0.934505i $$0.384157\pi$$
$$74$$ −283.871 + 491.679i −0.445937 + 0.772386i
$$75$$ −436.758 438.356i −0.672433 0.674894i
$$76$$ −359.309 622.341i −0.542309 0.939308i
$$77$$ 147.603 + 255.656i 0.218454 + 0.378373i
$$78$$ 210.805 781.027i 0.306013 1.13377i
$$79$$ 287.769 498.431i 0.409830 0.709847i −0.585040 0.811004i $$-0.698921\pi$$
0.994870 + 0.101158i $$0.0322547\pi$$
$$80$$ 165.107 0.230744
$$81$$ 359.879 + 633.978i 0.493661 + 0.869655i
$$82$$ 284.369 0.382967
$$83$$ −645.117 + 1117.38i −0.853143 + 1.47769i 0.0252150 + 0.999682i $$0.491973\pi$$
−0.878358 + 0.478004i $$0.841360\pi$$
$$84$$ −70.8751 + 262.590i −0.0920608 + 0.341083i
$$85$$ −2.52498 4.37340i −0.00322204 0.00558073i
$$86$$ 945.280 + 1637.27i 1.18526 + 2.05293i
$$87$$ 70.4441 + 70.7019i 0.0868092 + 0.0871269i
$$88$$ −43.3278 + 75.0459i −0.0524859 + 0.0909082i
$$89$$ 750.701 0.894091 0.447046 0.894511i $$-0.352476\pi$$
0.447046 + 0.894511i $$0.352476\pi$$
$$90$$ −223.196 129.952i −0.261411 0.152201i
$$91$$ 277.012 0.319107
$$92$$ −275.744 + 477.602i −0.312481 + 0.541233i
$$93$$ 1202.64 319.895i 1.34095 0.356683i
$$94$$ 579.714 + 1004.09i 0.636095 + 1.10175i
$$95$$ 116.831 + 202.357i 0.126175 + 0.218541i
$$96$$ −1258.97 + 334.877i −1.33847 + 0.356024i
$$97$$ −209.774 + 363.339i −0.219581 + 0.380325i −0.954680 0.297635i $$-0.903802\pi$$
0.735099 + 0.677960i $$0.237136\pi$$
$$98$$ −192.774 −0.198706
$$99$$ 988.175 565.721i 1.00319 0.574314i
$$100$$ −890.507 −0.890507
$$101$$ −452.812 + 784.293i −0.446103 + 0.772674i −0.998128 0.0611539i $$-0.980522\pi$$
0.552025 + 0.833828i $$0.313855\pi$$
$$102$$ 29.9678 + 30.0775i 0.0290907 + 0.0291972i
$$103$$ −1033.87 1790.71i −0.989030 1.71305i −0.622439 0.782668i $$-0.713858\pi$$
−0.366591 0.930382i $$-0.619475\pi$$
$$104$$ 40.6574 + 70.4206i 0.0383345 + 0.0663972i
$$105$$ 23.0454 85.3826i 0.0214191 0.0793571i
$$106$$ −1233.78 + 2136.96i −1.13052 + 1.95812i
$$107$$ 1728.25 1.56146 0.780730 0.624869i $$-0.214848\pi$$
0.780730 + 0.624869i $$0.214848\pi$$
$$108$$ 1011.84 + 277.073i 0.901525 + 0.246864i
$$109$$ 925.211 0.813020 0.406510 0.913646i $$-0.366746\pi$$
0.406510 + 0.913646i $$0.366746\pi$$
$$110$$ −201.702 + 349.358i −0.174832 + 0.302818i
$$111$$ −195.400 + 723.953i −0.167086 + 0.619050i
$$112$$ −237.669 411.656i −0.200515 0.347302i
$$113$$ −1093.61 1894.18i −0.910424 1.57690i −0.813467 0.581612i $$-0.802422\pi$$
−0.0969571 0.995289i $$-0.530911\pi$$
$$114$$ −1386.61 1391.69i −1.13919 1.14336i
$$115$$ 89.6595 155.295i 0.0727025 0.125924i
$$116$$ 143.629 0.114962
$$117$$ 3.90247 1068.47i 0.00308362 0.844273i
$$118$$ −588.625 −0.459215
$$119$$ −7.26938 + 12.5909i −0.00559986 + 0.00969924i
$$120$$ 25.0880 6.67322i 0.0190851 0.00507649i
$$121$$ −223.753 387.552i −0.168109 0.291174i
$$122$$ −1240.67 2148.91i −0.920699 1.59470i
$$123$$ 362.967 96.5465i 0.266078 0.0707748i
$$124$$ 895.443 1550.95i 0.648493 1.12322i
$$125$$ 593.480 0.424660
$$126$$ −2.71575 + 743.553i −0.00192015 + 0.525722i
$$127$$ 898.130 0.627529 0.313764 0.949501i $$-0.398410\pi$$
0.313764 + 0.949501i $$0.398410\pi$$
$$128$$ 131.227 227.291i 0.0906165 0.156952i
$$129$$ 1762.42 + 1768.87i 1.20289 + 1.20729i
$$130$$ 189.271 + 327.826i 0.127693 + 0.221171i
$$131$$ −1067.26 1848.56i −0.711812 1.23289i −0.964176 0.265262i $$-0.914541\pi$$
0.252364 0.967632i $$-0.418792\pi$$
$$132$$ 426.996 1582.01i 0.281554 1.04315i
$$133$$ 336.355 582.583i 0.219290 0.379822i
$$134$$ −15.9038 −0.0102528
$$135$$ −329.006 90.0917i −0.209751 0.0574360i
$$136$$ −4.26774 −0.00269085
$$137$$ 1080.63 1871.71i 0.673901 1.16723i −0.302888 0.953026i $$-0.597951\pi$$
0.976789 0.214205i $$-0.0687160\pi$$
$$138$$ −392.869 + 1455.57i −0.242342 + 0.897871i
$$139$$ −1150.08 1992.00i −0.701789 1.21553i −0.967838 0.251575i $$-0.919052\pi$$
0.266049 0.963960i $$-0.414282\pi$$
$$140$$ −63.6349 110.219i −0.0384152 0.0665371i
$$141$$ 1080.84 + 1084.80i 0.645557 + 0.647919i
$$142$$ −1570.47 + 2720.13i −0.928103 + 1.60752i
$$143$$ −1668.89 −0.975943
$$144$$ −1591.15 + 910.920i −0.920806 + 0.527153i
$$145$$ −46.7016 −0.0267473
$$146$$ 873.430 1512.82i 0.495107 0.857550i
$$147$$ −246.056 + 65.4491i −0.138057 + 0.0367221i
$$148$$ 539.556 + 934.538i 0.299670 + 0.519044i
$$149$$ 591.768 + 1024.97i 0.325366 + 0.563551i 0.981586 0.191019i $$-0.0611791\pi$$
−0.656220 + 0.754569i $$0.727846\pi$$
$$150$$ −2352.66 + 625.791i −1.28063 + 0.340638i
$$151$$ −1718.81 + 2977.06i −0.926322 + 1.60444i −0.136901 + 0.990585i $$0.543714\pi$$
−0.789421 + 0.613852i $$0.789619\pi$$
$$152$$ 197.469 0.105374
$$153$$ 48.4623 + 28.2162i 0.0256075 + 0.0149095i
$$154$$ 1161.39 0.607712
$$155$$ −291.158 + 504.300i −0.150880 + 0.261331i
$$156$$ −1085.28 1089.25i −0.556999 0.559037i
$$157$$ 10.4307 + 18.0665i 0.00530229 + 0.00918383i 0.868664 0.495401i $$-0.164979\pi$$
−0.863362 + 0.504585i $$0.831646\pi$$
