Properties

Label 63.4.f.b.43.5
Level $63$
Weight $4$
Character 63.43
Analytic conductor $3.717$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 3 x^{15} + 58 x^{14} - 129 x^{13} + 2107 x^{12} - 4455 x^{11} + 42901 x^{10} - 76404 x^{9} + 599392 x^{8} - 1089732 x^{7} + 4808401 x^{6} - 7939134 x^{5} + 26225236 x^{4} - 39450864 x^{3} + 62254768 x^{2} - 39660672 x + 21307456\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 43.5
Root \(0.403686 - 0.699204i\) of defining polynomial
Character \(\chi\) \(=\) 63.43
Dual form 63.4.f.b.22.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.403686 + 0.699204i) q^{2} +(-0.172376 - 5.19329i) q^{3} +(3.67408 + 6.36369i) q^{4} +(-9.11444 - 15.7867i) q^{5} +(3.70076 + 1.97593i) q^{6} +(3.50000 - 6.06218i) q^{7} -12.3917 q^{8} +(-26.9406 + 1.79040i) q^{9} +O(q^{10})\) \(q+(-0.403686 + 0.699204i) q^{2} +(-0.172376 - 5.19329i) q^{3} +(3.67408 + 6.36369i) q^{4} +(-9.11444 - 15.7867i) q^{5} +(3.70076 + 1.97593i) q^{6} +(3.50000 - 6.06218i) q^{7} -12.3917 q^{8} +(-26.9406 + 1.79040i) q^{9} +14.7175 q^{10} +(24.7147 - 42.8070i) q^{11} +(32.4152 - 20.1775i) q^{12} +(-22.2430 - 38.5260i) q^{13} +(2.82580 + 4.89443i) q^{14} +(-80.4137 + 50.0552i) q^{15} +(-24.3903 + 42.2452i) q^{16} +47.2301 q^{17} +(9.62367 - 19.5597i) q^{18} +56.7545 q^{19} +(66.9743 - 116.003i) q^{20} +(-32.0860 - 17.1315i) q^{21} +(19.9539 + 34.5612i) q^{22} +(27.7116 + 47.9979i) q^{23} +(2.13603 + 64.3535i) q^{24} +(-103.646 + 179.520i) q^{25} +35.9167 q^{26} +(13.9420 + 139.602i) q^{27} +51.4371 q^{28} +(-75.1405 + 130.147i) q^{29} +(-2.53694 - 76.4322i) q^{30} +(83.7746 + 145.102i) q^{31} +(-69.2587 - 119.960i) q^{32} +(-226.570 - 120.972i) q^{33} +(-19.0661 + 33.0235i) q^{34} -127.602 q^{35} +(-110.375 - 164.863i) q^{36} +331.480 q^{37} +(-22.9110 + 39.6830i) q^{38} +(-196.242 + 122.155i) q^{39} +(112.943 + 195.623i) q^{40} +(-147.716 - 255.852i) q^{41} +(24.9311 - 15.5189i) q^{42} +(158.894 - 275.213i) q^{43} +363.214 q^{44} +(273.813 + 408.983i) q^{45} -44.7471 q^{46} +(68.9395 - 119.407i) q^{47} +(223.596 + 119.384i) q^{48} +(-24.5000 - 42.4352i) q^{49} +(-83.6808 - 144.939i) q^{50} +(-8.14133 - 245.280i) q^{51} +(163.445 - 283.095i) q^{52} +411.775 q^{53} +(-103.238 - 46.6069i) q^{54} -901.041 q^{55} +(-43.3708 + 75.1205i) q^{56} +(-9.78311 - 294.743i) q^{57} +(-60.6663 - 105.077i) q^{58} +(-106.152 - 183.861i) q^{59} +(-613.981 - 327.821i) q^{60} +(26.1785 - 45.3424i) q^{61} -135.275 q^{62} +(-83.4383 + 169.585i) q^{63} -278.409 q^{64} +(-405.464 + 702.285i) q^{65} +(176.047 - 109.584i) q^{66} +(-353.386 - 612.082i) q^{67} +(173.527 + 300.557i) q^{68} +(244.490 - 152.188i) q^{69} +(51.5112 - 89.2200i) q^{70} -78.7569 q^{71} +(333.839 - 22.1860i) q^{72} +839.292 q^{73} +(-133.814 + 231.772i) q^{74} +(950.166 + 507.319i) q^{75} +(208.520 + 361.168i) q^{76} +(-173.003 - 299.649i) q^{77} +(-6.19118 - 186.526i) q^{78} +(-507.663 + 879.298i) q^{79} +889.214 q^{80} +(722.589 - 96.4687i) q^{81} +238.523 q^{82} +(-543.305 + 941.032i) q^{83} +(-8.86651 - 267.128i) q^{84} +(-430.476 - 745.606i) q^{85} +(128.287 + 222.199i) q^{86} +(688.845 + 367.792i) q^{87} +(-306.256 + 530.450i) q^{88} -762.726 q^{89} +(-396.497 + 26.3501i) q^{90} -311.402 q^{91} +(-203.629 + 352.696i) q^{92} +(739.116 - 460.078i) q^{93} +(55.6598 + 96.4056i) q^{94} +(-517.285 - 895.964i) q^{95} +(-611.046 + 380.359i) q^{96} +(671.315 - 1162.75i) q^{97} +39.5612 q^{98} +(-589.185 + 1197.50i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} + O(q^{10}) \) \( 16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} - 28q^{10} - 24q^{11} + 268q^{12} - 68q^{13} + 21q^{14} + 56q^{15} - 103q^{16} + 336q^{17} - 479q^{18} + 352q^{19} - 330q^{20} + 70q^{21} - 151q^{22} - 228q^{23} - 195q^{24} - 244q^{25} + 1590q^{26} + 272q^{27} - 602q^{28} - 618q^{29} + 1030q^{30} - 72q^{31} - 786q^{32} - 700q^{33} + 261q^{34} - 420q^{35} + 727q^{36} + 420q^{37} - 1032q^{38} - 22q^{39} + 375q^{40} - 420q^{41} - 175q^{42} + 2q^{43} + 774q^{44} + 1406q^{45} + 804q^{46} - 570q^{47} + 1864q^{48} - 392q^{49} - 1110q^{50} - 2940q^{51} + 431q^{52} + 1056q^{53} + 2269q^{54} - 1676q^{55} + 42q^{56} + 122q^{57} - 37q^{58} + 150q^{59} - 6350q^{60} - 578q^{61} + 2340q^{62} - 350q^{63} - 224q^{64} + 366q^{65} + 5812q^{66} + 898q^{67} - 2526q^{68} - 2166q^{69} - 98q^{70} + 1764q^{71} + 1350q^{72} + 1944q^{73} + 222q^{74} - 2096q^{75} - 1423q^{76} + 168q^{77} - 5558q^{78} + 158q^{79} + 4950q^{80} + 476q^{81} - 422q^{82} - 2958q^{83} + 1715q^{84} + 774q^{85} + 114q^{86} + 44q^{87} - 1317q^{88} + 8760q^{89} - 3659q^{90} - 952q^{91} - 4629q^{92} + 3954q^{93} + 3234q^{94} - 930q^{95} - 5923q^{96} + 60q^{97} + 294q^{98} + 1214q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.403686 + 0.699204i −0.142725 + 0.247206i −0.928522 0.371278i \(-0.878920\pi\)
0.785797 + 0.618484i \(0.212253\pi\)
\(3\) −0.172376 5.19329i −0.0331738 0.999450i
\(4\) 3.67408 + 6.36369i 0.459259 + 0.795461i
\(5\) −9.11444 15.7867i −0.815220 1.41200i −0.909170 0.416426i \(-0.863283\pi\)
0.0939497 0.995577i \(-0.470051\pi\)
\(6\) 3.70076 + 1.97593i 0.251805 + 0.134445i
\(7\) 3.50000 6.06218i 0.188982 0.327327i
\(8\) −12.3917 −0.547639
\(9\) −26.9406 + 1.79040i −0.997799 + 0.0663110i
\(10\) 14.7175 0.465408
\(11\) 24.7147 42.8070i 0.677432 1.17335i −0.298320 0.954466i \(-0.596426\pi\)
0.975752 0.218880i \(-0.0702404\pi\)
\(12\) 32.4152 20.1775i 0.779787 0.485395i
\(13\) −22.2430 38.5260i −0.474546 0.821937i 0.525030 0.851084i \(-0.324054\pi\)
−0.999575 + 0.0291470i \(0.990721\pi\)
\(14\) 2.82580 + 4.89443i 0.0539448 + 0.0934351i
\(15\) −80.4137 + 50.0552i −1.38418 + 0.861613i
\(16\) −24.3903 + 42.2452i −0.381098 + 0.660081i
\(17\) 47.2301 0.673822 0.336911 0.941536i \(-0.390618\pi\)
0.336911 + 0.941536i \(0.390618\pi\)
\(18\) 9.62367 19.5597i 0.126018 0.256126i
\(19\) 56.7545 0.685283 0.342641 0.939466i \(-0.388678\pi\)
0.342641 + 0.939466i \(0.388678\pi\)
\(20\) 66.9743 116.003i 0.748795 1.29695i
