Properties

Label 63.4.f.b.43.3
Level $63$
Weight $4$
Character 63.43
Analytic conductor $3.717$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 3 x^{15} + 58 x^{14} - 129 x^{13} + 2107 x^{12} - 4455 x^{11} + 42901 x^{10} - 76404 x^{9} + 599392 x^{8} - 1089732 x^{7} + 4808401 x^{6} - 7939134 x^{5} + 26225236 x^{4} - 39450864 x^{3} + 62254768 x^{2} - 39660672 x + 21307456\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 43.3
Root \(1.30789 - 2.26533i\) of defining polynomial
Character \(\chi\) \(=\) 63.43
Dual form 63.4.f.b.22.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.30789 + 2.26533i) q^{2} +(-3.13193 + 4.14620i) q^{3} +(0.578868 + 1.00263i) q^{4} +(6.77153 + 11.7286i) q^{5} +(-5.29628 - 12.5176i) q^{6} +(3.50000 - 6.06218i) q^{7} -23.9546 q^{8} +(-7.38198 - 25.9713i) q^{9} +O(q^{10})\) \(q+(-1.30789 + 2.26533i) q^{2} +(-3.13193 + 4.14620i) q^{3} +(0.578868 + 1.00263i) q^{4} +(6.77153 + 11.7286i) q^{5} +(-5.29628 - 12.5176i) q^{6} +(3.50000 - 6.06218i) q^{7} -23.9546 q^{8} +(-7.38198 - 25.9713i) q^{9} -35.4255 q^{10} +(-12.0346 + 20.8445i) q^{11} +(-5.97007 - 0.740063i) q^{12} +(-11.9972 - 20.7798i) q^{13} +(9.15520 + 15.8573i) q^{14} +(-69.8372 - 8.65717i) q^{15} +(26.6989 - 46.2438i) q^{16} +79.6971 q^{17} +(68.4881 + 17.2449i) q^{18} -50.0463 q^{19} +(-7.83963 + 13.5786i) q^{20} +(14.1732 + 33.4980i) q^{21} +(-31.4798 - 54.5245i) q^{22} +(75.8039 + 131.296i) q^{23} +(75.0241 - 99.3204i) q^{24} +(-29.2071 + 50.5883i) q^{25} +62.7639 q^{26} +(130.802 + 50.7331i) q^{27} +8.10415 q^{28} +(-128.062 + 221.810i) q^{29} +(110.950 - 146.881i) q^{30} +(1.36254 + 2.35999i) q^{31} +(-25.9800 - 44.9987i) q^{32} +(-48.7341 - 115.182i) q^{33} +(-104.235 + 180.540i) q^{34} +94.8014 q^{35} +(21.7663 - 22.4353i) q^{36} +319.617 q^{37} +(65.4548 - 113.371i) q^{38} +(123.732 + 15.3380i) q^{39} +(-162.209 - 280.954i) q^{40} +(-82.3892 - 142.702i) q^{41} +(-94.4210 - 11.7046i) q^{42} +(-211.384 + 366.129i) q^{43} -27.8657 q^{44} +(254.620 - 262.446i) q^{45} -396.571 q^{46} +(-50.0386 + 86.6693i) q^{47} +(108.117 + 255.532i) q^{48} +(-24.5000 - 42.4352i) q^{49} +(-76.3992 - 132.327i) q^{50} +(-249.606 + 330.440i) q^{51} +(13.8896 - 24.0575i) q^{52} +194.981 q^{53} +(-286.001 + 229.956i) q^{54} -325.970 q^{55} +(-83.8409 + 145.217i) q^{56} +(156.742 - 207.502i) q^{57} +(-334.981 - 580.204i) q^{58} +(-288.258 - 499.277i) q^{59} +(-31.7466 - 75.0321i) q^{60} +(21.5192 - 37.2723i) q^{61} -7.12819 q^{62} +(-183.279 - 46.1485i) q^{63} +563.098 q^{64} +(162.479 - 281.422i) q^{65} +(324.662 + 40.2458i) q^{66} +(508.257 + 880.326i) q^{67} +(46.1341 + 79.9065i) q^{68} +(-781.793 - 96.9127i) q^{69} +(-123.989 + 214.756i) q^{70} -509.305 q^{71} +(176.832 + 622.130i) q^{72} +1039.67 q^{73} +(-418.023 + 724.037i) q^{74} +(-118.274 - 279.538i) q^{75} +(-28.9702 - 50.1778i) q^{76} +(84.2422 + 145.912i) q^{77} +(-196.572 + 260.232i) q^{78} +(447.071 - 774.349i) q^{79} +723.169 q^{80} +(-620.013 + 383.439i) q^{81} +431.023 q^{82} +(-7.23057 + 12.5237i) q^{83} +(-25.3816 + 33.6014i) q^{84} +(539.671 + 934.738i) q^{85} +(-552.934 - 957.709i) q^{86} +(-518.587 - 1225.66i) q^{87} +(288.283 - 499.321i) q^{88} +1532.12 q^{89} +(261.511 + 920.046i) q^{90} -167.961 q^{91} +(-87.7608 + 152.006i) q^{92} +(-14.0524 - 1.74196i) q^{93} +(-130.889 - 226.707i) q^{94} +(-338.890 - 586.974i) q^{95} +(267.941 + 33.2146i) q^{96} +(887.575 - 1537.32i) q^{97} +128.173 q^{98} +(630.198 + 158.680i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} + O(q^{10}) \) \( 16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} - 28q^{10} - 24q^{11} + 268q^{12} - 68q^{13} + 21q^{14} + 56q^{15} - 103q^{16} + 336q^{17} - 479q^{18} + 352q^{19} - 330q^{20} + 70q^{21} - 151q^{22} - 228q^{23} - 195q^{24} - 244q^{25} + 1590q^{26} + 272q^{27} - 602q^{28} - 618q^{29} + 1030q^{30} - 72q^{31} - 786q^{32} - 700q^{33} + 261q^{34} - 420q^{35} + 727q^{36} + 420q^{37} - 1032q^{38} - 22q^{39} + 375q^{40} - 420q^{41} - 175q^{42} + 2q^{43} + 774q^{44} + 1406q^{45} + 804q^{46} - 570q^{47} + 1864q^{48} - 392q^{49} - 1110q^{50} - 2940q^{51} + 431q^{52} + 1056q^{53} + 