$$158$$ −1132.13 1960.91i −0.570049 0.987354i
$$159$$ −849.260 + 3146.49i −0.423589 + 1.56939i
$$160$$ 304.795 527.920i 0.150601 0.260848i
$$161$$ −516.256 −0.252712
$$162$$ 2867.93 + 20.9500i 1.39090 + 0.0101604i
$$163$$ −1654.46 −0.795015 −0.397507 0.917599i $$-0.630125\pi$$
−0.397507 + 0.917599i $$0.630125\pi$$
$$164$$ 270.251 468.089i 0.128677 0.222876i
$$165$$ −138.840 + 514.398i −0.0655071 + 0.242702i
$$166$$ 2538.00 + 4395.95i 1.18667 + 2.05537i
$$167$$ 980.611 + 1698.47i 0.454383 + 0.787014i 0.998652 0.0518963i $$-0.0165265\pi$$
−0.544270 + 0.838910i $$0.683193\pi$$
$$168$$ −52.7520 52.9450i −0.0242256 0.0243143i
$$169$$ 315.483 546.433i 0.143597 0.248718i
$$170$$ −19.8674 −0.00896331
$$171$$ −2242.35 1305.57i −1.00279 0.583855i
$$172$$ 3593.40 1.59299
$$173$$ 13.6713 23.6794i 0.00600816 0.0104064i −0.863006 0.505194i $$-0.831421\pi$$
0.869014 + 0.494788i $$0.164754\pi$$
$$174$$ 379.458 100.933i 0.165325 0.0439754i
$$175$$ −416.809 721.934i −0.180044 0.311846i
$$176$$ 1431.87 + 2480.07i 0.613245 + 1.06217i
$$177$$ −751.316 + 199.845i −0.319053 + 0.0848658i
$$178$$ 1476.69 2557.71i 0.621813 1.07701i
$$179$$ 130.832 0.0546302 0.0273151 0.999627i $$-0.491304\pi$$
0.0273151 + 0.999627i $$0.491304\pi$$
$$180$$ −426.024 + 243.895i −0.176411 + 0.100994i
$$181$$ 2460.11 1.01027 0.505134 0.863041i $$-0.331443\pi$$
0.505134 + 0.863041i $$0.331443\pi$$
$$182$$ 544.906 943.806i 0.221929 0.384393i
$$183$$ −2313.16 2321.63i −0.934393 0.937812i
$$184$$ −75.7715 131.240i −0.0303584 0.0525823i
$$185$$ −175.439 303.870i −0.0697219 0.120762i
$$186$$ 1275.79 4726.78i 0.502934 1.86336i
$$187$$ 43.7953 75.8556i 0.0171264 0.0296637i
$$188$$ 2203.73 0.854914
$$189$$ 248.978 + 949.988i 0.0958228 + 0.365616i
$$190$$ 919.267 0.351003
$$191$$ 654.703 1133.98i 0.248024 0.429591i −0.714953 0.699172i $$-0.753552\pi$$
0.962978 + 0.269581i $$0.0868853\pi$$
$$192$$ −599.978 + 2222.90i −0.225519 + 0.835543i
$$193$$ −431.867 748.016i −0.161070 0.278981i 0.774183 0.632962i $$-0.218161\pi$$
−0.935253 + 0.353981i $$0.884828\pi$$
$$194$$ 825.287 + 1429.44i 0.305424 + 0.529009i
$$195$$ 352.884 + 354.175i 0.129593 + 0.130067i
$$196$$ −183.204 + 317.318i −0.0667652 + 0.115641i
$$197$$ 2958.90 1.07012 0.535058 0.844815i $$-0.320290\pi$$
0.535058 + 0.844815i $$0.320290\pi$$
$$198$$ 16.3614 4479.63i 0.00587249 1.60784i
$$199$$ −1559.83 −0.555646 −0.277823 0.960632i $$-0.589613\pi$$
−0.277823 + 0.960632i $$0.589613\pi$$
$$200$$ 122.351 211.918i 0.0432576 0.0749244i
$$201$$ −20.2995 + 5.39952i −0.00712346 + 0.00189479i
$$202$$ 1781.44 + 3085.54i 0.620503 + 1.07474i
$$203$$ 67.2265 + 116.440i 0.0232432 + 0.0402585i
$$204$$ 77.9893 20.7446i 0.0267664 0.00711967i
$$205$$ −87.8736 + 152.202i −0.0299383 + 0.0518547i
$$206$$ −8134.83 −2.75136
$$207$$ −7.27288 + 1991.26i −0.00244203 + 0.668609i
$$208$$ 2687.24 0.895800
$$209$$ −2026.41 + 3509.84i −0.670668 + 1.16163i
$$210$$ −245.574 246.473i −0.0806964 0.0809916i
$$211$$ −1253.20 2170.60i −0.408880 0.708201i 0.585885 0.810394i $$-0.300747\pi$$
−0.994765 + 0.102194i $$0.967414\pi$$
$$212$$ 2345.05 + 4061.74i 0.759710 + 1.31586i
$$213$$ −1081.02 + 4005.14i −0.347747 + 1.28839i
$$214$$ 3399.61 5888.31i 1.08595 1.88092i
$$215$$ −1168.41 −0.370628
$$216$$ −204.958 + 202.725i −0.0645632 + 0.0638596i
$$217$$ 1676.48 0.524455
$$218$$ 1819.97 3152.28i 0.565431 0.979355i
$$219$$ 601.218 2227.50i 0.185509 0.687307i
$$220$$ 383.376 + 664.027i 0.117487 + 0.203494i
$$221$$ −41.0961 71.1805i −0.0125087 0.0216657i
$$222$$ 2082.20 + 2089.82i 0.629497 + 0.631801i
$$223$$ −2024.21 + 3506.03i −0.607851 + 1.05283i 0.383743 + 0.923440i $$0.374635\pi$$
−0.991594 + 0.129389i $$0.958698\pi$$
$$224$$ −1755.00 −0.523485
$$225$$ −2790.46 + 1597.51i −0.826802 + 0.473336i
$$226$$ −8604.87 −2.53269
$$227$$ 313.734 543.404i 0.0917325 0.158885i −0.816508 0.577335i $$-0.804093\pi$$
0.908240 + 0.418449i $$0.137426\pi$$
$$228$$ −3608.57 + 959.853i −1.04817 + 0.278806i
$$229$$ 494.563 + 856.608i 0.142715 + 0.247189i 0.928518 0.371288i $$-0.121084\pi$$
−0.785803 + 0.618476i $$0.787750\pi$$
$$230$$ −352.736 610.956i −0.101125 0.175153i
$$231$$ 1482.39 394.306i 0.422226 0.112309i
$$232$$ −19.7338 + 34.1800i −0.00558444 + 0.00967253i
$$233$$ −3125.53 −0.878799 −0.439399 0.898292i $$-0.644809\pi$$
−0.439399 + 0.898292i $$0.644809\pi$$
$$234$$ −3632.69 2115.06i −1.01486 0.590881i
$$235$$ −716.555 −0.198906
$$236$$ −559.402 + 968.912i −0.154296 + 0.267249i
$$237$$ −2110.80 2118.52i −0.578528 0.580645i
$$238$$ 28.5990 + 49.5349i 0.00778907 + 0.0134911i
$$239$$ 1512.51 + 2619.75i 0.409357 + 0.709027i 0.994818 0.101674i $$-0.0324197\pi$$
−0.585461 + 0.810701i $$0.699086\pi$$
$$240$$ 223.559 828.279i 0.0601277 0.222772i
$$241$$ 2799.43 4848.75i 0.748245 1.29600i −0.200419 0.979710i $$-0.564230\pi$$
0.948663 0.316288i $$-0.102436\pi$$
$$242$$ −1760.57 −0.467659