\(21\) −32.0860 17.1315i −0.333416 0.178020i
\(22\) 19.9539 + 34.5612i 0.193372 + 0.334930i
\(23\) 27.7116 + 47.9979i 0.251229 + 0.435142i 0.963864 0.266393i \(-0.0858319\pi\)
−0.712635 + 0.701535i \(0.752499\pi\)
\(24\) 2.13603 + 64.3535i 0.0181673 + 0.547338i
\(25\) −103.646 + 179.520i −0.829168 + 1.43616i
\(26\) 35.9167 0.270917
\(27\) 13.9420 + 139.602i 0.0993753 + 0.995050i
\(28\) 51.4371 0.347167
\(29\) −75.1405 + 130.147i −0.481146 + 0.833370i −0.999766 0.0216352i \(-0.993113\pi\)
0.518620 + 0.855005i \(0.326446\pi\)
\(30\) −2.53694 76.4322i −0.0154393 0.465151i
\(31\) 83.7746 + 145.102i 0.485367 + 0.840680i 0.999859 0.0168154i \(-0.00535276\pi\)
−0.514492 + 0.857495i \(0.672019\pi\)
\(32\) −69.2587 119.960i −0.382604 0.662689i
\(33\) −226.570 120.972i −1.19517 0.638135i
\(34\) −19.0661 + 33.0235i −0.0961710 + 0.166573i
\(35\) −127.602 −0.616248
\(36\) −110.375 164.863i −0.510996 0.763256i
\(37\) 331.480 1.47284 0.736419 0.676526i \(-0.236515\pi\)
0.736419 + 0.676526i \(0.236515\pi\)
\(38\) −22.9110 + 39.6830i −0.0978066 + 0.169406i
\(39\) −196.242 + 122.155i −0.805742 + 0.501551i
\(40\) 112.943 + 195.623i 0.446447 + 0.773268i
\(41\) −147.716 255.852i −0.562667 0.974568i −0.997263 0.0739423i \(-0.976442\pi\)
0.434595 0.900626i \(-0.356891\pi\)
\(42\) 24.9311 15.5189i 0.0915941 0.0570147i
\(43\) 158.894 275.213i 0.563514 0.976036i −0.433672 0.901071i \(-0.642782\pi\)
0.997186 0.0749648i \(-0.0238844\pi\)
\(44\) 363.214 1.24447
\(45\) 273.813 + 408.983i 0.907057 + 1.35484i
\(46\) −44.7471 −0.143426
\(47\) 68.9395 119.407i 0.213955 0.370580i −0.738994 0.673712i \(-0.764699\pi\)
0.952949 + 0.303132i \(0.0980322\pi\)
\(48\) 223.596 + 119.384i 0.672360 + 0.358991i
\(49\) −24.5000 42.4352i −0.0714286 0.123718i
\(50\) −83.6808 144.939i −0.236685 0.409951i
\(51\) −8.14133 245.280i −0.0223532 0.673452i
\(52\) 163.445 283.095i 0.435879 0.754965i
\(53\) 411.775 1.06720 0.533600 0.845737i \(-0.320839\pi\)
0.533600 + 0.845737i \(0.320839\pi\)
\(54\) −103.238 46.6069i −0.260166 0.117452i
\(55\) −901.041 −2.20902
\(56\) −43.3708 + 75.1205i −0.103494 + 0.179257i
\(57\) −9.78311 294.743i −0.0227334 0.684905i
\(58\) −60.6663 105.077i −0.137343 0.237885i
\(59\) −106.152 183.861i −0.234235 0.405707i 0.724815 0.688944i \(-0.241925\pi\)
−0.959050 + 0.283236i \(0.908592\pi\)
\(60\) −613.981 327.821i −1.32108 0.705358i
\(61\) 26.1785 45.3424i 0.0549477 0.0951722i −0.837243 0.546831i \(-0.815834\pi\)
0.892191 + 0.451659i \(0.149167\pi\)
\(62\) −135.275 −0.277095
\(63\) −83.4383 + 169.585i −0.166861 + 0.339138i
\(64\) −278.409 −0.543768
\(65\) −405.464 + 702.285i −0.773718 + 1.34012i
\(66\) 176.047 109.584i 0.328331 0.204377i
\(67\) −353.386 612.082i −0.644372 1.11609i −0.984446 0.175687i \(-0.943785\pi\)
0.340074 0.940399i \(-0.389548\pi\)
\(68\) 173.527 + 300.557i 0.309459 + 0.535999i
\(69\) 244.490 152.188i 0.426568 0.265526i
\(70\) 51.5112 89.2200i 0.0879538 0.152340i
\(71\) −78.7569 −0.131644 −0.0658220 0.997831i \(-0.520967\pi\)
−0.0658220 + 0.997831i \(0.520967\pi\)
\(72\) 333.839 22.1860i 0.546434 0.0363145i
\(73\) 839.292 1.34564 0.672820 0.739806i \(-0.265083\pi\)
0.672820 + 0.739806i \(0.265083\pi\)
\(74\) −133.814 + 231.772i −0.210210 + 0.364094i
\(75\) 950.166 + 507.319i 1.46288 + 0.781068i
\(76\) 208.520 + 361.168i 0.314722 + 0.545115i
\(77\) −173.003 299.649i −0.256045 0.443483i
\(78\) −6.19118 186.526i −0.00898734 0.270768i
\(79\) −507.663 + 879.298i −0.722994 + 1.25226i 0.236800 + 0.971558i \(0.423901\pi\)
−0.959794 + 0.280705i \(0.909432\pi\)
\(80\) 889.214 1.24271
\(81\) 722.589 96.4687i 0.991206 0.132330i
\(82\) 238.523 0.321226
\(83\) −543.305 + 941.032i −0.718500 + 1.24448i 0.243094 + 0.970003i \(0.421837\pi\)
−0.961594 + 0.274475i \(0.911496\pi\)
\(84\) −8.86651 267.128i −0.0115169 0.346976i
\(85\) −430.476 745.606i −0.549314 0.951439i
\(86\) 128.287 + 222.199i 0.160855 + 0.278608i
\(87\) 688.845 + 367.792i 0.848873 + 0.453235i
\(88\) −306.256 + 530.450i −0.370988 + 0.642570i
\(89\) −762.726 −0.908414 −0.454207 0.890896i \(-0.650077\pi\)
−0.454207 + 0.890896i \(0.650077\pi\)
\(90\) −396.497 + 26.3501i −0.464383 + 0.0308617i
\(91\) −311.402 −0.358723
\(92\) −203.629 + 352.696i −0.230759 + 0.399686i
\(93\) 739.116 460.078i 0.824116 0.512988i
\(94\) 55.6598 + 96.4056i 0.0610731 + 0.105782i
\(95\) −517.285 895.964i −0.558656 0.967621i
\(96\) −611.046 + 380.359i −0.649632 + 0.404377i
\(97\) 671.315 1162.75i 0.702698 1.21711i −0.264818 0.964298i \(-0.585312\pi\)
0.967516 0.252810i \(-0.0813548\pi\)
\(98\) 39.5612 0.0407784
\(99\) −589.185 + 1197.50i −0.598135 + 1.21568i
\(100\) −1523.21 −1.52321
\(101\) −353.491 + 612.265i −0.348254 + 0.603194i −0.985939 0.167103i \(-0.946559\pi\)
0.637685 + 0.770297i \(0.279892\pi\)
\(102\) 174.787 + 93.3235i 0.169672 + 0.0905922i
\(103\) −257.488 445.983i −0.246321 0.426640i 0.716181 0.697914i \(-0.245888\pi\)
−0.962502 + 0.271274i \(0.912555\pi\)
\(104\) 275.627 + 477.401i 0.259880 + 0.450125i
\(105\) 21.9955 + 662.675i 0.0204433 + 0.615909i
\(106\) −166.228 + 287.915i −0.152316 + 0.263818i
\(107\) 1186.50 1.07199 0.535997 0.844220i \(-0.319936\pi\)
0.535997 + 0.844220i \(0.319936\pi\)
\(108\) −837.157 + 601.629i −0.745884 + 0.536035i
\(109\) 1909.52 1.67797 0.838987 0.544151i \(-0.183148\pi\)
0.838987 + 0.544151i \(0.183148\pi\)
\(110\) 363.737 630.012i 0.315282 0.546084i
\(111\) −57.1392 1721.47i −0.0488596 1.47203i
\(112\) 170.732 + 295.716i 0.144041 + 0.249487i
\(113\) 470.970 + 815.743i 0.392080 + 0.679103i 0.992724 0.120414i \(-0.0384222\pi\)
−0.600643 + 0.799517i \(0.705089\pi\)
\(114\) 210.035 + 112.143i 0.172557 + 0.0921329i
\(115\) 505.151 874.948i 0.409614 0.709472i
\(116\) −1104.29 −0.883884
\(117\) 668.215 + 998.088i 0.528005 + 0.788660i
\(118\) 171.409 0.133724
\(119\) 165.305 286.317i 0.127340 0.220560i
\(120\) 996.459 620.267i 0.758032 0.471853i
\(121\) −556.128 963.242i −0.417827 0.723698i
\(122\) 21.1358 + 36.6082i 0.0156848 + 0.0271668i