2269q^{54} - 1676q^{55} + 42q^{56} + 122q^{57} - 37q^{58} + 150q^{59} - 6350q^{60} - 578q^{61} + 2340q^{62} - 350q^{63} - 224q^{64} + 366q^{65} + 5812q^{66} + 898q^{67} - 2526q^{68} - 2166q^{69} - 98q^{70} + 1764q^{71} + 1350q^{72} + 1944q^{73} + 222q^{74} - 2096q^{75} - 1423q^{76} + 168q^{77} - 5558q^{78} + 158q^{79} + 4950q^{80} + 476q^{81} - 422q^{82} - 2958q^{83} + 1715q^{84} + 774q^{85} + 114q^{86} + 44q^{87} - 1317q^{88} + 8760q^{89} - 3659q^{90} - 952q^{91} - 4629q^{92} + 3954q^{93} + 3234q^{94} - 930q^{95} - 5923q^{96} + 60q^{97} + 294q^{98} + 1214q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30789 + 2.26533i −0.462408 + 0.800913i −0.999080 0.0428770i \(-0.986348\pi\)
0.536673 + 0.843790i \(0.319681\pi\)
\(3\) −3.13193 + 4.14620i −0.602741 + 0.797937i
\(4\) 0.578868 + 1.00263i 0.0723584 + 0.125328i
\(5\) 6.77153 + 11.7286i 0.605664 + 1.04904i 0.991946 + 0.126660i \(0.0404257\pi\)
−0.386282 + 0.922381i \(0.626241\pi\)
\(6\) −5.29628 12.5176i −0.360366 0.851715i
\(7\) 3.50000 6.06218i 0.188982 0.327327i
\(8\) −23.9546 −1.05865
\(9\) −7.38198 25.9713i −0.273407 0.961899i
\(10\) −35.4255 −1.12025
\(11\) −12.0346 + 20.8445i −0.329870 + 0.571351i −0.982486 0.186338i \(-0.940338\pi\)
0.652616 + 0.757689i \(0.273671\pi\)
\(12\) −5.97007 0.740063i −0.143618 0.0178031i
\(13\) −11.9972 20.7798i −0.255956 0.443329i 0.709199 0.705009i \(-0.249057\pi\)
−0.965155 + 0.261680i \(0.915724\pi\)
\(14\) 9.15520 + 15.8573i 0.174774 + 0.302717i
\(15\) −69.8372 8.65717i −1.20213 0.149018i
\(16\) 26.6989 46.2438i 0.417170 0.722560i
\(17\) 79.6971 1.13702 0.568511 0.822675i \(-0.307520\pi\)
0.568511 + 0.822675i \(0.307520\pi\)
\(18\) 68.4881 + 17.2449i 0.896823 + 0.225814i
\(19\) −50.0463 −0.604284 −0.302142 0.953263i \(-0.597702\pi\)
−0.302142 + 0.953263i \(0.597702\pi\)
\(20\) −7.83963 + 13.5786i −0.0876498 + 0.151814i
\(21\) 14.1732 + 33.4980i 0.147279 + 0.348089i
\(22\) −31.4798 54.5245i −0.305069 0.528394i
\(23\) 75.8039 + 131.296i 0.687226 + 1.19031i 0.972732 + 0.231933i \(0.0745051\pi\)
−0.285506 + 0.958377i \(0.592162\pi\)
\(24\) 75.0241 99.3204i 0.638093 0.844737i
\(25\) −29.2071 + 50.5883i −0.233657 + 0.404706i
\(26\) 62.7639 0.473424
\(27\) 130.802 + 50.7331i 0.932328 + 0.361614i
\(28\) 8.10415 0.0546978
\(29\) −128.062 + 221.810i −0.820018 + 1.42031i 0.0856508 + 0.996325i \(0.472703\pi\)
−0.905668 + 0.423987i \(0.860630\pi\)
\(30\) 110.950 146.881i 0.675223 0.893892i
\(31\) 1.36254 + 2.35999i 0.00789417 + 0.0136731i 0.869946 0.493148i \(-0.164154\pi\)
−0.862051 + 0.506821i \(0.830821\pi\)
\(32\) −25.9800 44.9987i −0.143521 0.248585i
\(33\) −48.7341 115.182i −0.257076 0.607592i
\(34\) −104.235 + 180.540i −0.525768 + 0.910657i
\(35\) 94.8014 0.457839
\(36\) 21.7663 22.4353i 0.100770 0.103867i
\(37\) 319.617 1.42013 0.710065 0.704137i \(-0.248666\pi\)
0.710065 + 0.704137i \(0.248666\pi\)
\(38\) 65.4548 113.371i 0.279426 0.483979i
\(39\) 123.732 + 15.3380i 0.508023 + 0.0629756i
\(40\) −162.209 280.954i −0.641187 1.11057i
\(41\) −82.3892 142.702i −0.313830 0.543570i 0.665358 0.746524i \(-0.268279\pi\)
−0.979188 + 0.202955i \(0.934946\pi\)
\(42\) −94.4210 11.7046i −0.346892 0.0430015i
\(43\) −211.384 + 366.129i −0.749670 + 1.29847i 0.198310 + 0.980139i \(0.436455\pi\)
−0.947981 + 0.318328i \(0.896879\pi\)
\(44\) −27.8657 −0.0954754
\(45\) 254.620 262.446i 0.843478 0.869402i
\(46\) −396.571 −1.27111
\(47\) −50.0386 + 86.6693i −0.155295 + 0.268979i −0.933166 0.359444i \(-0.882966\pi\)
0.777871 + 0.628424i \(0.216300\pi\)
\(48\) 108.117 + 255.532i 0.325112 + 0.768392i
\(49\) −24.5000 42.4352i −0.0714286 0.123718i
\(50\) −76.3992 132.327i −0.216090 0.374278i
\(51\) −249.606 + 330.440i −0.685330 + 0.907272i
\(52\) 13.8896 24.0575i 0.0370411 0.0641571i
\(53\) 194.981 0.505333 0.252667 0.967553i \(-0.418692\pi\)
0.252667 + 0.967553i \(0.418692\pi\)
\(54\) −286.001 + 229.956i −0.720737 + 0.579501i
\(55\) −325.970 −0.799160
\(56\) −83.8409 + 145.217i −0.200066 + 0.346525i
\(57\) 156.742 207.502i 0.364227 0.482181i
\(58\) −334.981 580.204i −0.758365 1.31353i
\(59\) −288.258 499.277i −0.636067 1.10170i −0.986288 0.165033i \(-0.947227\pi\)