$$243$$ 3667.72 946.955i 0.968249 0.249989i
$$244$$ −4716.31 −1.23742
$$245$$ 59.5697 103.178i 0.0155337 0.0269052i
$$246$$ 385.043 1426.58i 0.0997946 0.369736i
$$247$$ 1901.52 + 3293.52i 0.489840 + 0.848428i
$$248$$ 246.058 + 426.186i 0.0630029 + 0.109124i
$$249$$ 4731.96 + 4749.27i 1.20432 + 1.20873i
$$250$$ 1167.43 2022.04i 0.295338 0.511540i
$$251$$ 2960.32 0.744438 0.372219 0.928145i $$-0.378597\pi$$
0.372219 + 0.928145i $$0.378597\pi$$
$$252$$ 1221.35 + 711.109i 0.305310 + 0.177760i
$$253$$ 3110.25 0.772883
$$254$$ 1766.70 3060.01i 0.436427 0.755915i
$$255$$ −25.3586 + 6.74522i −0.00622753 + 0.00165648i
$$256$$ −2288.69 3964.13i −0.558763 0.967806i
$$257$$ −2997.84 5192.41i −0.727627 1.26029i −0.957884 0.287157i $$-0.907290\pi$$
0.230256 0.973130i $$-0.426044\pi$$
$$258$$ 9493.54 2525.21i 2.29086 0.609352i
$$259$$ −505.087 + 874.836i −0.121176 + 0.209883i
$$260$$ 719.496 0.171620
$$261$$ 450.069 257.660i 0.106738 0.0611064i
$$262$$ −8397.61 −1.98017
$$263$$ −891.843 + 1544.72i −0.209100 + 0.362172i −0.951431 0.307861i $$-0.900387\pi$$
0.742331 + 0.670033i $$0.233720\pi$$
$$264$$ 317.811 + 318.974i 0.0740906 + 0.0743617i
$$265$$ −762.505 1320.70i −0.176756 0.306150i
$$266$$ −1323.28 2291.98i −0.305020 0.528310i
$$267$$ 1016.47 3765.99i 0.232985 0.863202i
$$268$$ −15.1142 + 26.1786i −0.00344496 + 0.00596684i
$$269$$ 6348.32 1.43890 0.719450 0.694545i $$-0.244394\pi$$
0.719450 + 0.694545i $$0.244394\pi$$
$$270$$ −954.134 + 943.736i −0.215062 + 0.212718i
$$271$$ −6712.35 −1.50460 −0.752299 0.658822i $$-0.771055\pi$$
−0.752299 + 0.658822i $$0.771055\pi$$
$$272$$ −70.5188 + 122.142i −0.0157200 + 0.0272278i
$$273$$ 375.082 1389.67i 0.0831538 0.308083i
$$274$$ −4251.38 7363.61i −0.937356 1.62355i
$$275$$ 2511.11 + 4349.38i 0.550640 + 0.953736i
$$276$$ 2022.59 + 2029.99i 0.441107 + 0.442721i
$$277$$ −1138.28 + 1971.56i −0.246905 + 0.427653i −0.962666 0.270693i $$-0.912747\pi$$
0.715760 + 0.698346i $$0.246080\pi$$
$$278$$ −9049.24 −1.95229
$$279$$ 23.6178 6466.37i 0.00506795 1.38757i
$$280$$ 34.9724 0.00746430
$$281$$ 742.994 1286.90i 0.157734 0.273203i −0.776317 0.630343i $$-0.782914\pi$$
0.934051 + 0.357139i $$0.116248\pi$$
$$282$$ 5822.12 1548.64i 1.22944 0.327022i
$$283$$ 4505.10 + 7803.06i 0.946291 + 1.63902i 0.753146 + 0.657853i $$0.228535\pi$$
0.193144 + 0.981170i $$0.438132\pi$$
$$284$$ 2985.00 + 5170.17i 0.623687 + 1.08026i
$$285$$ 1173.35 312.101i 0.243870 0.0648677i
$$286$$ −3282.85 + 5686.07i −0.678739 + 1.17561i
$$287$$ 505.973 0.104065
$$288$$ −24.7239 + 6769.23i −0.00505858 + 1.38500i
$$289$$ −4908.69 −0.999122
$$290$$ −91.8660 + 159.117i −0.0186019 + 0.0322195i
$$291$$ 1538.70 + 1544.33i 0.309966 + 0.311101i
$$292$$ −1660.13 2875.44i −0.332712 0.576274i
$$293$$ −3767.56 6525.60i −0.751205 1.30113i −0.947239 0.320528i $$-0.896140\pi$$
0.196034 0.980597i $$-0.437194\pi$$
$$294$$ −261.022 + 967.079i −0.0517792 + 0.191841i
$$295$$ 181.892 315.047i 0.0358989 0.0621788i
$$296$$ −296.529 −0.0582276
$$297$$ −1500.00 5723.32i −0.293060 1.11818i
$$298$$ 4656.24 0.905129
$$299$$ 1459.28 2527.54i 0.282248 0.488868i
$$300$$ −1205.77 + 4467.35i −0.232051 + 0.859741i
$$301$$ 1681.92 + 2913.17i 0.322074 + 0.557848i
$$302$$ 6762.09 + 11712.3i 1.28846 + 2.23167i
$$303$$ 3321.39 + 3333.54i 0.629732 + 0.632036i
$$304$$ 3262.91 5651.52i 0.615594 1.06624i
$$305$$ 1533.53 0.287901
$$306$$ 191.465 109.612i 0.0357690 0.0204774i
$$307$$ 2765.48 0.514119 0.257059 0.966396i $$-0.417246\pi$$
0.257059 + 0.966396i $$0.417246\pi$$
$$308$$ 1103.73 1911.72i 0.204192 0.353670i
$$309$$ −10383.2 + 2761.87i −1.91159 + 0.508470i
$$310$$ 1145.47 + 1984.00i 0.209865 + 0.363496i
$$311$$ 1507.11 + 2610.39i 0.274792 + 0.475953i 0.970083 0.242775i $$-0.0780578\pi$$
−0.695291 + 0.718728i $$0.744724\pi$$
$$312$$ 408.326 108.612i 0.0740926 0.0197081i
$$313$$ −1374.07 + 2379.96i −0.248138 + 0.429787i −0.963009 0.269469i $$-0.913152\pi$$
0.714871 + 0.699256i $$0.246485\pi$$
$$314$$ 82.0722 0.0147503
$$315$$ −397.129 231.221i −0.0710340 0.0413581i
$$316$$ −4303.71 −0.766147
$$317$$ −1966.70 + 3406.42i −0.348457 + 0.603545i −0.985976 0.166890i $$-0.946627\pi$$
0.637519 + 0.770435i $$0.279961\pi$$
$$318$$ 9049.80 + 9082.91i 1.59587 + 1.60171i
$$319$$ −405.014 701.505i −0.0710860 0.123125i
$$320$$ −538.688 933.035i −0.0941049 0.162994i
$$321$$ 2340.10 8669.99i 0.406889 1.50751i
$$322$$ −1015.52 + 1758.93i −0.175754 + 0.304414i
$$323$$ −199.599 −0.0343839
$$324$$ 2760.04 4700.88i 0.473257 0.806050i
$$325$$ 4712.70 0.804349
$$326$$ −3254.47 + 5636.90i −0.552909 + 0.957666i
$$327$$ 1252.76 4641.45i 0.211859 0.784931i
$$328$$ 74.2622 + 128.626i 0.0125014 + 0.0216530i
$$329$$ 1031.47 + 1786.57i 0.172848 + 0.299382i
$$330$$ 1479.49 + 1484.91i 0.246798 + 0.247701i
$$331$$ −2302.21 + 3987.55i −0.382299 + 0.662161i −0.991390 0.130939i $$-0.958201\pi$$