\(123\) −1303.25 + 811.235i −0.955366 + 0.594688i
\(124\) −615.589 + 1066.23i −0.445818 + 0.772180i
\(125\) 1500.09 1.07338
\(126\) −84.8917 126.799i −0.0600218 0.0896523i
\(127\) −1584.85 −1.10734 −0.553672 0.832735i \(-0.686774\pi\)
−0.553672 + 0.832735i \(0.686774\pi\)
\(128\) 666.459 1154.34i 0.460213 0.797112i
\(129\) −1456.65 777.743i −0.994192 0.530826i
\(130\) −327.361 567.005i −0.220857 0.382536i
\(131\) −1086.93 1882.61i −0.724926 1.25561i −0.959005 0.283391i \(-0.908541\pi\)
0.234079 0.972218i \(-0.424793\pi\)
\(132\) −62.6094 1886.28i −0.0412837 1.24378i
\(133\) 198.641 344.056i 0.129506 0.224311i
\(134\) 570.628 0.367871
\(135\) 2076.77 1492.49i 1.32400 0.951503i
\(136\) −585.259 −0.369012
\(137\) −1047.25 + 1813.90i −0.653087 + 1.13118i 0.329283 + 0.944231i \(0.393193\pi\)
−0.982370 + 0.186948i \(0.940140\pi\)
\(138\) 7.71333 + 232.385i 0.00475799 + 0.143347i
\(139\) 656.661 + 1137.37i 0.400700 + 0.694033i 0.993811 0.111088i \(-0.0354337\pi\)
−0.593111 + 0.805121i \(0.702100\pi\)
\(140\) −468.820 812.020i −0.283018 0.490201i
\(141\) −631.998 337.440i −0.377474 0.201543i
\(142\) 31.7930 55.0671i 0.0187888 0.0325432i
\(143\) −2198.91 −1.28589
\(144\) 581.452 1181.78i 0.336488 0.683899i
\(145\) 2739.45 1.56896
\(146\) −338.810 + 586.837i −0.192056 + 0.332650i
\(147\) −216.155 + 134.550i −0.121280 + 0.0754934i
\(148\) 1217.88 + 2109.43i 0.676414 + 1.17158i
\(149\) 743.727 + 1288.17i 0.408916 + 0.708264i 0.994769 0.102154i \(-0.0325735\pi\)
−0.585852 + 0.810418i \(0.699240\pi\)
\(150\) −738.288 + 459.563i −0.401873 + 0.250154i
\(151\) 1101.85 1908.45i 0.593821 1.02853i −0.399891 0.916562i \(-0.630952\pi\)
0.993712 0.111965i \(-0.0357145\pi\)
\(152\) −703.282 −0.375288
\(153\) −1272.41 + 84.5607i −0.672339 + 0.0446819i
\(154\) 279.355 0.146176
\(155\) 1527.12 2645.04i 0.791361 1.37068i
\(156\) −1498.37 800.018i −0.769009 0.410594i
\(157\) 1722.67 + 2983.76i 0.875696 + 1.51675i 0.856020 + 0.516943i \(0.172930\pi\)
0.0196759 + 0.999806i \(0.493737\pi\)
\(158\) −409.873 709.921i −0.206378 0.357457i
\(159\) −70.9801 2138.47i −0.0354031 1.06661i
\(160\) −1262.51 + 2186.73i −0.623812 + 1.08047i
\(161\) 387.963 0.189911
\(162\) −224.248 + 544.180i −0.108757 + 0.263919i
\(163\) −2723.83 −1.30888 −0.654439 0.756115i \(-0.727095\pi\)
−0.654439 + 0.756115i \(0.727095\pi\)
\(164\) 1085.44 1880.04i 0.516820 0.895159i
\(165\) 155.318 + 4679.37i 0.0732817 + 2.20781i
\(166\) −438.649 759.763i −0.205095 0.355235i
\(167\) 506.393 + 877.098i 0.234646 + 0.406419i 0.959170 0.282831i \(-0.0912736\pi\)
−0.724524 + 0.689250i \(0.757940\pi\)
\(168\) 397.599 + 212.288i 0.182592 + 0.0974905i
\(169\) 109.000 188.793i 0.0496131 0.0859323i
\(170\) 695.108 0.313602
\(171\) −1529.00 + 101.613i −0.683774 + 0.0454418i
\(172\) 2335.16 1.03520
\(173\) 747.910 1295.42i 0.328685 0.569300i −0.653566 0.756870i \(-0.726728\pi\)
0.982251 + 0.187570i \(0.0600611\pi\)
\(174\) −535.239 + 333.171i −0.233197 + 0.145159i
\(175\) 725.522 + 1256.64i 0.313396 + 0.542818i
\(176\) 1205.59 + 2088.15i 0.516336 + 0.894319i
\(177\) −936.548 + 582.974i −0.397713 + 0.247565i
\(178\) 307.902 533.301i 0.129653 0.224565i
\(179\) 1989.77 0.830851 0.415425 0.909627i \(-0.363633\pi\)
0.415425 + 0.909627i \(0.363633\pi\)
\(180\) −1596.63 + 3245.09i −0.661145 + 1.34375i
\(181\) −2790.78 −1.14606 −0.573031 0.819534i \(-0.694232\pi\)
−0.573031 + 0.819534i \(0.694232\pi\)
\(182\) 125.708 217.733i 0.0511985 0.0886784i
\(183\) −239.989 128.136i −0.0969426 0.0517602i
\(184\) −343.393 594.774i −0.137583 0.238301i
\(185\) −3021.25 5232.97i −1.20069 2.07965i
\(186\) 23.3181 + 702.520i 0.00919228 + 0.276942i
\(187\) 1167.28 2021.78i 0.456469 0.790627i
\(188\) 1013.16 0.393043
\(189\) 895.087 + 404.087i 0.344487 + 0.155519i
\(190\) 835.283 0.318936
\(191\) −2167.85 + 3754.82i −0.821256 + 1.42246i 0.0834912 + 0.996509i \(0.473393\pi\)
−0.904747 + 0.425949i \(0.859940\pi\)
\(192\) 47.9911 + 1445.86i 0.0180388 + 0.543469i
\(193\) 1214.95 + 2104.36i 0.453130 + 0.784844i 0.998579 0.0533002i \(-0.0169740\pi\)
−0.545449 + 0.838144i \(0.683641\pi\)
\(194\) 542.001 + 938.773i 0.200584 + 0.347422i
\(195\) 3717.06 + 1984.64i 1.36505 + 0.728835i
\(196\) 180.030 311.821i 0.0656085 0.113637i
\(197\) 273.113 0.0987742 0.0493871 0.998780i \(-0.484273\pi\)
0.0493871 + 0.998780i \(0.484273\pi\)
\(198\) −599.448 895.373i −0.215156 0.321371i
\(199\) 648.752 0.231100 0.115550 0.993302i \(-0.463137\pi\)
0.115550 + 0.993302i \(0.463137\pi\)
\(200\) 1284.35 2224.55i 0.454085 0.786498i
\(201\) −3117.81 + 1940.74i −1.09410 + 0.681043i
\(202\) −285.399 494.325i −0.0994088 0.172181i
\(203\) 525.984 + 911.030i 0.181856 + 0.314984i
\(204\) 1530.97 952.985i 0.525438 0.327070i
\(205\) −2692.70 + 4663.89i −0.917395 + 1.58897i
\(206\) 415.777 0.140624
\(207\) −832.502 1243.48i −0.279531 0.417525i
\(208\) 2170.05 0.723393
\(209\) 1402.67 2429.49i 0.464232 0.804074i
\(210\) −472.225 252.133i −0.155174 0.0828516i
\(211\) −121.543 210.518i −0.0396557 0.0686857i 0.845516 0.533950i \(-0.179293\pi\)
−0.885172 + 0.465264i \(0.845959\pi\)
\(212\) 1512.89 + 2620.40i 0.490122 + 0.848916i
\(213\) 13.5758 + 409.007i 0.00436713 + 0.131571i
\(214\) −478.973 + 829.606i −0.153000 + 0.265003i
\(215\) −5792.92 −1.83755
\(216\) −172.764 1729.90i −0.0544218 0.544929i
\(217\) 1172.84 0.366903
\(218\) −770.848 + 1335.15i −0.239488 + 0.414806i
\(219\) −144.674 4358.69i −0.0446399 1.34490i
\(220\) −3310.49 5733.94i −1.01451 1.75719i
\(221\) −1050.54 1819.59i −0.319759 0.553840i
\(222\) 1226.73 + 654.982i 0.370867 + 0.198016i
\(223\) −910.318 + 1576.72i −0.273361 + 0.473474i −0.969720 0.244219i \(-0.921469\pi\)
0.696360 + 0.717693i \(0.254802\pi\)
\(224\) −969.621 −0.289221
\(225\) 2470.87 5021.94i 0.732109 1.48798i
\(226\) −760.495 −0.223838
\(227\) −850.099 + 1472.41i −0.248560 + 0.430518i −0.963126 0.269049i \(-0.913291\pi\)
0.714567 + 0.699567i \(0.246624\pi\)
\(228\) 1839.70 1145.16i 0.534375 0.332633i