0.350221 0.936667i \(-0.386106\pi\)
\(60\) −31.7466 75.0321i −0.0683078 0.161443i
\(61\) 21.5192 37.2723i 0.0451680 0.0782332i −0.842558 0.538606i \(-0.818951\pi\)
0.887726 + 0.460373i \(0.152284\pi\)
\(62\) −7.12819 −0.0146013
\(63\) −183.279 46.1485i −0.366524 0.0922884i
\(64\) 563.098 1.09980
\(65\) 162.479 281.422i 0.310046 0.537016i
\(66\) 324.662 + 40.2458i 0.605502 + 0.0750594i
\(67\) 508.257 + 880.326i 0.926768 + 1.60521i 0.788693 + 0.614787i \(0.210758\pi\)
0.138074 + 0.990422i \(0.455909\pi\)
\(68\) 46.1341 + 79.9065i 0.0822732 + 0.142501i
\(69\) −781.793 96.9127i −1.36401 0.169086i
\(70\) −123.989 + 214.756i −0.211708 + 0.366689i
\(71\) −509.305 −0.851315 −0.425657 0.904884i \(-0.639957\pi\)
−0.425657 + 0.904884i \(0.639957\pi\)
\(72\) 176.832 + 622.130i 0.289442 + 1.01832i
\(73\) 1039.67 1.66690 0.833452 0.552592i \(-0.186361\pi\)
0.833452 + 0.552592i \(0.186361\pi\)
\(74\) −418.023 + 724.037i −0.656678 + 1.13740i
\(75\) −118.274 279.538i −0.182095 0.430377i
\(76\) −28.9702 50.1778i −0.0437251 0.0757341i
\(77\) 84.2422 + 145.912i 0.124679 + 0.215950i
\(78\) −196.572 + 260.232i −0.285352 + 0.377762i
\(79\) 447.071 774.349i 0.636701 1.10280i −0.349451 0.936955i \(-0.613632\pi\)
0.986152 0.165844i \(-0.0530347\pi\)
\(80\) 723.169 1.01066
\(81\) −620.013 + 383.439i −0.850498 + 0.525979i
\(82\) 431.023 0.580470
\(83\) −7.23057 + 12.5237i −0.00956214 + 0.0165621i −0.870767 0.491696i \(-0.836377\pi\)
0.861205 + 0.508258i \(0.169710\pi\)
\(84\) −25.3816 + 33.6014i −0.0329686 + 0.0436454i
\(85\) 539.671 + 934.738i 0.688653 + 1.19278i
\(86\) −552.934 957.709i −0.693307 1.20084i
\(87\) −518.587 1225.66i −0.639061 1.51040i
\(88\) 288.283 499.321i 0.349217 0.604862i
\(89\) 1532.12 1.82477 0.912384 0.409336i \(-0.134240\pi\)
0.912384 + 0.409336i \(0.134240\pi\)
\(90\) 261.511 + 920.046i 0.306285 + 1.07757i
\(91\) −167.961 −0.193484
\(92\) −87.7608 + 152.006i −0.0994532 + 0.172258i
\(93\) −14.0524 1.74196i −0.0156684 0.00194229i
\(94\) −130.889 226.707i −0.143619 0.248756i
\(95\) −338.890 586.974i −0.365993 0.633919i
\(96\) 267.941 + 33.2146i 0.284861 + 0.0353119i
\(97\) 887.575 1537.32i 0.929067 1.60919i 0.144182 0.989551i \(-0.453945\pi\)
0.784886 0.619641i \(-0.212722\pi\)
\(98\) 128.173 0.132116
\(99\) 630.198 + 158.680i 0.639770 + 0.161090i
\(100\) −67.6283 −0.0676283
\(101\) −169.349 + 293.320i −0.166840 + 0.288975i −0.937307 0.348504i \(-0.886690\pi\)
0.770467 + 0.637480i \(0.220023\pi\)
\(102\) −422.098 997.617i −0.409745 0.968420i
\(103\) 225.235 + 390.119i 0.215467 + 0.373200i 0.953417 0.301656i \(-0.0975393\pi\)
−0.737950 + 0.674855i \(0.764206\pi\)
\(104\) 287.388 + 497.770i 0.270968 + 0.469331i
\(105\) −296.912 + 393.066i −0.275958 + 0.365326i
\(106\) −255.013 + 441.695i −0.233670 + 0.404728i
\(107\) −581.208 −0.525117 −0.262558 0.964916i \(-0.584566\pi\)
−0.262558 + 0.964916i \(0.584566\pi\)
\(108\) 24.8506 + 160.513i 0.0221412 + 0.143013i
\(109\) −1381.38 −1.21388 −0.606938 0.794749i \(-0.707602\pi\)
−0.606938 + 0.794749i \(0.707602\pi\)
\(110\) 426.332 738.429i 0.369538 0.640058i
\(111\) −1001.02 + 1325.20i −0.855970 + 1.13317i
\(112\) −186.892 323.707i −0.157675 0.273102i
\(113\) −749.878 1298.83i −0.624271 1.08127i −0.988681 0.150031i \(-0.952063\pi\)
0.364410 0.931239i \(-0.381271\pi\)
\(114\) 265.059 + 626.460i 0.217764 + 0.514678i
\(115\) −1026.62 + 1778.15i −0.832456 + 1.44186i
\(116\) −296.524 −0.237341
\(117\) −451.114 + 464.978i −0.356457 + 0.367413i
\(118\) 1508.03 1.17649
\(119\) 278.940 483.138i 0.214877 0.372178i
\(120\) 1672.92 + 207.379i 1.27263 + 0.157758i
\(121\) 375.837 + 650.969i 0.282372 + 0.489083i
\(122\) 56.2892 + 97.4958i 0.0417720 + 0.0723513i
\(123\) 849.710 + 105.332i 0.622892 + 0.0772150i
\(124\) −1.57746 + 2.73224i −0.00114242 + 0.00197873i
\(125\) 901.774 0.645257
\(126\) 344.250 354.830i 0.243399 0.250879i
\(127\) −908.229 −0.634585 −0.317292 0.948328i \(-0.602774\pi\)
−0.317292 + 0.948328i \(0.602774\pi\)
\(128\) −528.628 + 915.610i −0.365035 + 0.632260i
\(129\) −856.001 2023.13i −0.584238 1.38083i
\(130\) 425.008 + 736.135i 0.286736 + 0.496641i