0.609092 + 0.793100i $$0.291534\pi$$
$$332$$ 9648.00 1.59489
$$333$$ 3367.23 + 1960.50i 0.554123 + 0.322627i
$$334$$ 7715.78 1.26404
$$335$$ 4.91447 8.51211i 0.000801511 0.00138826i
$$336$$ −2386.94 + 634.908i −0.387554 + 0.103087i
$$337$$ −1386.37 2401.26i −0.224096 0.388146i 0.731952 0.681356i $$-0.238610\pi$$
−0.956048 + 0.293211i $$0.905276\pi$$
$$338$$ −1241.16 2149.76i −0.199735 0.345951i
$$339$$ −10983.2 + 2921.45i −1.75966 + 0.468057i
$$340$$ −18.8811 + 32.7030i −0.00301168 + 0.00521638i
$$341$$ −10100.1 −1.60397
$$342$$ −8859.08 + 5071.74i −1.40071 + 0.801896i
$$343$$ −343.000 −0.0539949
$$344$$ −493.715 + 855.139i −0.0773817 + 0.134029i
$$345$$ −657.656 660.062i −0.102629 0.103004i
$$346$$ −53.7854 93.1590i −0.00835699 0.0144747i
$$347$$ −4211.45 7294.44i −0.651534 1.12849i −0.982751 0.184935i $$-0.940792\pi$$
0.331217 0.943555i $$-0.392541\pi$$
$$348$$ 194.477 720.532i 0.0299571 0.110990i
$$349$$ 1939.99 3360.15i 0.297550 0.515372i −0.678025 0.735039i $$-0.737164\pi$$
0.975575 + 0.219667i $$0.0704971\pi$$
$$350$$ −3279.59 −0.500862
$$351$$ −5354.83 1466.31i −0.814301 0.222980i
$$352$$ 10573.2 1.60100
$$353$$ −1962.36 + 3398.91i −0.295881 + 0.512481i −0.975190 0.221372i $$-0.928947\pi$$
0.679308 + 0.733853i $$0.262280\pi$$
$$354$$ −797.014 + 2952.92i −0.119663 + 0.443349i
$$355$$ −970.588 1681.11i −0.145108 0.251335i
$$356$$ −2806.76 4861.45i −0.417859 0.723754i
$$357$$ 53.3212 + 53.5163i 0.00790492 + 0.00793385i
$$358$$ 257.357 445.755i 0.0379937 0.0658069i
$$359$$ 6623.52 0.973749 0.486874 0.873472i $$-0.338137\pi$$
0.486874 + 0.873472i $$0.338137\pi$$
$$360$$ 0.492682 134.893i 7.21296e−5 0.0197485i
$$361$$ 2376.46 0.346473
$$362$$ 4839.24 8381.82i 0.702611 1.21696i
$$363$$ −2247.17 + 597.732i −0.324920 + 0.0864265i
$$364$$ −1035.71 1793.90i −0.149137 0.258313i
$$365$$ 539.801 + 934.963i 0.0774095 + 0.134077i
$$366$$ −12460.2 + 3314.32i −1.77952 + 0.473340i
$$367$$ 4605.97 7977.77i 0.655122 1.13470i −0.326742 0.945114i $$-0.605951\pi$$
0.981863 0.189590i $$-0.0607159\pi$$
$$368$$ −5008.09 −0.709415
$$369$$ 7.12801 1951.60i 0.00100561 0.275328i
$$370$$ −1380.42 −0.193958
$$371$$ −2195.24 + 3802.26i −0.307199 + 0.532085i
$$372$$ −6568.11 6592.14i −0.915431 0.918781i
$$373$$ 3763.16 + 6517.99i 0.522384 + 0.904796i 0.999661 + 0.0260427i $$0.00829058\pi$$
−0.477277 + 0.878753i $$0.658376\pi$$
$$374$$ −172.298 298.429i −0.0238217 0.0412604i
$$375$$ 803.588 2977.27i 0.110659 0.409988i
$$376$$ −302.781 + 524.433i −0.0415286 + 0.0719297i
$$377$$ −760.104 −0.103839
$$378$$ 3726.46 + 1020.42i 0.507059 + 0.138848i
$$379$$ 9542.86 1.29336 0.646681 0.762761i $$-0.276157\pi$$
0.646681 + 0.762761i $$0.276157\pi$$
$$380$$ 873.628 1513.17i 0.117937 0.204273i
$$381$$ 1216.09 4505.59i 0.163523 0.605849i
$$382$$ −2575.71 4461.27i −0.344987 0.597535i
$$383$$ 1896.64 + 3285.08i 0.253039 + 0.438276i 0.964361 0.264590i $$-0.0852366\pi$$
−0.711322 + 0.702866i $$0.751903\pi$$
$$384$$ −962.553 966.075i −0.127917 0.128385i
$$385$$ −358.885 + 621.607i −0.0475077 + 0.0822857i
$$386$$ −3398.08 −0.448077
$$387$$ 11260.1 6446.32i 1.47903 0.846731i
$$388$$ 3137.26 0.410490
$$389$$ 3089.58 5351.31i 0.402694 0.697486i −0.591356 0.806411i $$-0.701407\pi$$
0.994050 + 0.108924i $$0.0347406\pi$$
$$390$$ 1900.86 505.616i 0.246805 0.0656483i
$$391$$ 76.5890 + 132.656i 0.00990607 + 0.0171578i
$$392$$ −50.3425 87.1958i −0.00648643 0.0112348i
$$393$$ −10718.6 + 2851.08i −1.37579 + 0.365949i
$$394$$ 5820.41 10081.2i 0.744233 1.28905i
$$395$$ 1399.37 0.178253
$$396$$ −7358.19 4284.16i −0.933744 0.543654i
$$397$$ 179.912 0.0227444 0.0113722 0.999935i $$-0.496380\pi$$
0.0113722 + 0.999935i $$0.496380\pi$$
$$398$$ −3068.32 + 5314.49i −0.386435 + 0.669325i
$$399$$ −2467.17 2476.20i −0.309557 0.310689i
$$400$$ −4043.38 7003.33i −0.505422 0.875417i
$$401$$ −3651.73 6324.98i −0.454760 0.787667i 0.543915 0.839140i $$-0.316941\pi$$
−0.998674 + 0.0514737i $$0.983608\pi$$
$$402$$ −21.5342 + 79.7835i −0.00267171 + 0.00989861i
$$403$$ −4738.82 + 8207.87i −0.585750 + 1.01455i
$$404$$ 6771.98 0.833957
$$405$$ −897.440 + 1528.52i −0.110109 + 0.187537i
$$406$$ 528.961 0.0646599
$$407$$ 3042.95 5270.55i 0.370599 0.641896i
$$408$$ −5.77864 + 21.4097i −0.000701189 + 0.00259789i
$$409$$ 1055.98 + 1829.01i 0.127664 + 0.221121i 0.922771 0.385348i $$-0.125919\pi$$
−0.795107 + 0.606469i $$0.792585\pi$$
$$410$$ 345.710 + 598.787i 0.0416424 + 0.0721268i
$$411$$ −7926.46 7955.47i −0.951298 0.954779i
$$412$$ −7730.96 + 13390.4i −0.924459 + 1.60121i
$$413$$ −1047.33 −0.124784
$$414$$ 6770.10 + 3941.76i 0.803701 + 0.467939i
$$415$$ −3137.10 −0.371070
$$416$$ 4960.77 8592.30i 0.584667 1.01267i
$$417$$ −11550.4 + 3072.32i −1.35641 + 0.360796i
$$418$$ 7972.24 + 13808.3i 0.932859 + 1.61576i
$$419$$ 2862.87 + 4958.63i 0.333795 + 0.578151i 0.983253 0.182247i $$-0.0583372\pi$$