\(229\) −94.4886 163.659i −0.0272663 0.0472266i 0.852070 0.523427i \(-0.175347\pi\)
−0.879337 + 0.476201i \(0.842014\pi\)
\(230\) 407.845 + 706.408i 0.116924 + 0.202518i
\(231\) −1526.34 + 950.105i −0.434745 + 0.270616i
\(232\) 931.116 1612.74i 0.263495 0.456386i
\(233\) −647.185 −0.181968 −0.0909840 0.995852i \(-0.529001\pi\)
−0.0909840 + 0.995852i \(0.529001\pi\)
\(234\) −967.617 + 64.3052i −0.270321 + 0.0179648i
\(235\) −2513.38 −0.697680
\(236\) 780.024 1351.04i 0.215149 0.372650i
\(237\) 4653.96 + 2484.87i 1.27556 + 0.681054i
\(238\) 133.463 + 231.164i 0.0363492 + 0.0629587i
\(239\) 1760.61 + 3049.46i 0.476503 + 0.825328i 0.999638 0.0269226i \(-0.00857078\pi\)
−0.523134 + 0.852250i \(0.675237\pi\)
\(240\) −153.279 4617.95i −0.0412255 1.24203i
\(241\) −162.250 + 281.026i −0.0433671 + 0.0751140i −0.886894 0.461973i \(-0.847142\pi\)
0.843527 + 0.537087i \(0.180475\pi\)
\(242\) 898.004 0.238537
\(243\) −625.547 3735.99i −0.165139 0.986270i
\(244\) 384.727 0.100941
\(245\) −446.607 + 773.547i −0.116460 + 0.201715i
\(246\) −41.1157 1238.72i −0.0106563 0.321049i
\(247\) −1262.39 2186.52i −0.325198 0.563259i
\(248\) −1038.11 1798.05i −0.265806 0.460389i
\(249\) 4980.71 + 2659.33i 1.26763 + 0.676820i
\(250\) −605.565 + 1048.87i −0.153197 + 0.265345i
\(251\) 3501.08 0.880424 0.440212 0.897894i \(-0.354903\pi\)
0.440212 + 0.897894i \(0.354903\pi\)
\(252\) −1385.74 + 92.0928i −0.346403 + 0.0230210i
\(253\) 2739.53 0.680762
\(254\) 639.782 1108.13i 0.158045 0.273742i
\(255\) −3797.95 + 2364.11i −0.932692 + 0.580574i
\(256\) −575.557 996.893i −0.140517 0.243382i
\(257\) 919.514 + 1592.64i 0.223182 + 0.386562i 0.955772 0.294107i \(-0.0950223\pi\)
−0.732591 + 0.680669i \(0.761689\pi\)
\(258\) 1131.83 704.532i 0.273119 0.170009i
\(259\) 1160.18 2009.49i 0.278340 0.482099i
\(260\) −5958.83 −1.42135
\(261\) 1791.31 3640.77i 0.424826 0.863441i
\(262\) 1755.11 0.413859
\(263\) −55.6729 + 96.4283i −0.0130530 + 0.0226085i −0.872478 0.488653i \(-0.837488\pi\)
0.859425 + 0.511262i \(0.170822\pi\)
\(264\) 2807.58 + 1499.04i 0.654524 + 0.349468i
\(265\) −3753.10 6500.55i −0.870003 1.50689i
\(266\) 160.377 + 277.781i 0.0369674 + 0.0640295i
\(267\) 131.476 + 3961.06i 0.0301355 + 0.907914i
\(268\) 2596.73 4497.67i 0.591868 1.02515i
\(269\) −2355.30 −0.533848 −0.266924 0.963718i \(-0.586007\pi\)
−0.266924 + 0.963718i \(0.586007\pi\)
\(270\) 205.191 + 2054.58i 0.0462500 + 0.463104i
\(271\) −3281.29 −0.735514 −0.367757 0.929922i \(-0.619874\pi\)
−0.367757 + 0.929922i \(0.619874\pi\)
\(272\) −1151.95 + 1995.24i −0.256792 + 0.444777i
\(273\) 53.6782 + 1617.20i 0.0119002 + 0.358525i
\(274\) −845.522 1464.49i −0.186423 0.322894i
\(275\) 5123.15 + 8873.55i 1.12341 + 1.94580i
\(276\) 1866.75 + 996.709i 0.407121 + 0.217373i
\(277\) −1110.42 + 1923.30i −0.240861 + 0.417183i −0.960960 0.276688i \(-0.910763\pi\)
0.720099 + 0.693871i \(0.244096\pi\)
\(278\) −1060.34 −0.228759
\(279\) −2516.73 3759.14i −0.540045 0.806644i
\(280\) 1581.20 0.337482
\(281\) 594.751 1030.14i 0.126263 0.218694i −0.795963 0.605345i \(-0.793035\pi\)
0.922226 + 0.386652i \(0.126368\pi\)
\(282\) 491.068 305.676i 0.103697 0.0645487i
\(283\) −579.806 1004.25i −0.121788 0.210942i 0.798685 0.601749i \(-0.205529\pi\)
−0.920473 + 0.390807i \(0.872196\pi\)
\(284\) −289.359 501.184i −0.0604587 0.104718i
\(285\) −4563.84 + 2840.86i −0.948555 + 0.590448i
\(286\) 887.669 1537.49i 0.183528 0.317880i
\(287\) −2068.02 −0.425336
\(288\) 2080.64 + 3107.78i 0.425705 + 0.635860i
\(289\) −2682.32 −0.545963
\(290\) −1105.88 + 1915.44i −0.223929 + 0.387857i
\(291\) −6154.23 3285.90i −1.23975 0.661935i
\(292\) 3083.62 + 5340.99i 0.617998 + 1.07040i
\(293\) −268.645 465.307i −0.0535645 0.0927765i 0.838000 0.545670i \(-0.183725\pi\)
−0.891564 + 0.452894i \(0.850392\pi\)
\(294\) −6.81940 205.453i −0.00135277 0.0407560i
\(295\) −1935.04 + 3351.59i −0.381906 + 0.661481i
\(296\) −4107.59 −0.806584
\(297\) 6320.50 + 2853.39i 1.23486 + 0.557477i
\(298\) −1200.93 −0.233450
\(299\) 1232.78 2135.23i 0.238439 0.412989i
\(300\) 262.565 + 7910.49i 0.0505307 + 1.52237i
\(301\) −1112.26 1926.49i −0.212988 0.368907i
\(302\) 889.599 + 1540.83i 0.169506 + 0.293592i
\(303\) 3240.60 + 1730.24i 0.614415 + 0.328052i
\(304\) −1384.26 + 2397.60i −0.261160 + 0.452342i
\(305\) −954.408 −0.179178
\(306\) 454.527 923.808i 0.0849137 0.172584i
\(307\) −1740.18 −0.323510 −0.161755 0.986831i \(-0.551715\pi\)
−0.161755 + 0.986831i \(0.551715\pi\)
\(308\) 1271.25 2201.87i 0.235182 0.407348i
\(309\) −2271.73 + 1414.09i −0.418234 + 0.260339i
\(310\) 1232.95 + 2135.53i 0.225893 + 0.391259i
\(311\) 1958.95 + 3393.00i 0.357177 + 0.618648i 0.987488 0.157694i \(-0.0504061\pi\)
−0.630311 + 0.776343i \(0.717073\pi\)
\(312\) 2431.77 1513.71i 0.441256 0.274669i
\(313\) 4742.77 8214.72i 0.856477 1.48346i −0.0187903 0.999823i \(-0.505981\pi\)
0.875268 0.483639i \(-0.160685\pi\)
\(314\) −2781.67 −0.499933
\(315\) 3437.67 228.459i 0.614892 0.0408641i
\(316\) −7460.77 −1.32817
\(317\) 2837.18 4914.15i 0.502688 0.870681i −0.497307 0.867575i \(-0.665678\pi\)
0.999995 0.00310684i \(-0.000988941\pi\)
\(318\) 1523.88 + 813.639i 0.268726 + 0.143480i
\(319\) 3714.14 + 6433.09i 0.651888 + 1.12910i
\(320\) 2537.54 + 4395.15i 0.443291 + 0.767802i
\(321\) −204.524 6161.84i −0.0355621 1.07140i
\(322\) −156.615 + 271.265i −0.0271050 + 0.0469472i
\(323\) 2680.52 0.461759
\(324\) 3268.74 + 4243.90i 0.560484 + 0.727691i
\(325\) 9221.58 1.57391
\(326\) 1099.57 1904.52i 0.186809 0.323563i
\(327\) −329.156 9916.72i −0.0556648 1.67705i
\(328\) 1830.45 + 3170.43i 0.308139 + 0.533712i
\(329\) −482.577 835.847i −0.0808672 0.140066i
\(330\) −3334.53 1780.40i −0.556243 0.296993i
\(331\) −2366.29 + 4098.54i −0.392940 + 0.680593i −0.992836 0.119486i \(-0.961875\pi\)
0.599896 + 0.800078i \(0.295209\pi\)
\(332\) −7984.57 −1.31991
\(333\) −8930.26 + 593.481i −1.46960 + 0.0976654i
\(334\) −817.695 −0.133959
\(335\) −6441.83 + 11157.6i −1.05061 + 1.81971i
\(336\) 1506.31 937.635i 0.244571 0.152239i