\(131\) 309.932 + 536.818i 0.206709 + 0.358030i 0.950676 0.310186i \(-0.100391\pi\)
−0.743967 + 0.668216i \(0.767058\pi\)
\(132\) 87.2737 115.537i 0.0575469 0.0761834i
\(133\) −175.162 + 303.389i −0.114199 + 0.197798i
\(134\) −2658.97 −1.71418
\(135\) 290.700 + 1877.67i 0.185329 + 1.19707i
\(136\) −1909.11 −1.20371
\(137\) 381.288 660.410i 0.237778 0.411844i −0.722298 0.691582i \(-0.756914\pi\)
0.960076 + 0.279738i \(0.0902475\pi\)
\(138\) 1242.03 1644.26i 0.766152 1.01427i
\(139\) −696.068 1205.63i −0.424746 0.735682i 0.571651 0.820497i \(-0.306303\pi\)
−0.996397 + 0.0848153i \(0.972970\pi\)
\(140\) 54.8774 + 95.0505i 0.0331285 + 0.0573802i
\(141\) −202.631 478.913i −0.121026 0.286041i
\(142\) 666.113 1153.74i 0.393654 0.681830i
\(143\) 577.526 0.337728
\(144\) −1398.10 352.033i −0.809086 0.203723i
\(145\) −3468.70 −1.98662
\(146\) −1359.77 + 2355.19i −0.770789 + 1.33505i
\(147\) 252.677 + 31.3224i 0.141772 + 0.0175744i
\(148\) 185.016 + 320.457i 0.102758 + 0.177983i
\(149\) −521.124 902.613i −0.286525 0.496275i 0.686453 0.727174i \(-0.259167\pi\)
−0.972978 + 0.230899i \(0.925833\pi\)
\(150\) 787.933 + 97.6739i 0.428897 + 0.0531669i
\(151\) −49.9139 + 86.4533i −0.0269002 + 0.0465925i −0.879162 0.476523i \(-0.841897\pi\)
0.852262 + 0.523115i \(0.175230\pi\)
\(152\) 1198.84 0.639727
\(153\) −588.322 2069.83i −0.310870 1.09370i
\(154\) −440.717 −0.230610
\(155\) −18.4529 + 31.9614i −0.00956243 + 0.0165626i
\(156\) 56.2459 + 132.935i 0.0288671 + 0.0682266i
\(157\) −246.721 427.334i −0.125417 0.217229i 0.796479 0.604666i \(-0.206694\pi\)
−0.921896 + 0.387438i \(0.873360\pi\)
\(158\) 1169.43 + 2025.52i 0.588831 + 1.01988i
\(159\) −610.667 + 808.430i −0.304585 + 0.403224i
\(160\) 351.848 609.419i 0.173850 0.301118i
\(161\) 1061.25 0.519494
\(162\) −57.7075 1906.02i −0.0279872 0.924392i
\(163\) 2174.81 1.04506 0.522529 0.852622i \(-0.324989\pi\)
0.522529 + 0.852622i \(0.324989\pi\)
\(164\) 95.3849 165.211i 0.0454165 0.0786637i
\(165\) 1020.92 1351.54i 0.481687 0.637680i
\(166\) −18.9135 32.7592i −0.00884321 0.0153169i
\(167\) −1150.10 1992.04i −0.532921 0.923045i −0.999261 0.0384401i \(-0.987761\pi\)
0.466340 0.884605i \(-0.345572\pi\)
\(168\) −339.514 802.431i −0.155917 0.368505i
\(169\) 810.634 1404.06i 0.368973 0.639080i
\(170\) −2823.31 −1.27375
\(171\) 369.441 + 1299.76i 0.165215 + 0.581260i
\(172\) −489.454 −0.216980
\(173\) 156.272 270.672i 0.0686773 0.118953i −0.829642 0.558296i \(-0.811455\pi\)
0.898319 + 0.439343i \(0.144789\pi\)
\(174\) 3454.78 + 428.262i 1.50521 + 0.186589i
\(175\) 204.450 + 354.118i 0.0883141 + 0.152965i
\(176\) 642.620 + 1113.05i 0.275224 + 0.476701i
\(177\) 2972.91 + 368.528i 1.26247 + 0.156499i
\(178\) −2003.84 + 3470.75i −0.843786 + 1.46148i
\(179\) 4345.85 1.81466 0.907329 0.420421i \(-0.138118\pi\)
0.907329 + 0.420421i \(0.138118\pi\)
\(180\) 410.527 + 103.368i 0.169994 + 0.0428033i
\(181\) −110.995 −0.0455812 −0.0227906 0.999740i \(-0.507255\pi\)
−0.0227906 + 0.999740i \(0.507255\pi\)
\(182\) 219.674 380.486i 0.0894687 0.154964i
\(183\) 87.1418 + 205.957i 0.0352006 + 0.0831956i
\(184\) −1815.85 3145.14i −0.727533 1.26012i
\(185\) 2164.30 + 3748.67i 0.860121 + 1.48977i
\(186\) 22.3250 29.5549i 0.00880080 0.0116509i
\(187\) −959.122 + 1661.25i −0.375069 + 0.649639i
\(188\) −115.863 −0.0449477
\(189\) 765.360 615.379i 0.294559 0.236837i
\(190\) 1772.92 0.676952
\(191\) −1102.94 + 1910.35i −0.417833 + 0.723707i −0.995721 0.0924083i \(-0.970543\pi\)
0.577889 + 0.816116i \(0.303877\pi\)
\(192\) −1763.58 + 2334.72i −0.662895 + 0.877571i
\(193\) 219.259 + 379.767i 0.0817750 + 0.141639i 0.904012 0.427506i \(-0.140608\pi\)
−0.822237 + 0.569145i \(0.807274\pi\)
\(194\) 2321.69 + 4021.29i 0.859216 + 1.48821i
\(195\) 657.958 + 1555.06i 0.241627 + 0.571079i
\(196\) 28.3645 49.1288i 0.0103369 0.0179041i
\(197\) 2536.01 0.917173 0.458587 0.888650i \(-0.348356\pi\)
0.458587 + 0.888650i \(0.348356\pi\)
\(198\) −1183.69 + 1220.07i −0.424854 + 0.437911i
\(199\) 2797.01 0.996356 0.498178 0.867075i \(-0.334003\pi\)
0.498178 + 0.867075i \(0.334003\pi\)