−0.649457 + 0.760398i $$0.725004\pi$$
$$420$$ −639.091 + 169.994i −0.0742487 + 0.0197496i
$$421$$ −2633.26 + 4560.94i −0.304839 + 0.527997i −0.977225 0.212204i $$-0.931936\pi$$
0.672386 + 0.740200i $$0.265269\pi$$
$$422$$ −9860.59 −1.13745
$$423$$ 6905.53 3953.35i 0.793755 0.454417i
$$424$$ −1288.79 −0.147616
$$425$$ −123.671 + 214.205i −0.0141151 + 0.0244481i
$$426$$ 11519.4 + 11561.6i 1.31014 + 1.31493i
$$427$$ −2207.51 3823.51i −0.250184 0.433332i
$$428$$ −6461.67 11191.9i −0.729758 1.26398i
$$429$$ −2259.73 + 8372.22i −0.254314 + 0.942225i
$$430$$ −2298.37 + 3980.89i −0.257761 + 0.446455i
$$431$$ 15827.4 1.76886 0.884430 0.466672i $$-0.154547\pi$$
0.884430 + 0.466672i $$0.154547\pi$$
$$432$$ 2415.29 + 9215.64i 0.268994 + 1.02636i
$$433$$ 4537.27 0.503574 0.251787 0.967783i $$-0.418982\pi$$
0.251787 + 0.967783i $$0.418982\pi$$
$$434$$ 3297.77 5711.91i 0.364742 0.631752i
$$435$$ −63.2352 + 234.285i −0.00696988 + 0.0258232i
$$436$$ −3459.23 5991.56i −0.379970 0.658128i
$$437$$ −3543.78 6138.00i −0.387922 0.671900i
$$438$$ −6406.64 6430.08i −0.698907 0.701464i
$$439$$ −4463.41 + 7730.85i −0.485255 + 0.840486i −0.999856 0.0169432i $$-0.994607\pi$$
0.514601 + 0.857429i $$0.327940\pi$$
$$440$$ −210.696 −0.0228285
$$441$$ −4.83209 + 1322.99i −0.000521768 + 0.142856i
$$442$$ −323.358 −0.0347977
$$443$$ 3222.48 5581.50i 0.345609 0.598612i −0.639856 0.768495i $$-0.721006\pi$$
0.985464 + 0.169884i $$0.0543392\pi$$
$$444$$ 5418.81 1441.36i 0.579201 0.154063i
$$445$$ 912.632 + 1580.73i 0.0972201 + 0.168390i
$$446$$ 7963.57 + 13793.3i 0.845484 + 1.46442i
$$447$$ 5943.18 1580.84i 0.628866 0.167274i
$$448$$ −1550.87 + 2686.19i −0.163553 + 0.283282i
$$449$$ −6202.27 −0.651901 −0.325950 0.945387i $$-0.605684\pi$$
−0.325950 + 0.945387i $$0.605684\pi$$
$$450$$ −46.2021 + 12649.8i −0.00483997 + 1.32515i
$$451$$ −3048.29 −0.318267
$$452$$ −8177.67 + 14164.1i −0.850985 + 1.47395i
$$453$$ 12607.5 + 12653.7i 1.30762 + 1.31241i
$$454$$ −1234.28 2137.84i −0.127594 0.221000i
$$455$$ 336.766 + 583.295i 0.0346985 + 0.0600996i
$$456$$ 267.378 990.627i 0.0274586 0.101733i
$$457$$ 1550.46 2685.48i 0.158704 0.274883i −0.775698 0.631105i $$-0.782602\pi$$
0.934402 + 0.356222i $$0.115935\pi$$
$$458$$ 3891.39 0.397015
$$459$$ 207.170 204.912i 0.0210672 0.0208376i
$$460$$ −1340.89 −0.135912
$$461$$ −2174.51 + 3766.36i −0.219690 + 0.380514i −0.954713 0.297528i $$-0.903838\pi$$
0.735023 + 0.678042i $$0.237171\pi$$
$$462$$ 1572.56 5826.28i 0.158359 0.586717i
$$463$$ 3722.76 + 6448.00i 0.373674 + 0.647223i 0.990128 0.140169i $$-0.0447645\pi$$
−0.616453 + 0.787391i $$0.711431\pi$$
$$464$$ 652.151 + 1129.56i 0.0652486 + 0.113014i
$$465$$ 2135.65 + 2143.47i 0.212986 + 0.213766i
$$466$$ −6148.18 + 10649.0i −0.611178 + 1.05859i
$$467$$ 15424.1 1.52836 0.764178 0.645006i $$-0.223145\pi$$
0.764178 + 0.645006i $$0.223145\pi$$
$$468$$ −6933.86 + 3969.57i −0.684867 + 0.392080i
$$469$$ −28.2973 −0.00278603
$$470$$ −1409.53 + 2441.37i −0.138333 + 0.239600i
$$471$$ 104.756 27.8644i 0.0102482 0.00272596i
$$472$$ −153.718 266.247i −0.0149903 0.0259640i
$$473$$ −10132.9 17550.8i −0.985016 1.70610i
$$474$$ −11370.1 + 3024.37i −1.10179 + 0.293067i
$$475$$ 5722.27 9911.25i 0.552749 0.957389i
$$476$$ 108.717 0.0104685
$$477$$ 14634.8 + 8520.85i 1.40479 + 0.817910i
$$478$$ 11901.0 1.13878
$$479$$ −4325.21 + 7491.49i −0.412576 + 0.714603i −0.995171 0.0981602i $$-0.968704\pi$$
0.582595 + 0.812763i $$0.302038\pi$$
$$480$$ −2235.68 2243.86i −0.212592 0.213370i
$$481$$ −2855.41 4945.71i −0.270677 0.468826i
$$482$$ −11013.4 19075.8i −1.04076 1.80265i
$$483$$ −699.024 + 2589.87i −0.0658524 + 0.243981i
$$484$$ −1673.16 + 2898.00i −0.157134 + 0.272164i
$$485$$ −1020.10 −0.0955055
$$486$$ 3988.36 14359.0i 0.372254 1.34020i
$$487$$ −13668.2 −1.27179 −0.635897 0.771774i $$-0.719370\pi$$
−0.635897 + 0.771774i $$0.719370\pi$$
$$488$$ 647.997 1122.36i 0.0601095 0.104113i
$$489$$ −2240.18 + 8299.83i −0.207167 + 0.767548i
$$490$$ −234.357 405.919i −0.0216065 0.0374236i
$$491$$ 589.304 + 1020.70i 0.0541648 + 0.0938162i 0.891836 0.452358i $$-0.149417\pi$$
−0.837672 + 0.546174i $$0.816084\pi$$
$$492$$ −1982.30 1989.56i −0.181644 0.182309i
$$493$$ 19.9467 34.5488i 0.00182222 0.00315618i
$$494$$ 14961.8 1.36268
$$495$$ 2392.55 + 1393.02i 0.217247 + 0.126488i
$$496$$ 16263.2 1.47225
$$497$$ −2794.30 + 4839.88i −0.252196 + 0.436817i
$$498$$ 25489.4 6780.00i 2.29359 0.610078i
$$499$$ 19.2536 + 33.3482i 0.00172727 + 0.00299173i 0.866888 0.498503i $$-0.166117\pi$$
−0.865160 + 0.501495i $$0.832784\pi$$
$$500$$ −2218.93 3843.31i −0.198467 0.343756i
$$501$$ 9848.36 2619.59i 0.878228 0.233602i
$$502$$ 5823.21 10086.1i 0.517734 0.896742i
$$503$$ 4489.37 0.397954 0.198977 0.980004i $$-0.436238\pi$$
0.198977 + 0.980004i $$0.436238\pi$$
$$504$$ −337.033 + 192.949i −0.0297870 + 0.0170528i
$$505$$ −2201.95 −0.194030