\(337\) 2021.65 + 3501.59i 0.326783 + 0.566006i 0.981872 0.189547i \(-0.0607019\pi\)
−0.655088 + 0.755552i \(0.727369\pi\)
\(338\) 88.0034 + 152.426i 0.0141620 + 0.0245293i
\(339\) 4155.21 2586.50i 0.665723 0.414393i
\(340\) 3163.20 5478.82i 0.504555 0.873915i
\(341\) 8281.84 1.31521
\(342\) 546.187 1110.10i 0.0863579 0.175519i
\(343\) −343.000 −0.0539949
\(344\) −1968.96 + 3410.34i −0.308603 + 0.534516i
\(345\) −4630.94 2472.58i −0.722670 0.385853i
\(346\) 603.841 + 1045.88i 0.0938229 + 0.162506i
\(347\) 1946.93 + 3372.19i 0.301201 + 0.521696i 0.976408 0.215933i \(-0.0692791\pi\)
−0.675207 + 0.737628i \(0.735946\pi\)
\(348\) 190.353 + 5734.89i 0.0293218 + 0.883397i
\(349\) 472.304 818.054i 0.0724408 0.125471i −0.827530 0.561422i \(-0.810254\pi\)
0.899971 + 0.435951i \(0.143588\pi\)
\(350\) −1171.53 −0.178917
\(351\) 5068.18 3642.28i 0.770710 0.553877i
\(352\) −6846.82 −1.03675
\(353\) 4699.26 8139.35i 0.708545 1.22724i −0.256852 0.966451i \(-0.582685\pi\)
0.965397 0.260785i \(-0.0839813\pi\)
\(354\) −29.5468 890.177i −0.00443614 0.133651i
\(355\) 717.825 + 1243.31i 0.107319 + 0.185882i
\(356\) −2802.31 4853.75i −0.417198 0.722607i
\(357\) −1515.42 809.125i −0.224663 0.119954i
\(358\) −803.241 + 1391.25i −0.118583 + 0.205391i
\(359\) 6522.25 0.958861 0.479430 0.877580i \(-0.340843\pi\)
0.479430 + 0.877580i \(0.340843\pi\)
\(360\) −3392.99 5067.99i −0.496740 0.741962i
\(361\) −3637.93 −0.530388
\(362\) 1126.60 1951.33i 0.163571 0.283313i
\(363\) −4906.54 + 3054.18i −0.709439 + 0.441605i
\(364\) −1144.11 1981.66i −0.164747 0.285350i
\(365\) −7649.67 13249.6i −1.09699 1.90005i
\(366\) 186.474 116.075i 0.0266315 0.0165774i
\(367\) −2368.17 + 4101.80i −0.336833 + 0.583412i −0.983835 0.179076i \(-0.942689\pi\)
0.647002 + 0.762488i \(0.276022\pi\)
\(368\) −2703.57 −0.382972
\(369\) 4437.63 + 6628.32i 0.626053 + 0.935112i
\(370\) 4878.55 0.685470
\(371\) 1441.21 2496.25i 0.201682 0.349323i
\(372\) 5643.36 + 3013.14i 0.786545 + 0.419957i
\(373\) −2863.01 4958.87i −0.397429 0.688366i 0.595979 0.803000i \(-0.296764\pi\)
−0.993408 + 0.114633i \(0.963431\pi\)
\(374\) 942.425 + 1632.33i 0.130299 + 0.225684i
\(375\) −258.579 7790.40i −0.0356079 1.07279i
\(376\) −854.275 + 1479.65i −0.117170 + 0.202944i
\(377\) 6685.39 0.913303
\(378\) −643.873 + 462.725i −0.0876118 + 0.0629629i
\(379\) −2131.56 −0.288894 −0.144447 0.989513i \(-0.546140\pi\)
−0.144447 + 0.989513i \(0.546140\pi\)
\(380\) 3801.09 6583.68i 0.513136 0.888778i
\(381\) 273.190 + 8230.59i 0.0367348 + 1.10673i
\(382\) −1750.26 3031.54i −0.234427 0.406039i
\(383\) −5095.30 8825.32i −0.679785 1.17742i −0.975045 0.222005i \(-0.928740\pi\)
0.295260 0.955417i \(-0.404594\pi\)
\(384\) −6109.71 3262.14i −0.811940 0.433516i
\(385\) −3153.64 + 5462.27i −0.417466 + 0.723073i
\(386\) −1961.83 −0.258691
\(387\) −3787.96 + 7698.87i −0.497552 + 1.01125i
\(388\) 9865.85 1.29088
\(389\) −2374.73 + 4113.15i −0.309521 + 0.536106i −0.978258 0.207393i \(-0.933502\pi\)
0.668737 + 0.743499i \(0.266835\pi\)
\(390\) −2888.19 + 1797.82i −0.374998 + 0.233426i
\(391\) 1308.82 + 2266.95i 0.169284 + 0.293208i
\(392\) 303.596 + 525.843i 0.0391171 + 0.0677528i
\(393\) −9589.60 + 5969.25i −1.23087 + 0.766180i
\(394\) −110.252 + 190.962i −0.0140975 + 0.0244176i
\(395\) 18508.3 2.35760
\(396\) −9785.19 + 650.298i −1.24173 + 0.0825219i
\(397\) −4178.89 −0.528294 −0.264147 0.964482i \(-0.585090\pi\)
−0.264147 + 0.964482i \(0.585090\pi\)
\(398\) −261.892 + 453.611i −0.0329836 + 0.0571293i
\(399\) −1821.02 972.292i −0.228484 0.121994i
\(400\) −5055.90 8757.08i −0.631988 1.09464i
\(401\) −1769.54 3064.94i −0.220366 0.381685i 0.734553 0.678551i \(-0.237392\pi\)
−0.954919 + 0.296866i \(0.904058\pi\)
\(402\) −98.3625 2963.44i −0.0122037 0.367668i
\(403\) 3726.79 6455.00i 0.460657 0.797882i
\(404\) −5195.01 −0.639756
\(405\) −8108.91 10528.0i −0.994901 1.29171i
\(406\) −849.329 −0.103821
\(407\) 8192.41 14189.7i 0.997747 1.72815i
\(408\) 100.885 + 3039.42i 0.0122415 + 0.368809i
\(409\) 2984.72 + 5169.68i 0.360843 + 0.624998i 0.988100 0.153814i \(-0.0491557\pi\)
−0.627257 + 0.778812i \(0.715822\pi\)
\(410\) −2174.01 3765.49i −0.261870 0.453571i
\(411\) 9600.61 + 5126.02i 1.15222 + 0.615202i
\(412\) 1892.06 3277.15i 0.226250 0.391877i
\(413\) −1486.13 −0.177065
\(414\) 1205.51 80.1152i 0.143111 0.00951074i
\(415\) 19807.7 2.34294
\(416\) −3081.04 + 5336.51i −0.363126 + 0.628952i
\(417\) 5793.51 3606.29i 0.680358 0.423503i
\(418\) 1132.47 + 1961.50i 0.132515 + 0.229522i
\(419\) −5774.52 10001.8i −0.673279 1.16615i −0.976969 0.213382i \(-0.931552\pi\)
0.303690 0.952771i \(-0.401781\pi\)
\(420\) −4136.24 + 2574.69i −0.480543 + 0.299124i
\(421\) −1347.49 + 2333.92i −0.155992 + 0.270187i −0.933420 0.358786i \(-0.883191\pi\)
0.777428 + 0.628972i \(0.216524\pi\)
\(422\) 196.260 0.0226394
\(423\) −1643.48 + 3340.32i −0.188910 + 0.383952i
\(424\) −5102.57 −0.584441
\(425\) −4895.21 + 8478.75i −0.558712 + 0.967717i
\(426\) −291.460 155.618i −0.0331486 0.0176989i
\(427\) −183.249 317.397i −0.0207683 0.0359717i
\(428\) 4359.29 + 7550.51i 0.492323 + 0.852729i
\(429\) 379.039 + 11419.6i 0.0426578 + 1.28518i
\(430\) 2338.52 4050.44i 0.262264 0.454254i
\(431\) 2267.88 0.253457 0.126729 0.991937i \(-0.459552\pi\)
0.126729 + 0.991937i \(0.459552\pi\)
\(432\) −6237.54 2815.94i −0.694685 0.313616i
\(433\) 11979.8 1.32958 0.664792 0.747028i \(-0.268520\pi\)
0.664792 + 0.747028i \(0.268520\pi\)
\(434\) −473.461 + 820.058i −0.0523660 + 0.0907006i
\(435\) −472.216 14226.8i −0.0520483 1.56810i
\(436\) 7015.74 + 12151.6i 0.770626 + 1.33476i
\(437\) 1572.76 + 2724.10i 0.172163 + 0.298195i
\(438\) 3106.02 + 1658.38i 0.338838 + 0.180915i
\(439\) −5450.29 + 9440.17i −0.592547 + 1.02632i 0.401341 + 0.915928i \(0.368544\pi\)
−0.993888 + 0.110392i \(0.964789\pi\)
\(440\) 11165.4 1.20975
\(441\) 736.020 + 1099.37i 0.0794752 + 0.118709i
\(442\) 1696.35 0.182550
\(443\) 184.244 319.121i 0.0197601 0.0342255i −0.855976 0.517015i \(-0.827043\pi\)