\(200\) 699.644 1211.82i 0.247361 0.428443i
\(201\) −5241.84 649.789i −1.83946 0.228023i
\(202\) −442.978 767.260i −0.154296 0.267248i
\(203\) 896.434 + 1552.67i 0.309937 + 0.536827i
\(204\) −475.797 58.9808i −0.163296 0.0202426i
\(205\) 1115.80 1932.62i 0.380151 0.658441i
\(206\) −1178.33 −0.398534
\(207\) 2850.34 2937.95i 0.957065 0.986480i
\(208\) −1281.25 −0.427109
\(209\) 602.287 1043.19i 0.199335 0.345259i
\(210\) −502.095 1186.69i −0.164990 0.389948i
\(211\) −944.079 1635.19i −0.308024 0.533514i 0.669906 0.742446i \(-0.266334\pi\)
−0.977930 + 0.208932i \(0.933001\pi\)
\(212\) 112.868 + 195.493i 0.0365651 + 0.0633327i
\(213\) 1595.11 2111.68i 0.513122 0.679296i
\(214\) 760.154 1316.62i 0.242818 0.420573i
\(215\) −5725.58 −1.81619
\(216\) −3133.30 1215.29i −0.987010 0.382824i
\(217\) 19.0756 0.00596743
\(218\) 1806.69 3129.28i 0.561305 0.972210i
\(219\) −3256.17 + 4310.67i −1.00471 + 1.33008i
\(220\) −188.694 326.827i −0.0578260 0.100158i
\(221\) −956.142 1656.09i −0.291028 0.504075i
\(222\) −1692.78 4000.85i −0.511767 1.20955i
\(223\) −674.874 + 1168.92i −0.202659 + 0.351015i −0.949384 0.314117i \(-0.898292\pi\)
0.746725 + 0.665132i \(0.231625\pi\)
\(224\) −363.720 −0.108491
\(225\) 1529.45 + 385.105i 0.453170 + 0.114105i
\(226\) 3923.02 1.15467
\(227\) −1242.53 + 2152.13i −0.363303 + 0.629260i −0.988502 0.151206i \(-0.951684\pi\)
0.625199 + 0.780465i \(0.285018\pi\)
\(228\) 298.780 + 37.0374i 0.0867859 + 0.0107582i
\(229\) 931.009 + 1612.56i 0.268659 + 0.465330i 0.968516 0.248953i \(-0.0800863\pi\)
−0.699857 + 0.714283i \(0.746753\pi\)
\(230\) −2685.39 4651.24i −0.769868 1.33345i
\(231\) −868.820 107.701i −0.247464 0.0306761i
\(232\) 3067.67 5313.35i 0.868113 1.50362i
\(233\) −4094.94 −1.15137 −0.575684 0.817672i \(-0.695264\pi\)
−0.575684 + 0.817672i \(0.695264\pi\)
\(234\) −463.322 1630.06i −0.129437 0.455386i
\(235\) −1355.35 −0.376227
\(236\) 333.726 578.030i 0.0920496 0.159435i
\(237\) 1810.41 + 4278.85i 0.496198 + 1.17275i
\(238\) 729.643 + 1263.78i 0.198722 + 0.344196i
\(239\) 1061.36 + 1838.33i 0.287254 + 0.497538i 0.973153 0.230158i \(-0.0739244\pi\)
−0.685900 + 0.727696i \(0.740591\pi\)
\(240\) −2264.92 + 2998.40i −0.609166 + 0.806442i
\(241\) −2644.98 + 4581.25i −0.706964 + 1.22450i 0.259014 + 0.965874i \(0.416603\pi\)
−0.965978 + 0.258624i \(0.916731\pi\)
\(242\) −1966.21 −0.522284
\(243\) 352.024 3771.60i 0.0929315 0.995673i
\(244\) 49.8270 0.0130731
\(245\) 331.805 574.703i 0.0865234 0.149863i
\(246\) −1349.93 + 1787.11i −0.349873 + 0.463178i
\(247\) 600.416 + 1039.95i 0.154670 + 0.267897i
\(248\) −32.6390 56.5325i −0.00835718 0.0144751i
\(249\) −29.2802 69.2028i −0.00745203 0.0176127i
\(250\) −1179.42 + 2042.81i −0.298372 + 0.516795i
\(251\) −4632.56 −1.16496 −0.582480 0.812845i \(-0.697918\pi\)
−0.582480 + 0.812845i \(0.697918\pi\)
\(252\) −59.8247 210.475i −0.0149548 0.0526138i
\(253\) −3649.07 −0.906780
\(254\) 1187.86 2057.43i 0.293437 0.508248i
\(255\) −5565.82 689.951i −1.36684 0.169437i
\(256\) 869.621 + 1506.23i 0.212310 + 0.367731i
\(257\) −1578.23 2733.58i −0.383065 0.663487i 0.608434 0.793604i \(-0.291798\pi\)
−0.991499 + 0.130117i \(0.958465\pi\)
\(258\) 5702.61 + 706.907i 1.37608 + 0.170582i
\(259\) 1118.66 1937.58i 0.268379 0.464846i
\(260\) 376.215 0.0897379
\(261\) 6706.03 + 1688.53i 1.59039 + 0.400451i
\(262\) −1621.42 −0.382335
\(263\) 894.284 1548.95i 0.209673 0.363164i −0.741939 0.670468i \(-0.766093\pi\)
0.951611 + 0.307304i \(0.0994268\pi\)
\(264\) 1167.40 + 2759.12i 0.272154 + 0.643228i
\(265\) 1320.32 + 2286.86i 0.306062 + 0.530115i
\(266\) −458.184 793.598i −0.105613 0.182927i
\(267\) −4798.50 + 6352.47i −1.09986 + 1.45605i
\(268\) −588.427 + 1019.18i −0.134119 + 0.232301i
\(269\) 5780.38 1.31017 0.655085 0.755555i \(-0.272633\pi\)
0.655085 + 0.755555i \(0.272633\pi\)
\(270\) −4633.73 1797.25i −1.04444 0.405100i
\(271\) 5745.97 1.28798 0.643991 0.765033i \(-0.277277\pi\)
0.643991 + 0.765033i \(0.277277\pi\)
\(272\) 2127.82 3685.50i 0.474332 0.821567i
\(273\) 526.042 696.400i 0.116621 0.154388i
\(274\) 997.362 + 1727.48i 0.219901 + 0.380879i
\(275\) −702.992 1217.62i −0.154153 0.267001i