$$506$$ 6118.12 10596.9i 0.537517 0.931007i
$$507$$ −2314.08 2322.55i −0.202706 0.203448i
$$508$$ −3357.98 5816.19i −0.293280 0.507976i
$$509$$ 6578.27 + 11393.9i 0.572842 + 0.992192i 0.996272 + 0.0862632i $$0.0274926\pi$$
−0.423430 + 0.905929i $$0.639174\pi$$
$$510$$ −26.9010 + 99.6677i −0.00233568 + 0.00865365i
$$511$$ 1554.08 2691.74i 0.134537 0.233025i
$$512$$ −15908.6 −1.37318
$$513$$ −9585.75 + 9481.29i −0.824993 + 0.816002i
$$514$$ −23588.0 −2.02417
$$515$$ 2513.76 4353.97i 0.215087 0.372541i
$$516$$ 4865.56 18026.8i 0.415105 1.53795i
$$517$$ −6214.24 10763.4i −0.528631 0.915616i
$$518$$ 1987.10 + 3441.75i 0.168548 + 0.291934i
$$519$$ −100.280 100.647i −0.00848130 0.00851233i
$$520$$ −98.8550 + 171.222i −0.00833669 + 0.0144396i
$$521$$ 2198.40 0.184863 0.0924317 0.995719i $$-0.470536\pi$$
0.0924317 + 0.995719i $$0.470536\pi$$
$$522$$ 7.45187 2040.27i 0.000624826 0.171073i
$$523$$ −7784.24 −0.650824 −0.325412 0.945572i $$-0.605503\pi$$
−0.325412 + 0.945572i $$0.605503\pi$$
$$524$$ −7980.69 + 13823.0i −0.665340 + 1.15240i
$$525$$ −4186.05 + 1113.46i −0.347989 + 0.0925625i
$$526$$ 3508.66 + 6077.18i 0.290846 + 0.503760i
$$527$$ −248.713 430.784i −0.0205581 0.0356077i
$$528$$ 14380.4 3825.08i 1.18528 0.315275i
$$529$$ 3363.91 5826.46i 0.276478 0.478874i
$$530$$ −5999.65 −0.491713
$$531$$ −14.7545 + 4039.67i −0.00120582 + 0.330145i
$$532$$ −5030.32 −0.409947
$$533$$ −1430.21 + 2477.20i −0.116228 + 0.201312i
$$534$$ −10831.6 10871.2i −0.877769 0.880981i
$$535$$ 2101.05 + 3639.12i 0.169787 + 0.294080i
$$536$$ −4.15323 7.19361i −0.000334687 0.000579695i
$$537$$ 177.149 656.334i 0.0142357 0.0527428i
$$538$$ 12487.7 21629.3i 1.00071 1.73328i
$$539$$ 2066.44 0.165136
$$540$$ 646.682 + 2467.45i 0.0515348 + 0.196633i
$$541$$ −8493.26 −0.674961 −0.337480 0.941333i $$-0.609575\pi$$
−0.337480 + 0.941333i $$0.609575\pi$$
$$542$$ −13203.8 + 22869.6i −1.04640 + 1.81242i
$$543$$ 3331.05 12341.5i 0.263258 0.975364i
$$544$$ 260.362 + 450.960i 0.0205201 + 0.0355418i
$$545$$ 1124.79 + 1948.19i 0.0884047 + 0.153121i
$$546$$ −3996.91 4011.53i −0.313282 0.314428i
$$547$$ −3663.38 + 6345.16i −0.286352 + 0.495977i −0.972936 0.231074i $$-0.925776\pi$$
0.686584 + 0.727051i $$0.259109\pi$$
$$548$$ −16161.3 −1.25981
$$549$$ −14778.8 + 8460.75i −1.14890 + 0.657734i
$$550$$ 19758.3 1.53181
$$551$$ −922.936 + 1598.57i −0.0713583 + 0.123596i
$$552$$ −760.980 + 202.415i −0.0586765 + 0.0156075i
$$553$$ −2014.39 3489.02i −0.154901 0.268297i
$$554$$ 4478.20 + 7756.47i 0.343431 + 0.594839i
$$555$$ −1761.95 + 468.667i −0.134758 + 0.0358447i
$$556$$ −8599.97 + 14895.6i −0.655971 + 1.13618i
$$557$$ 7394.34 0.562492 0.281246 0.959636i $$-0.409252\pi$$
0.281246 + 0.959636i $$0.409252\pi$$
$$558$$ −21985.1 12800.4i −1.66792 0.971116i
$$559$$ −19016.8 −1.43887
$$560$$ 577.873 1000.91i 0.0436064 0.0755286i
$$561$$ −321.240 322.415i −0.0241760 0.0242645i
$$562$$ −2923.06 5062.90i −0.219399 0.380010i
$$563$$ 1437.18 + 2489.27i 0.107584 + 0.186341i 0.914791 0.403927i $$-0.132355\pi$$
−0.807207 + 0.590269i $$0.799022\pi$$
$$564$$ 2983.91 11055.3i 0.222776 0.825378i
$$565$$ 2659.01 4605.55i 0.197992 0.342932i
$$566$$ 35447.6 2.63247
$$567$$ 5102.86 + 37.2759i 0.377954 + 0.00276092i
$$568$$ −1640.49 −0.121186
$$569$$ −7864.92 + 13622.4i −0.579463 + 1.00366i 0.416078 + 0.909329i $$0.363404\pi$$
−0.995541 + 0.0943307i $$0.969929\pi$$
$$570$$ 1244.71 4611.63i 0.0914654 0.338877i
$$571$$ 5659.53 + 9802.59i 0.414788 + 0.718434i 0.995406 0.0957422i $$-0.0305224\pi$$
−0.580618 + 0.814176i $$0.697189\pi$$
$$572$$ 6239.74 + 10807.6i 0.456113 + 0.790011i
$$573$$ −4802.27 4819.84i −0.350118 0.351399i
$$574$$ 995.292 1723.90i 0.0723740 0.125355i
$$575$$ −8782.86 −0.636992
$$576$$ 10339.1 + 6019.74i 0.747910 + 0.435456i
$$577$$ 1090.45 0.0786758 0.0393379 0.999226i $$-0.487475\pi$$
0.0393379 + 0.999226i $$0.487475\pi$$
$$578$$ −9655.81 + 16724.3i −0.694859 + 1.20353i
$$579$$ −4337.28 + 1153.69i −0.311315 + 0.0828076i
$$580$$ 174.610 + 302.434i 0.0125005 + 0.0216515i
$$581$$ 4515.82 + 7821.63i 0.322458 + 0.558513i
$$582$$ 8288.43 2204.66i 0.590321 0.157021i
$$583$$ 13225.5 22907.2i 0.939525 1.62730i
$$584$$ 912.375 0.0646478
$$585$$ 2254.58 1290.73i 0.159343 0.0912222i
$$586$$ −29644.4 −2.08976
$$587$$ −13048.0 + 22599.8i −0.917458 + 1.58908i −0.114197 + 0.993458i $$0.536429\pi$$
−0.803262 + 0.595626i $$0.796904\pi$$
$$588$$ 1343.81 + 1348.72i 0.0942477 + 0.0945926i
$$589$$ 11508.0 + 19932.4i 0.805055 + 1.39440i
$$590$$ −715.596 1239.45i −0.0499333 0.0864869i
$$591$$ 4006.43 14843.7i 0.278853 1.03314i
$$592$$ −4899.74 + 8486.60i −0.340166 + 0.589184i
$$593$$ −2675.40 −0.185271 −0.0926354 0.995700i $$-0.529529\pi$$
−0.0926354 + 0.995700i $$0.529529\pi$$
$$594$$ −22450.5 6147.61i −1.55077 0.424646i
$$595$$ −35.3498 −0.00243563
$$596$$ 4425.07 7664.45i 0.304124 0.526758i