0.875736 + 0.482790i \(0.160376\pi\)
\(444\) 10745.0 6688.44i 1.14850 0.714908i
\(445\) 6951.82 + 12040.9i 0.740557 + 1.28268i
\(446\) −734.965 1273.00i −0.0780305 0.135153i
\(447\) 6561.66 4084.44i 0.694309 0.432187i
\(448\) −974.432 + 1687.77i −0.102763 + 0.177990i
\(449\) −10077.9 −1.05925 −0.529625 0.848232i \(-0.677667\pi\)
−0.529625 + 0.848232i \(0.677667\pi\)
\(450\) 2513.91 + 3754.93i 0.263348 + 0.393353i
\(451\) −14603.0 −1.52467
\(452\) −3460.76 + 5994.20i −0.360133 + 0.623769i
\(453\) −10101.1 5393.23i −1.04766 0.559374i
\(454\) −686.346 1188.79i −0.0709511 0.122891i
\(455\) 2838.25 + 4916.00i 0.292438 + 0.506517i
\(456\) 121.229 + 3652.35i 0.0124497 + 0.375081i
\(457\) 1092.37 1892.03i 0.111813 0.193666i −0.804688 0.593698i \(-0.797667\pi\)
0.916501 + 0.400031i \(0.131001\pi\)
\(458\) 152.575 0.0155663
\(459\) 658.480 + 6593.40i 0.0669613 + 0.670487i
\(460\) 7423.86 0.752476
\(461\) −8301.22 + 14378.1i −0.838669 + 1.45262i 0.0523384 + 0.998629i \(0.483333\pi\)
−0.891008 + 0.453988i \(0.850001\pi\)
\(462\) −48.1541 1450.77i −0.00484920 0.146095i
\(463\) 1918.36 + 3322.69i 0.192557 + 0.333518i 0.946097 0.323884i \(-0.104989\pi\)
−0.753540 + 0.657402i \(0.771655\pi\)
\(464\) −3665.39 6348.65i −0.366728 0.635191i
\(465\) −13999.7 7474.82i −1.39618 0.745455i
\(466\) 261.260 452.515i 0.0259713 0.0449836i
\(467\) 9751.89 0.966304 0.483152 0.875537i \(-0.339492\pi\)
0.483152 + 0.875537i \(0.339492\pi\)
\(468\) −3896.44 + 7919.36i −0.384857 + 0.782207i
\(469\) −4947.40 −0.487100
\(470\) 1014.62 1757.37i 0.0995761 0.172471i
\(471\) 15198.6 9460.67i 1.48686 0.925530i
\(472\) 1315.41 + 2278.35i 0.128276 + 0.222181i
\(473\) −7854.03 13603.6i −0.763485 1.32240i
\(474\) −3616.17 + 2250.96i −0.350414 + 0.218123i
\(475\) −5882.37 + 10188.6i −0.568214 + 0.984176i
\(476\) 2429.38 0.233929
\(477\) −11093.4 + 737.241i −1.06485 + 0.0707671i
\(478\) −2842.93 −0.272035
\(479\) −3519.95 + 6096.73i −0.335763 + 0.581558i −0.983631 0.180194i \(-0.942327\pi\)
0.647868 + 0.761752i \(0.275661\pi\)
\(480\) 11573.9 + 6179.63i 1.10057 + 0.587626i
\(481\) −7373.10 12770.6i −0.698928 1.21058i
\(482\) −130.996 226.892i −0.0123791 0.0214412i
\(483\) −66.8754 2014.80i −0.00630008 0.189807i
\(484\) 4086.51 7078.05i 0.383782 0.664730i
\(485\) −24474.6 −2.29141
\(486\) 2864.74 + 1070.78i 0.267381 + 0.0999415i
\(487\) −8005.18 −0.744865 −0.372433 0.928059i \(-0.621476\pi\)
−0.372433 + 0.928059i \(0.621476\pi\)
\(488\) −324.395 + 561.868i −0.0300915 + 0.0521200i
\(489\) 469.523 + 14145.7i 0.0434204 + 1.30816i
\(490\) −360.578 624.540i −0.0332434 0.0575793i
\(491\) 3946.98 + 6836.37i 0.362779 + 0.628352i 0.988417 0.151761i \(-0.0484945\pi\)
−0.625638 + 0.780114i \(0.715161\pi\)
\(492\) −9950.68 5312.93i −0.911811 0.486840i
\(493\) −3548.89 + 6146.86i −0.324207 + 0.561543i
\(494\) 2038.43 0.185655
\(495\) 24274.6 1613.22i 2.20416 0.146483i
\(496\) −8173.14 −0.739889
\(497\) −275.649 + 477.438i −0.0248784 + 0.0430906i
\(498\) −3870.06 + 2409.00i −0.348236 + 0.216767i
\(499\) −1370.23 2373.31i −0.122926 0.212914i 0.797994 0.602665i \(-0.205894\pi\)
−0.920920 + 0.389751i \(0.872561\pi\)
\(500\) 5511.44 + 9546.09i 0.492958 + 0.853828i
\(501\) 4467.74 2781.04i 0.398411 0.247999i
\(502\) −1413.34 + 2447.97i −0.125658 + 0.217646i
\(503\) 5275.06 0.467601 0.233801 0.972285i \(-0.424884\pi\)
0.233801 + 0.972285i \(0.424884\pi\)
\(504\) 1033.94 2101.44i 0.0913796 0.185725i
\(505\) 12887.5 1.13562
\(506\) −1105.91 + 1915.49i −0.0971615 + 0.168289i
\(507\) −999.248 533.525i −0.0875309 0.0467351i
\(508\) −5822.86 10085.5i −0.508558 0.880849i
\(509\) 7851.04 + 13598.4i 0.683676 + 1.18416i 0.973851 + 0.227188i \(0.0729531\pi\)
−0.290175 + 0.956974i \(0.593714\pi\)
\(510\) −119.820 3609.90i −0.0104034 0.313429i
\(511\) 2937.52 5087.94i 0.254302 0.440464i
\(512\) 11592.7 1.00065
\(513\) 791.269 + 7923.02i 0.0681002 + 0.681890i
\(514\) −1484.78 −0.127414
\(515\) −4693.72 + 8129.76i −0.401612 + 0.695612i
\(516\) −402.525 12127.1i −0.0343414 1.03463i
\(517\) −3407.63 5902.19i −0.289879 0.502085i
\(518\) 936.697 + 1622.41i 0.0794519 + 0.137615i
\(519\) −6856.41 3660.82i −0.579890 0.309619i
\(520\) 5024.38 8702.48i 0.423718 0.733902i
\(521\) 17171.3 1.44393 0.721966 0.691928i \(-0.243238\pi\)
0.721966 + 0.691928i \(0.243238\pi\)
\(522\) 1822.52 + 2722.22i 0.152815 + 0.228254i
\(523\) −8658.40 −0.723911 −0.361955 0.932195i \(-0.617891\pi\)
−0.361955 + 0.932195i \(0.617891\pi\)
\(524\) 7986.91 13833.7i 0.665858 1.15330i
\(525\) 6401.04 3984.46i 0.532122 0.331231i
\(526\) −44.9487 77.8535i −0.00372597 0.00645356i
\(527\) 3956.68 + 6853.18i 0.327051 + 0.566469i
\(528\) 10636.6 6620.95i 0.876698 0.545719i
\(529\) 4547.63 7876.73i 0.373768 0.647385i
\(530\) 6060.29 0.496683
\(531\) 3188.99 + 4763.28i 0.260622 + 0.389282i
\(532\) 2919.28 0.237908
\(533\) −6571.28 + 11381.8i −0.534022 + 0.924954i
\(534\) −2822.67 1507.10i −0.228743 0.122132i
\(535\) −10814.3 18730.9i −0.873911 1.51366i
\(536\) 4379.04 + 7584.72i 0.352884 + 0.611212i
\(537\) −342.988 10333.4i −0.0275624 0.830393i
\(538\) 950.801 1646.84i 0.0761932 0.131970i
\(539\) −2422.04 −0.193552
\(540\) 17127.9 + 7732.41i 1.36494 + 0.616204i
\(541\) 11733.7 0.932480 0.466240 0.884658i \(-0.345608\pi\)
0.466240 + 0.884658i \(0.345608\pi\)
\(542\) 1324.61 2294.29i 0.104976 0.181824i
\(543\) 481.064 + 14493.3i 0.0380192 + 1.14543i
\(544\) −3271.09 5665.70i −0.257807 0.446535i
\(545\) −17404.2 30145.0i −1.36792 2.36930i
\(546\) −1152.42 615.309i −0.0903281 0.0482285i
\(547\) −1267.05 + 2194.60i −0.0990408 + 0.171544i −0.911288 0.411770i \(-0.864911\pi\)
0.812247 + 0.583314i \(0.198244\pi\)
\(548\) −15390.7 −1.19974
\(549\) −624.082 + 1268.42i −0.0485158 + 0.0986064i
\(550\) −8272.57 −0.641352
\(551\) −4264.56 + 7386.43i −0.329721 + 0.571094i
\(552\) −3029.64 + 1885.86i −0.233605 + 0.145413i
\(553\) 3553.64 + 6155.09i 0.273266 + 0.473311i
\(554\) −896.519 1552.82i −0.0687535 0.119085i