\(276\) −355.387 839.947i −0.0775065 0.183184i
\(277\) −1746.81 + 3025.57i −0.378902 + 0.656278i −0.990903 0.134579i \(-0.957032\pi\)
0.612001 + 0.790857i \(0.290365\pi\)
\(278\) 3641.51 0.785623
\(279\) 51.2336 52.8083i 0.0109938 0.0113317i
\(280\) −2270.92 −0.484692
\(281\) −927.263 + 1606.07i −0.196854 + 0.340961i −0.947507 0.319736i \(-0.896406\pi\)
0.750653 + 0.660697i \(0.229739\pi\)
\(282\) 1349.91 + 167.338i 0.285057 + 0.0353362i
\(283\) −2710.16 4694.13i −0.569266 0.985997i −0.996639 0.0819218i \(-0.973894\pi\)
0.427373 0.904075i \(-0.359439\pi\)
\(284\) −294.820 510.643i −0.0615998 0.106694i
\(285\) 3495.09 + 433.259i 0.726426 + 0.0900493i
\(286\) −755.338 + 1308.28i −0.156168 + 0.270491i
\(287\) −1153.45 −0.237233
\(288\) −976.888 + 1006.91i −0.199874 + 0.206017i
\(289\) 1438.63 0.292820
\(290\) 4536.66 7857.73i 0.918628 1.59111i
\(291\) 3594.23 + 8494.86i 0.724047 + 1.71126i
\(292\) 601.830 + 1042.40i 0.120615 + 0.208911i
\(293\) −707.626 1225.64i −0.141092 0.244379i 0.786816 0.617188i \(-0.211728\pi\)
−0.927908 + 0.372809i \(0.878395\pi\)
\(294\) −401.429 + 531.431i −0.0796320 + 0.105421i
\(295\) 3903.89 6761.73i 0.770485 1.33452i
\(296\) −7656.29 −1.50342
\(297\) −2631.66 + 2115.95i −0.514155 + 0.413401i
\(298\) 2726.28 0.529964
\(299\) 1818.87 3150.37i 0.351799 0.609334i
\(300\) 211.807 280.400i 0.0407623 0.0539631i
\(301\) 1479.69 + 2562.90i 0.283349 + 0.490775i
\(302\) −130.563 226.142i −0.0248777 0.0430895i
\(303\) −685.777 1620.81i −0.130023 0.307305i
\(304\) −1336.18 + 2314.33i −0.252089 + 0.436632i
\(305\) 582.870 0.109426
\(306\) 5458.31 + 1374.37i 1.01971 + 0.256756i
\(307\) 6596.15 1.22626 0.613131 0.789982i \(-0.289910\pi\)
0.613131 + 0.789982i \(0.289910\pi\)
\(308\) −97.5301 + 168.927i −0.0180432 + 0.0312517i
\(309\) −2322.94 287.956i −0.427661 0.0530137i
\(310\) −48.2687 83.6039i −0.00884348 0.0153174i
\(311\) 379.003 + 656.452i 0.0691037 + 0.119691i 0.898507 0.438959i \(-0.144653\pi\)
−0.829403 + 0.558650i \(0.811319\pi\)
\(312\) −2963.93 367.416i −0.537820 0.0666693i
\(313\) −3552.76 + 6153.56i −0.641578 + 1.11125i 0.343503 + 0.939152i \(0.388387\pi\)
−0.985081 + 0.172094i \(0.944947\pi\)
\(314\) 1290.73 0.231975
\(315\) −699.822 2462.11i −0.125176 0.440394i
\(316\) 1035.18 0.184283
\(317\) 2629.69 4554.75i 0.465924 0.807005i −0.533318 0.845915i \(-0.679055\pi\)
0.999243 + 0.0389100i \(0.0123886\pi\)
\(318\) −1032.67 2440.69i −0.182105 0.430400i
\(319\) −3082.35 5338.78i −0.540998 0.937036i
\(320\) 3813.03 + 6604.36i 0.666109 + 1.15373i
\(321\) 1820.30 2409.81i 0.316509 0.419010i
\(322\) −1388.00 + 2404.09i −0.240218 + 0.416070i
\(323\) −3988.54 −0.687085
\(324\) −743.352 399.682i −0.127461 0.0685325i
\(325\) 1401.62 0.239224
\(326\) −2844.41 + 4926.66i −0.483243 + 0.837001i
\(327\) 4326.40 5727.49i 0.731653 0.968596i
\(328\) 1973.60 + 3418.37i 0.332237 + 0.575451i
\(329\) 350.270 + 606.685i 0.0586961 + 0.101665i
\(330\) 1726.43 + 4080.37i 0.287991 + 0.680657i
\(331\) 2126.09 3682.50i 0.353053 0.611507i −0.633729 0.773555i \(-0.718477\pi\)
0.986783 + 0.162048i \(0.0518100\pi\)
\(332\) −16.7422 −0.00276761
\(333\) −2359.41 8300.87i −0.388273 1.36602i
\(334\) 6016.82 0.985706
\(335\) −6883.35 + 11922.3i −1.12262 + 1.94443i
\(336\) 1927.49 + 238.935i 0.312956 + 0.0387946i
\(337\) −1296.08 2244.87i −0.209501 0.362867i 0.742056 0.670338i \(-0.233851\pi\)
−0.951558 + 0.307471i \(0.900517\pi\)
\(338\) 2120.43 + 3672.70i 0.341232 + 0.591031i
\(339\) 7733.77 + 958.694i 1.23906 + 0.153596i
\(340\) −624.796 + 1082.18i −0.0996598 + 0.172616i
\(341\) −65.5905 −0.0104162
\(342\) −3427.58 863.041i −0.541936 0.136456i
\(343\) −343.000 −0.0539949
\(344\) 5063.62 8770.45i 0.793640 1.37462i
\(345\) −4157.28 9825.60i −0.648755 1.53331i
\(346\) 408.773 + 708.016i 0.0635138 + 0.110009i
\(347\) 245.989 + 426.066i 0.0380559 + 0.0659148i 0.884426 0.466680i \(-0.154550\pi\)
−0.846370 + 0.532595i \(0.821217\pi\)
\(348\) 928.692 1229.45i 0.143055 0.189383i
\(349\) 5958.75 10320.9i 0.913939 1.58299i 0.105491 0.994420i \(-0.466358\pi\)
0.808448 0.588568i \(-0.200308\pi\)