$$597$$ −2112.05 + 7825.10i −0.144792 + 0.536449i
$$598$$ −5741.04 9943.78i −0.392590 0.679986i
$$599$$ 2483.86 + 4302.18i 0.169429 + 0.293459i 0.938219 0.346042i $$-0.112474\pi$$
−0.768790 + 0.639501i $$0.779141\pi$$
$$600$$ −897.449 900.733i −0.0610637 0.0612871i
$$601$$ 9440.30 16351.1i 0.640728 1.10977i −0.344542 0.938771i $$-0.611966\pi$$
0.985270 0.171003i $$-0.0547009\pi$$
$$602$$ 13233.9 0.895971
$$603$$ −0.398645 + 109.146i −2.69222e−5 + 0.00737110i
$$604$$ 25705.5 1.73169
$$605$$ 544.037 942.300i 0.0365591 0.0633222i
$$606$$ 17891.1 4758.92i 1.19930 0.319006i
$$607$$ −11401.1 19747.2i −0.762364 1.32045i −0.941629 0.336653i $$-0.890705\pi$$
0.179265 0.983801i $$-0.442628\pi$$
$$608$$ −12047.0 20865.9i −0.803567 1.39182i
$$609$$ 675.162 179.588i 0.0449244 0.0119496i
$$610$$ 3016.59 5224.89i 0.200227 0.346803i
$$611$$ −11662.5 −0.772199
$$612$$ 1.53157 419.333i 0.000101160 0.0276969i
$$613$$ −16589.5 −1.09306 −0.546529 0.837440i $$-0.684051\pi$$
−0.546529 + 0.837440i $$0.684051\pi$$
$$614$$ 5439.94 9422.26i 0.357554 0.619302i
$$615$$ 644.556 + 646.914i 0.0422618 + 0.0424164i
$$616$$ 303.294 + 525.321i 0.0198378 + 0.0343601i
$$617$$ −12595.3 21815.7i −0.821827 1.42345i −0.904320 0.426855i $$-0.859622\pi$$
0.0824929 0.996592i $$-0.473712\pi$$
$$618$$ −11014.8 + 40809.5i −0.716957 + 2.65631i
$$619$$ −6076.11 + 10524.1i −0.394538 + 0.683361i −0.993042 0.117759i $$-0.962429\pi$$
0.598504 + 0.801120i $$0.295762\pi$$
$$620$$ 4354.39 0.282059
$$621$$ 9979.57 + 2732.70i 0.644873 + 0.176586i
$$622$$ 11858.4 0.764437
$$623$$ 2627.45 4550.88i 0.168967 0.292660i
$$624$$ 3638.59 13480.9i 0.233430 0.864851i
$$625$$ −6721.52 11642.0i −0.430177 0.745088i
$$626$$ 5405.83 + 9363.17i 0.345144 + 0.597808i
$$627$$ 14863.8 + 14918.2i 0.946734 + 0.950198i
$$628$$ 77.9976 135.096i 0.00495612 0.00858425i
$$629$$ 299.728 0.0189999
$$630$$ −1568.98 + 898.225i −0.0992216 + 0.0568034i
$$631$$ 13761.8 0.868224 0.434112 0.900859i $$-0.357062\pi$$
0.434112 + 0.900859i $$0.357062\pi$$
$$632$$ 591.307 1024.17i 0.0372167 0.0644612i
$$633$$ −12586.0 + 3347.78i −0.790281 + 0.210209i
$$634$$ 7737.33 + 13401.4i 0.484682 + 0.839494i
$$635$$ 1091.86 + 1891.16i 0.0682351 + 0.118187i
$$636$$ 23551.5 6264.54i 1.46836 0.390574i
$$637$$ 969.542 1679.30i 0.0603056 0.104452i
$$638$$ −3186.79 −0.197753
$$639$$ 18628.6 + 10846.1i 1.15326 + 0.671466i
$$640$$ 638.133 0.0394132
$$641$$ 191.189 331.149i 0.0117808 0.0204050i −0.860075 0.510168i $$-0.829583\pi$$
0.871856 + 0.489763i $$0.162917\pi$$
$$642$$ −24936.3 25027.5i −1.53296 1.53856i
$$643$$ 4008.98 + 6943.76i 0.245877 + 0.425871i 0.962378 0.271715i $$-0.0875908\pi$$
−0.716501 + 0.697586i $$0.754257\pi$$
$$644$$ 1930.20 + 3343.21i 0.118107 + 0.204567i
$$645$$ −1582.06 + 5861.50i −0.0965793 + 0.357824i
$$646$$ −392.629 + 680.053i −0.0239130 + 0.0414185i
$$647$$ −548.646 −0.0333377 −0.0166689 0.999861i $$-0.505306\pi$$
−0.0166689 + 0.999861i $$0.505306\pi$$
$$648$$ 739.477 + 1302.70i 0.0448293 + 0.0789733i
$$649$$ 6309.76 0.381633
$$650$$ 9270.28 16056.6i 0.559400 0.968910i
$$651$$ 2269.99 8410.27i 0.136664 0.506336i
$$652$$ 6185.79 + 10714.1i 0.371555 + 0.643553i
$$653$$ −3408.56 5903.80i −0.204268 0.353803i 0.745631 0.666359i $$-0.232148\pi$$
−0.949899 + 0.312556i $$0.898815\pi$$
$$654$$ −13349.5 13398.4i −0.798178 0.801099i
$$655$$ 2594.96 4494.61i 0.154799 0.268121i
$$656$$ 4908.34 0.292132
$$657$$ −10360.5 6032.18i −0.615221 0.358201i
$$658$$ 8116.00 0.480843
$$659$$ 15876.6 27499.0i 0.938487 1.62551i 0.170193 0.985411i $$-0.445561\pi$$
0.768294 0.640097i $$-0.221106\pi$$
$$660$$ 3850.28 1024.15i 0.227079 0.0604014i
$$661$$ 9540.80 + 16525.1i 0.561413 + 0.972396i 0.997374 + 0.0724299i $$0.0230754\pi$$
−0.435961 + 0.899966i $$0.643591\pi$$
$$662$$ 9057.29 + 15687.7i 0.531755 + 0.921026i
$$663$$ −412.731 + 109.784i −0.0241767 + 0.00643083i
$$664$$ −1325.58 + 2295.98i −0.0774739 + 0.134189i
$$665$$ 1635.64 0.0953793
$$666$$ 13303.2 7615.98i 0.774009 0.443113i
$$667$$ 1416.58 0.0822339
$$668$$ 7332.72 12700.6i 0.424718 0.735632i
$$669$$ 14847.6 + 14902.0i 0.858060 + 0.861200i
$$670$$ −19.3344 33.4881i −0.00111485 0.00193098i
$$671$$ 13299.4 + 23035.2i 0.765152 + 1.32528i
$$672$$ −2376.31 + 8804.17i −0.136411 + 0.505399i
$$673$$ 6635.90 11493.7i 0.380082 0.658321i −0.610992 0.791637i $$-0.709229\pi$$
0.991074 + 0.133316i $$0.0425625\pi$$
$$674$$ −10908.4 −0.623408
$$675$$ 4235.77 + 16161.8i 0.241533 + 0.921580i
$$676$$ −4718.18 −0.268444
$$677$$ −2667.73 + 4620.64i −0.151446 + 0.262312i −0.931759 0.363077i $$-0.881726\pi$$
0.780313 + 0.625389i $$0.215060\pi$$
$$678$$ −11651.2 + 43167.5i −0.659975 + 2.44519i
$$679$$ 1468.42 + 2543.38i 0.0829937 + 0.143749i
$$680$$ −5.18833 8.98645i −0.000292593 0.000506786i
$$681$$ −2301.25 2309.67i −0.129492 0.129966i
$$682$$ −19867.8 + 34412.1i −1.11551 + 1.93212i