\(555\) −26655.5 + 16592.3i −2.03867 + 1.26902i
\(556\) −4825.25 + 8357.57i −0.368050 + 0.637482i
\(557\) 2697.62 0.205210 0.102605 0.994722i \(-0.467282\pi\)
0.102605 + 0.994722i \(0.467282\pi\)
\(558\) 3644.37 242.195i 0.276485 0.0183744i
\(559\) −14137.1 −1.06965
\(560\) 3112.25 5390.57i 0.234851 0.406774i
\(561\) −10700.9 5713.50i −0.805334 0.429989i
\(562\) 480.185 + 831.705i 0.0360416 + 0.0624259i
\(563\) −8699.80 15068.5i −0.651249 1.12800i −0.982820 0.184566i \(-0.940912\pi\)
0.331571 0.943430i \(-0.392421\pi\)
\(564\) −174.644 5261.62i −0.0130387 0.392826i
\(565\) 8585.24 14870.1i 0.639264 1.10724i
\(566\) 936.238 0.0695283
\(567\) 1944.25 4718.10i 0.144005 0.349456i
\(568\) 975.929 0.0720934
\(569\) 5178.36 8969.18i 0.381526 0.660822i −0.609755 0.792590i \(-0.708732\pi\)
0.991281 + 0.131768i \(0.0420654\pi\)
\(570\) −143.983 4337.87i −0.0105803 0.318760i
\(571\) −7692.04 13323.0i −0.563751 0.976446i −0.997165 0.0752505i \(-0.976024\pi\)
0.433414 0.901195i \(-0.357309\pi\)
\(572\) −8078.96 13993.2i −0.590557 1.02287i
\(573\) 19873.6 + 10611.0i 1.44892 + 0.773616i
\(574\) 834.832 1445.97i 0.0607059 0.105146i
\(575\) −11488.8 −0.833244
\(576\) 7500.50 498.463i 0.542571 0.0360578i
\(577\) −25346.5 −1.82875 −0.914375 0.404868i \(-0.867318\pi\)
−0.914375 + 0.404868i \(0.867318\pi\)
\(578\) 1082.81 1875.49i 0.0779224 0.134965i
\(579\) 10719.1 6672.34i 0.769380 0.478917i
\(580\) 10065.0 + 17433.0i 0.720560 + 1.24805i
\(581\) 3803.13 + 6587.22i 0.271567 + 0.470368i
\(582\) 4781.89 2976.59i 0.340577 0.211999i
\(583\) 10176.9 17626.9i 0.722955 1.25220i
\(584\) −10400.2 −0.736925
\(585\) 9666.08 19645.9i 0.683150 1.38848i
\(586\) 433.793 0.0305799
\(587\) −3879.66 + 6719.77i −0.272795 + 0.472495i −0.969576 0.244789i \(-0.921281\pi\)
0.696781 + 0.717284i \(0.254615\pi\)
\(588\) −1650.41 881.196i −0.115751 0.0618026i
\(589\) 4754.58 + 8235.18i 0.332613 + 0.576103i
\(590\) −1562.30 2705.98i −0.109015 0.188819i
\(591\) −47.0782 1418.36i −0.00327671 0.0987198i
\(592\) −8084.88 + 14003.4i −0.561295 + 0.972192i
\(593\) −16418.8 −1.13700 −0.568500 0.822684i \(-0.692476\pi\)
−0.568500 + 0.822684i \(0.692476\pi\)
\(594\) −4546.60 + 3267.45i −0.314056 + 0.225699i
\(595\) −6026.66 −0.415242
\(596\) −5465.02 + 9465.70i −0.375597 + 0.650554i
\(597\) −111.829 3369.16i −0.00766645 0.230972i
\(598\) 995.310 + 1723.93i 0.0680623 + 0.117887i
\(599\) 12824.4 + 22212.6i 0.874779 + 1.51516i 0.856998 + 0.515319i \(0.172327\pi\)
0.0177803 + 0.999842i \(0.494340\pi\)
\(600\) −11774.1 6286.52i −0.801129 0.427744i
\(601\) 3109.62 5386.01i 0.211055 0.365558i −0.740990 0.671516i \(-0.765643\pi\)
0.952045 + 0.305958i \(0.0989768\pi\)
\(602\) 1796.01 0.121595
\(603\) 10616.3 + 15857.1i 0.716963 + 1.07090i
\(604\) 16193.1 1.09087
\(605\) −10137.6 + 17558.8i −0.681243 + 1.17995i
\(606\) −2517.98 + 1567.37i −0.168789 + 0.105066i
\(607\) 4779.12 + 8277.67i 0.319569 + 0.553510i 0.980398 0.197027i \(-0.0631286\pi\)
−0.660829 + 0.750536i \(0.729795\pi\)
\(608\) −3930.74 6808.24i −0.262192 0.454129i
\(609\) 4640.58 2888.63i 0.308778 0.192205i
\(610\) 385.281 667.326i 0.0255731 0.0442939i
\(611\) −6133.68 −0.406125
\(612\) −5213.03 7786.51i −0.344321 0.514299i
\(613\) 23697.2 1.56137 0.780685 0.624925i \(-0.214870\pi\)
0.780685 + 0.624925i \(0.214870\pi\)
\(614\) 702.487 1216.74i 0.0461728 0.0799736i
\(615\) 24685.1 + 13180.0i 1.61853 + 0.864178i
\(616\) 2143.79 + 3713.15i 0.140220 + 0.242869i
\(617\) 5182.35 + 8976.10i 0.338142 + 0.585679i 0.984083 0.177708i \(-0.0568682\pi\)
−0.645941 + 0.763387i \(0.723535\pi\)
\(618\) −71.6700 2159.25i −0.00466503 0.140547i
\(619\) 5909.25 10235.1i 0.383704 0.664595i −0.607884 0.794025i \(-0.707982\pi\)
0.991588 + 0.129431i \(0.0413150\pi\)
\(620\) 22443.0 1.45376
\(621\) −6314.23 + 4537.77i −0.408022 + 0.293228i
\(622\) −3163.20 −0.203911
\(623\) −2669.54 + 4623.78i −0.171674 + 0.297348i
\(624\) −374.064 11269.7i −0.0239977 0.722995i
\(625\) −716.721 1241.40i −0.0458701 0.0794494i
\(626\) 3829.18 + 6632.34i 0.244481 + 0.423453i
\(627\) −12858.8 6865.67i −0.819031 0.437302i
\(628\) −12658.5 + 21925.1i −0.804343 + 1.39316i
\(629\) 15655.8 0.992431
\(630\) −1228.00 + 2495.86i −0.0776583 + 0.157837i
\(631\) 16150.5 1.01892 0.509462 0.860493i \(-0.329845\pi\)
0.509462 + 0.860493i \(0.329845\pi\)
\(632\) 6290.79 10896.0i 0.395940 0.685789i
\(633\) −1072.33 + 667.496i −0.0673324 + 0.0419124i
\(634\) 2290.66 + 3967.54i 0.143492 + 0.248535i
\(635\) 14445.0 + 25019.5i 0.902729 + 1.56357i
\(636\) 13347.7 8308.58i 0.832189 0.518014i
\(637\) −1089.91 + 1887.77i −0.0677922 + 0.117420i
\(638\) −5997.39 −0.372161
\(639\) 2121.76 141.006i 0.131354 0.00872945i
\(640\) −24297.6 −1.50070
\(641\) 5905.98 10229.4i 0.363919 0.630326i −0.624683 0.780878i \(-0.714772\pi\)
0.988602 + 0.150552i \(0.0481052\pi\)
\(642\) 4390.95 + 2344.44i 0.269933 + 0.144124i
\(643\) −3098.97 5367.57i −0.190064 0.329201i 0.755207 0.655486i \(-0.227536\pi\)
−0.945271 + 0.326285i \(0.894203\pi\)
\(644\) 1425.40 + 2468.87i 0.0872186 + 0.151067i
\(645\) 998.561 + 30084.3i 0.0609586 + 1.83654i
\(646\) −1082.09 + 1874.23i −0.0659043 + 0.114150i
\(647\) −4568.63 −0.277606 −0.138803 0.990320i \(-0.544326\pi\)
−0.138803 + 0.990320i \(0.544326\pi\)
\(648\) −8954.08 + 1195.41i −0.542823 + 0.0724692i
\(649\) −10494.1 −0.634713
\(650\) −3722.62 + 6447.77i −0.224636 + 0.389080i
\(651\) −202.170 6090.93i −0.0121715 0.366701i
\(652\) −10007.6 17333.6i −0.601114 1.04116i
\(653\) −13537.8 23448.1i −0.811294 1.40520i −0.911959 0.410281i \(-0.865430\pi\)
0.100665 0.994920i \(-0.467903\pi\)
\(654\) 7066.69 + 3773.09i 0.422522 + 0.225596i
\(655\) −19813.5 + 34317.9i −1.18195 + 2.04719i
\(656\) 14411.3 0.857725
\(657\) −22611.0 + 1502.67i −1.34268 + 0.0892308i
\(658\) 779.238 0.0461669
\(659\) 9021.56 15625.8i 0.533278 0.923664i −0.465967 0.884802i \(-0.654293\pi\)
0.999245 0.0388620i \(-0.0123733\pi\)
\(660\) −29207.4 + 18180.7i −1.72257 + 1.07225i