\(350\) −1069.59 −0.163348
\(351\) −515.036 3326.69i −0.0783208 0.505885i
\(352\) 1250.63 0.189372
\(353\) −4039.98 + 6997.45i −0.609140 + 1.05506i 0.382242 + 0.924062i \(0.375152\pi\)
−0.991382 + 0.130999i \(0.958181\pi\)
\(354\) −4723.06 + 6252.61i −0.709118 + 0.938764i
\(355\) −3448.77 5973.45i −0.515611 0.893064i
\(356\) 886.894 + 1536.15i 0.132037 + 0.228695i
\(357\) 1129.57 + 2669.70i 0.167459 + 0.395785i
\(358\) −5683.87 + 9844.76i −0.839112 + 1.45338i
\(359\) −6675.40 −0.981376 −0.490688 0.871335i \(-0.663255\pi\)
−0.490688 + 0.871335i \(0.663255\pi\)
\(360\) −6099.31 + 6286.77i −0.892949 + 0.920394i
\(361\) −4354.37 −0.634840
\(362\) 145.169 251.440i 0.0210771 0.0365066i
\(363\) −3876.15 480.495i −0.560454 0.0694751i
\(364\) −97.2271 168.402i −0.0140002 0.0242491i
\(365\) 7040.14 + 12193.9i 1.00958 + 1.74865i
\(366\) −580.532 71.9639i −0.0829095 0.0102776i
\(367\) 5888.45 10199.1i 0.837532 1.45065i −0.0544197 0.998518i \(-0.517331\pi\)
0.891952 0.452130i \(-0.149336\pi\)
\(368\) 8095.51 1.14676
\(369\) −3097.96 + 3193.18i −0.437055 + 0.450488i
\(370\) −11322.6 −1.59091
\(371\) 682.433 1182.01i 0.0954991 0.165409i
\(372\) −6.38792 15.0977i −0.000890318 0.00210424i
\(373\) −741.638 1284.55i −0.102950 0.178315i 0.809949 0.586501i \(-0.199495\pi\)
−0.912899 + 0.408185i \(0.866162\pi\)
\(374\) −2508.85 4345.45i −0.346870 0.600796i
\(375\) −2824.30 + 3738.94i −0.388923 + 0.514874i
\(376\) 1198.65 2076.12i 0.164403 0.284755i
\(377\) 6145.54 0.839553
\(378\) 393.030 + 2538.63i 0.0534796 + 0.345432i
\(379\) −13400.9 −1.81625 −0.908124 0.418701i \(-0.862486\pi\)
−0.908124 + 0.418701i \(0.862486\pi\)
\(380\) 392.344 679.561i 0.0529654 0.0917387i
\(381\) 2844.51 3765.70i 0.382490 0.506359i
\(382\) −2885.04 4997.04i −0.386418 0.669296i
\(383\) −5883.57 10190.6i −0.784952 1.35958i −0.929028 0.370010i \(-0.879354\pi\)
0.144076 0.989567i \(-0.453979\pi\)
\(384\) −2140.68 5059.43i −0.284482 0.672364i
\(385\) −1140.90 + 1976.09i −0.151027 + 0.261587i
\(386\) −1147.06 −0.151254
\(387\) 11069.3 + 2787.17i 1.45396 + 0.366097i
\(388\) 2055.15 0.268903
\(389\) −3900.97 + 6756.68i −0.508450 + 0.880661i 0.491502 + 0.870876i \(0.336448\pi\)
−0.999952 + 0.00978494i \(0.996885\pi\)
\(390\) −4383.26 543.358i −0.569115 0.0705487i
\(391\) 6041.35 + 10463.9i 0.781391 + 1.35341i
\(392\) 586.886 + 1016.52i 0.0756180 + 0.130974i
\(393\) −3196.44 396.237i −0.410278 0.0508589i
\(394\) −3316.81 + 5744.88i −0.424108 + 0.734576i
\(395\) 12109.4 1.54251
\(396\) 205.704 + 723.708i 0.0261036 + 0.0918377i
\(397\) −6197.81 −0.783525 −0.391762 0.920066i \(-0.628134\pi\)
−0.391762 + 0.920066i \(0.628134\pi\)
\(398\) −3658.17 + 6336.14i −0.460723 + 0.797995i
\(399\) −709.318 1676.45i −0.0889983 0.210345i
\(400\) 1559.60 + 2701.30i 0.194950 + 0.337662i
\(401\) −500.722 867.276i −0.0623563 0.108004i 0.833162 0.553029i \(-0.186528\pi\)
−0.895518 + 0.445025i \(0.853195\pi\)
\(402\) 8327.71 11024.6i 1.03321 1.36781i
\(403\) 32.6933 56.6265i 0.00404112 0.00699943i
\(404\) −392.122 −0.0482891
\(405\) −8695.64 4675.43i −1.06689 0.573640i
\(406\) −4689.73 −0.573270
\(407\) −3846.47 + 6662.27i −0.468458 + 0.811392i
\(408\) 5979.20 7915.55i 0.725526 0.960485i
\(409\) −5054.60 8754.82i −0.611085 1.05843i −0.991058 0.133433i \(-0.957400\pi\)
0.379973 0.924998i \(-0.375933\pi\)
\(410\) 2918.68 + 5055.31i 0.351569 + 0.608936i
\(411\) 1544.02 + 3649.26i 0.185307 + 0.437967i
\(412\) −260.763 + 451.655i −0.0311817 + 0.0540083i
\(413\) −4035.61 −0.480821
\(414\) 2927.48 + 10299.5i 0.347531 + 1.22268i
\(415\) −195.848 −0.0231658
\(416\) −623.375 + 1079.72i −0.0734699 + 0.127254i
\(417\) 7178.80 + 889.899i 0.843040 + 0.104505i
\(418\) 1575.44 + 2728.75i 0.184348 + 0.319300i
\(419\) −178.252 308.741i −0.0207832 0.0359976i 0.855447 0.517891i \(-0.173283\pi\)
−0.876230 + 0.481893i \(0.839949\pi\)
\(420\) −565.971 70.1590i −0.0657537 0.00815097i
\(421\) 1435.87 2487.00i 0.166223 0.287907i −0.770866 0.636998i \(-0.780176\pi\)
0.937089 + 0.349091i \(0.113509\pi\)
\(422\) 4938.99 0.569731
\(423\) 2620.30 + 659.773i 0.301189 + 0.0758375i
\(424\) −4670.68 −0.534972