$$683$$ −26921.0 −1.50820 −0.754101 0.656758i $$-0.771927\pi$$
−0.754101 + 0.656758i $$0.771927\pi$$
$$684$$ −70.8658 + 19402.5i −0.00396144 + 1.08461i
$$685$$ 5254.92 0.293110
$$686$$ −674.710 + 1168.63i −0.0375518 + 0.0650417i
$$687$$ 4966.94 1321.17i 0.275838 0.0733709i
$$688$$ 16316.0 + 28260.1i 0.904128 + 1.56600i
$$689$$ −12410.3 21495.4i −0.686207 1.18855i
$$690$$ −3542.56 + 942.295i −0.195453 + 0.0519892i
$$691$$ −2308.65 + 3998.69i −0.127099 + 0.220141i −0.922551 0.385875i $$-0.873900\pi$$
0.795453 + 0.606016i $$0.207233\pi$$
$$692$$ −204.460 −0.0112318
$$693$$ 29.1115 7970.52i 0.00159575 0.436905i
$$694$$ −33137.1 −1.81249
$$695$$ 2796.33 4843.38i 0.152620 0.264345i
$$696$$ 144.748 + 145.278i 0.00788315 + 0.00791199i
$$697$$ −75.0635 130.014i −0.00407924 0.00706546i
$$698$$ −7632.24 13219.4i −0.413874 0.716852i
$$699$$ −4232.05 + 15679.6i −0.229000 + 0.848438i
$$700$$ −3116.77 + 5398.41i −0.168290 + 0.291487i
$$701$$ −15895.3 −0.856430 −0.428215 0.903677i $$-0.640857\pi$$
−0.428215 + 0.903677i $$0.640857\pi$$
$$702$$ −15529.3 + 15360.0i −0.834921 + 0.825822i
$$703$$ −13868.4 −0.744036
$$704$$ 9343.42 16183.3i 0.500204 0.866378i
$$705$$ −970.235 + 3594.70i −0.0518315 + 0.192034i
$$706$$ 7720.27 + 13371.9i 0.411553 + 0.712831i
$$707$$ 3169.68 + 5490.05i 0.168611 + 0.292043i
$$708$$ 4103.23 + 4118.25i 0.217809 + 0.218606i
$$709$$ 1794.91 3108.88i 0.0950766 0.164677i −0.814564 0.580074i $$-0.803024\pi$$
0.909641 + 0.415396i $$0.136357\pi$$
$$710$$ −7636.92 −0.403674
$$711$$ −13485.9 + 7720.57i −0.711339 + 0.407235i
$$712$$ 1542.54 0.0811924
$$713$$ 8831.54 15296.7i 0.463876 0.803457i
$$714$$ 287.222 76.3991i 0.0150547 0.00400443i
$$715$$ −2028.89 3514.13i −0.106120 0.183806i
$$716$$ −489.160 847.250i −0.0255318 0.0442223i
$$717$$ 15190.3 4040.51i 0.791203 0.210454i
$$718$$ 13029.0 22566.9i 0.677213 1.17297i
$$719$$ 3759.41 0.194996 0.0974981 0.995236i $$-0.468916\pi$$
0.0974981 + 0.995236i $$0.468916\pi$$
$$720$$ −3852.47 2243.03i −0.199407 0.116101i
$$721$$ −14474.2 −0.747636
$$722$$ 4674.70 8096.81i 0.240961 0.417358i
$$723$$ −20533.9 20609.0i −1.05624 1.06011i
$$724$$ −9197.98 15931.4i −0.472155 0.817797i
$$725$$ 1143.70 + 1980.94i 0.0585874 + 0.101476i
$$726$$ −2383.86 + 8832.12i −0.121864 + 0.451503i
$$727$$ −12693.7 + 21986.2i −0.647572 + 1.12163i 0.336129 + 0.941816i $$0.390882\pi$$
−0.983701 + 0.179811i $$0.942451\pi$$
$$728$$ 569.203 0.0289781
$$729$$ 215.665 19681.8i 0.0109569 0.999940i
$$730$$ 4247.34 0.215344
$$731$$ 499.042 864.366i 0.0252500 0.0437342i
$$732$$ −6386.01 + 23660.0i −0.322450 + 1.19467i
$$733$$ −10097.6 17489.5i −0.508815 0.881294i −0.999948 0.0102093i $$-0.996750\pi$$
0.491132 0.871085i $$-0.336583\pi$$
$$734$$ −18120.7 31385.9i −0.911235 1.57830i
$$735$$ −436.946 438.545i −0.0219279 0.0220081i
$$736$$ −9245.18 + 16013.1i −0.463019 + 0.801972i
$$737$$ 170.481 0.00852068
$$738$$ −6635.25 3863.24i −0.330958 0.192694i
$$739$$ −2153.33 −0.107187 −0.0535936 0.998563i $$-0.517068\pi$$
−0.0535936 + 0.998563i $$0.517068\pi$$
$$740$$ −1311.88 + 2272.25i −0.0651700 + 0.112878i
$$741$$ 19097.1 5079.69i 0.946760 0.251831i
$$742$$ 8636.44 + 14958.7i 0.427296 + 0.740098i
$$743$$ −494.183 855.949i −0.0244008 0.0422634i 0.853567 0.520983i $$-0.174434\pi$$
−0.877968 + 0.478719i $$0.841101\pi$$
$$744$$ 2471.19 657.318i 0.121772 0.0323904i
$$745$$ −1438.83 + 2492.14i −0.0707582 + 0.122557i
$$746$$ 29609.9 1.45321
$$747$$ 30232.6 17307.9i 1.48079 0.847740i
$$748$$ −654.976 −0.0320165
$$749$$ 6048.87 10477.0i 0.295088 0.511108i
$$750$$ −8563.11 8594.44i −0.416908 0.418433i
$$751$$ −8964.88 15527.6i −0.435597 0.754476i 0.561747 0.827309i $$-0.310129\pi$$
−0.997344 + 0.0728330i $$0.976796\pi$$
$$752$$ 10006.1 + 17331.1i 0.485221 + 0.840427i
$$753$$ 4008.36 14850.9i 0.193988 0.718719i
$$754$$ −1495.19 + 2589.75i −0.0722170 + 0.125084i
$$755$$ −8358.27 −0.402899
$$756$$ 5221.12 5164.22i 0.251177 0.248440i
$$757$$ 34271.4 1.64546 0.822732 0.568429i $$-0.192449\pi$$
0.822732 + 0.568429i $$0.192449\pi$$
$$758$$ 18771.6 32513.4i 0.899494 1.55797i
$$759$$ 4211.36 15603.0i 0.201400 0.746182i
$$760$$ 240.064 + 415.803i 0.0114579 + 0.0198457i
$$761$$ 8679.95 + 15034.1i 0.413466 + 0.716145i 0.995266 0.0971873i $$-0.0309846\pi$$
−0.581800 + 0.813332i $$0.697651\pi$$
$$762$$ −12958.8 13006.2i −0.616073 0.618328i
$$763$$ 3238.24 5608.80i 0.153646 0.266123i
$$764$$ −9791.36 −0.463663
$$765$$ −0.497998 + 136.348i −2.35362e−5 + 0.00644403i
$$766$$ 14923.4 0.703923
$$767$$ 2960.44 5127.63i 0.139368 0.241392i
$$768$$ −22985.6 + 6114.00i −1.07997 + 0.287265i
$$769$$ 2411.70 + 4177.19i 0.113093 + 0.195882i 0.917016 0.398851i $$-0.130591\pi$$
−0.803923 + 0.594733i $$0.797258\pi$$
$$770$$ 1411.91 + 2445.51i 0.0660803 + 0.114454i
$$771$$ −30107.6 + 8008.40i −1.40635 + 0.374080i
$$772$$ −3229.38 + 5593.45i