\(661\) 4091.02 + 7085.86i 0.240730 + 0.416956i 0.960922 0.276818i \(-0.0892799\pi\)
−0.720193 + 0.693774i \(0.755947\pi\)
\(662\) −1910.48 3309.05i −0.112164 0.194275i
\(663\) −9268.55 + 5769.40i −0.542927 + 0.337956i
\(664\) 6732.45 11660.9i 0.393479 0.681525i
\(665\) −7241.99 −0.422304
\(666\) 3190.06 6483.66i 0.185604 0.377232i
\(667\) −8329.06 −0.483512
\(668\) −3721.05 + 6445.05i −0.215527 + 0.373303i
\(669\) 8345.27 + 4455.76i 0.482282 + 0.257503i
\(670\) −5200.95 9008.31i −0.299896 0.519435i
\(671\) −1293.98 2241.25i −0.0744466 0.128945i
\(672\) 167.139 + 5035.53i 0.00959456 + 0.289062i
\(673\) 9551.45 16543.6i 0.547075 0.947561i −0.451398 0.892322i \(-0.649075\pi\)
0.998473 0.0552387i \(-0.0175920\pi\)
\(674\) −3264.44 −0.186560
\(675\) −26506.3 11966.3i −1.51145 0.682344i
\(676\) 1601.90 0.0911411
\(677\) −4081.39 + 7069.17i −0.231699 + 0.401315i −0.958308 0.285736i \(-0.907762\pi\)
0.726609 + 0.687051i \(0.241095\pi\)
\(678\) 131.091 + 3949.47i 0.00742555 + 0.223715i
\(679\) −4699.20 8139.26i −0.265595 0.460024i
\(680\) 5334.31 + 9239.30i 0.300826 + 0.521045i
\(681\) 7793.21 + 4161.00i 0.438527 + 0.234141i
\(682\) −3343.26 + 5790.70i −0.187713 + 0.325128i
\(683\) 15581.2 0.872909 0.436454 0.899726i \(-0.356234\pi\)
0.436454 + 0.899726i \(0.356234\pi\)
\(684\) −6264.29 9356.73i −0.350177 0.523046i
\(685\) 38180.5 2.12964
\(686\) 138.464 239.827i 0.00770640 0.0133479i
\(687\) −833.642 + 518.918i −0.0462961 + 0.0288180i
\(688\) 7750.94 + 13425.0i 0.429508 + 0.743930i
\(689\) −9159.10 15864.0i −0.506435 0.877171i
\(690\) 3598.28 2239.83i 0.198528 0.123578i
\(691\) −11866.9 + 20554.0i −0.653310 + 1.13157i 0.329005 + 0.944328i \(0.393287\pi\)
−0.982315 + 0.187238i \(0.940046\pi\)
\(692\) 10991.5 0.603807
\(693\) 5197.28 + 7762.98i 0.284889 + 0.425528i
\(694\) −3143.80 −0.171955
\(695\) 11970.2 20733.0i 0.653317 1.13158i
\(696\) −8535.93 4557.56i −0.464876 0.248210i
\(697\) −6976.64 12083.9i −0.379138 0.656686i
\(698\) 381.325 + 660.474i 0.0206782 + 0.0358156i
\(699\) 111.559 + 3361.02i 0.00603656 + 0.181868i
\(700\) −5331.24 + 9233.98i −0.287860 + 0.498588i
\(701\) 32518.0 1.75205 0.876025 0.482266i \(-0.160186\pi\)
0.876025 + 0.482266i \(0.160186\pi\)
\(702\) 500.750 + 5014.03i 0.0269225 + 0.269576i
\(703\) 18813.0 1.00931
\(704\) −6880.79 + 11917.9i −0.368366 + 0.638028i
\(705\) 433.246 + 13052.7i 0.0231447 + 0.697296i
\(706\) 3794.05 + 6571.49i 0.202253 + 0.350313i
\(707\) 2474.44 + 4285.85i 0.131628 + 0.227986i
\(708\) −7150.81 3818.01i −0.379582 0.202669i
\(709\) −6957.97 + 12051.6i −0.368564 + 0.638372i −0.989341 0.145615i \(-0.953484\pi\)
0.620777 + 0.783987i \(0.286817\pi\)
\(710\) −1159.10 −0.0612681
\(711\) 12102.4 24597.7i 0.638364 1.29745i
\(712\) 9451.45 0.497483
\(713\) −4643.06 + 8042.02i −0.243877 + 0.422407i
\(714\) 1177.50 732.959i 0.0617182 0.0384178i
\(715\) 20041.8 + 34713.5i 1.04828 + 1.81568i
\(716\) 7310.56 + 12662.3i 0.381576 + 0.660909i
\(717\) 15533.3 9669.00i 0.809066 0.503620i
\(718\) −2632.94 + 4560.38i −0.136853 + 0.237036i
\(719\) −20884.8 −1.08327 −0.541635 0.840614i \(-0.682194\pi\)
−0.541635 + 0.840614i \(0.682194\pi\)
\(720\) −23955.9 + 1592.05i −1.23998 + 0.0824057i
\(721\) −3604.83 −0.186201
\(722\) 1468.58 2543.66i 0.0756993 0.131115i
\(723\) 1487.42 + 794.171i 0.0765113 + 0.0408514i
\(724\) −10253.5 17759.6i −0.526339 0.911647i
\(725\) −15576.0 26978.5i −0.797902 1.38201i
\(726\) −154.794 4663.60i −0.00791317 0.238406i
\(727\) 10445.4 18092.0i 0.532875 0.922967i −0.466388 0.884580i \(-0.654445\pi\)
0.999263 0.0383863i \(-0.0122218\pi\)
\(728\) 3858.78 0.196451
\(729\) −19294.2 + 3892.64i −0.980249 + 0.197767i
\(730\) 12352.3 0.626271
\(731\) 7504.58 12998.3i 0.379709 0.657675i
\(732\) −66.3176 1998.00i −0.00334859 0.100885i
\(733\) 4126.43 + 7147.19i 0.207931 + 0.360147i 0.951063 0.308998i \(-0.0999938\pi\)
−0.743132 + 0.669145i \(0.766660\pi\)
\(734\) −1912.00 3311.67i −0.0961486 0.166534i
\(735\) 4094.24 + 2186.02i 0.205467 + 0.109704i
\(736\) 3838.54 6648.54i 0.192242 0.332974i
\(737\) −34935.2 −1.74607
\(738\) −6425.96 + 427.052i −0.320519 + 0.0213008i
\(739\) 29252.3 1.45611 0.728054 0.685520i \(-0.240425\pi\)
0.728054 + 0.685520i \(0.240425\pi\)
\(740\) 22200.6 38452.6i 1.10285 1.91020i
\(741\) −11137.6 + 6932.86i −0.552161 + 0.343704i
\(742\) 1163.59 + 2015.40i 0.0575699 + 0.0997140i
\(743\) −13701.6 23731.9i −0.676532 1.17179i −0.976018 0.217688i \(-0.930149\pi\)
0.299486 0.954101i \(-0.403185\pi\)
\(744\) −9158.88 + 5701.13i −0.451318 + 0.280932i
\(745\) 13557.3 23482.0i 0.666714 1.15478i
\(746\) 4623.02 0.226891
\(747\) 12952.1 26324.7i 0.634396 1.28938i
\(748\) 17154.6 0.838550
\(749\) 4152.75 7192.78i 0.202588 0.350892i
\(750\) 5551.47 + 2964.07i 0.270281 + 0.144310i
\(751\) −9515.80 16481.9i −0.462366 0.800841i 0.536713 0.843765i \(-0.319666\pi\)
−0.999078 + 0.0429244i \(0.986333\pi\)
\(752\) 3362.91 + 5824.72i 0.163075 + 0.282455i
\(753\) −603.503 18182.2i −0.0292070 0.879940i
\(754\) −2698.80 + 4674.46i −0.130351 + 0.225774i
\(755\) −40170.8 −1.93638
\(756\) 717.134 + 7180.70i 0.0344999 + 0.345449i
\(757\) −15036.1 −0.721926 −0.360963 0.932580i \(-0.617552\pi\)
−0.360963 + 0.932580i \(0.617552\pi\)
\(758\) 860.481 1490.40i 0.0412323 0.0714164i
\(759\) −472.229 14227.2i −0.0225835 0.680388i
\(760\) 6410.02 + 11102.5i 0.305942 + 0.529907i
\(761\) 10108.5 + 17508.4i 0.481513 + 0.834004i 0.999775 0.0212174i \(-0.00675422\pi\)
−0.518262 + 0.855222i \(0.673421\pi\)
\(762\) −5865.15 3131.56i −0.278835 0.148877i
\(763\) 6683.33 11575.9i 0.317107 0.549246i
\(764\) −31859.3 −1.50868
\(765\) 12932.2 + 19316.3i 0.611195 + 0.912919i
\(766\) 8227.60 0.388088
\(767\) −4722.29 + 8179.25i −0.222310 + 0.385053i
\(768\) −5077.95 + 3160.87i −0.238587 + 0.148513i
\(769\) 6078.16 + 10527.7i 0.285025 + 0.493677i 0.972615 0.232421i \(-0.0746649\pi\)
−0.687590 + 0.726099i \(0.741332\pi\)
\(770\) −2546.16 4410.08i −0.119165 0.206400i
\(771\) 8112.57 5049.84i 0.378946 0.235883i
\(772\) −8927.64 + 15463.1i