\(425\) −2327.72 + 4031.74i −0.265673 + 0.460160i
\(426\) 2697.42 + 6375.28i 0.306785 + 0.725078i
\(427\) −150.634 260.906i −0.0170719 0.0295694i
\(428\) −336.442 582.735i −0.0379966 0.0658121i
\(429\) −1808.77 + 2394.54i −0.203563 + 0.269486i
\(430\) 7488.41 12970.3i 0.839821 1.45461i
\(431\) −3224.02 −0.360314 −0.180157 0.983638i \(-0.557661\pi\)
−0.180157 + 0.983638i \(0.557661\pi\)
\(432\) 5838.36 4694.27i 0.650227 0.522808i
\(433\) −14285.5 −1.58549 −0.792744 0.609555i \(-0.791348\pi\)
−0.792744 + 0.609555i \(0.791348\pi\)
\(434\) −24.9487 + 43.2123i −0.00275939 + 0.00477940i
\(435\) 10863.7 14381.9i 1.19742 1.58520i
\(436\) −799.638 1385.01i −0.0878342 0.152133i
\(437\) −3793.70 6570.88i −0.415280 0.719286i
\(438\) −5506.38 13014.2i −0.600696 1.41973i
\(439\) −1757.57 + 3044.19i −0.191080 + 0.330960i −0.945608 0.325307i \(-0.894532\pi\)
0.754528 + 0.656267i \(0.227866\pi\)
\(440\) 7808.47 0.846032
\(441\) −921.238 + 949.552i −0.0994750 + 0.102532i
\(442\) 5002.10 0.538294
\(443\) 3991.41 6913.33i 0.428076 0.741449i −0.568626 0.822596i \(-0.692525\pi\)
0.996702 + 0.0811467i \(0.0258582\pi\)
\(444\) −1908.14 236.537i −0.203956 0.0252828i
\(445\) 10374.8 + 17969.7i 1.10520 + 1.91425i
\(446\) −1765.32 3057.62i −0.187422 0.324624i
\(447\) 5374.54 + 666.240i 0.568696 + 0.0704968i
\(448\) 1970.84 3413.60i 0.207843 0.359994i
\(449\) 3502.50 0.368137 0.184068 0.982913i \(-0.441073\pi\)
0.184068 + 0.982913i \(0.441073\pi\)
\(450\) −2872.73 + 2961.02i −0.300937 + 0.310187i
\(451\) 3966.08 0.414092
\(452\) 868.161 1503.70i 0.0903426 0.156478i
\(453\) −202.126 477.719i −0.0209640 0.0495479i
\(454\) −3250.19 5629.49i −0.335988 0.581949i
\(455\) −1137.35 1969.95i −0.117187 0.202973i
\(456\) −3754.68 + 4970.62i −0.385589 + 0.510461i
\(457\) −6531.24 + 11312.4i −0.668531 + 1.15793i 0.309784 + 0.950807i \(0.399743\pi\)
−0.978315 + 0.207123i \(0.933590\pi\)
\(458\) −4870.62 −0.496919
\(459\) 10424.5 + 4043.28i 1.06008 + 0.411164i
\(460\) −2377.10 −0.240941
\(461\) −3357.21 + 5814.86i −0.339178 + 0.587473i −0.984278 0.176625i \(-0.943482\pi\)
0.645101 + 0.764098i \(0.276815\pi\)
\(462\) 1380.30 1827.30i 0.138998 0.184012i
\(463\) 3048.84 + 5280.74i 0.306029 + 0.530058i 0.977490 0.210982i \(-0.0676661\pi\)
−0.671461 + 0.741040i \(0.734333\pi\)
\(464\) 6838.22 + 11844.1i 0.684174 + 1.18502i
\(465\) −74.7252 176.611i −0.00745225 0.0176132i
\(466\) 5355.72 9276.38i 0.532401 0.922146i
\(467\) −11929.4 −1.18207 −0.591033 0.806647i \(-0.701280\pi\)
−0.591033 + 0.806647i \(0.701280\pi\)
\(468\) −727.335 183.138i −0.0718399 0.0180888i
\(469\) 7115.59 0.700571
\(470\) 1772.64 3070.31i 0.173970 0.301325i
\(471\) 2544.53 + 315.425i 0.248929 + 0.0308578i
\(472\) 6905.08 + 11960.0i 0.673373 + 1.16632i
\(473\) −5087.85 8812.42i −0.494587 0.856650i
\(474\) −12060.8 1495.08i −1.16872 0.144876i
\(475\) 1461.71 2531.75i 0.141195 0.244558i
\(476\) 645.877 0.0621927
\(477\) −1439.34 5063.90i −0.138162 0.486080i
\(478\) −5552.55 −0.531313
\(479\) 3745.00 6486.54i 0.357231 0.618742i −0.630266 0.776379i \(-0.717054\pi\)
0.987497 + 0.157637i \(0.0503876\pi\)
\(480\) 1424.81 + 3367.50i 0.135486 + 0.320218i
\(481\) −3834.52 6641.58i −0.363490 0.629584i
\(482\) −6918.68 11983.5i −0.653811 1.13243i
\(483\) −3323.78 + 4400.17i −0.313120 + 0.414523i
\(484\) −435.120 + 753.650i −0.0408640 + 0.0707785i
\(485\) 24040.9 2.25081
\(486\) 8083.50 + 5730.28i 0.754475 + 0.534837i
\(487\) 14200.8 1.32135 0.660675 0.750672i \(-0.270270\pi\)
0.660675 + 0.750672i \(0.270270\pi\)
\(488\) −515.482 + 892.841i −0.0478172 + 0.0828217i
\(489\) −6811.37 + 9017.21i −0.629899 + 0.833890i
\(490\) 867.926 + 1503.29i 0.0800181 + 0.138595i
\(491\) −5395.93 9346.03i −0.495957 0.859023i 0.504032 0.863685i \(-0.331849\pi\)
−0.999989 + 0.00466183i \(0.998516\pi\)
\(492\) 386.261 + 912.916i 0.0353943 + 0.0836533i
\(493\) −10206.2 + 17677.6i −0.932378 + 1.61493i
\(494\) −3141.10 −0.286083
\(495\) 2406.31 + 8465.86i 0.218496 + 0.768711i
\(496\) 145.513 0.0131729
\(497\) −1782.57 + 3087.50i −0.160883 + 0.278658i
\(498\) 195.062 + 24.1803i 0.0175521 + 0.00217579i
\(499\) −3170.09 5490.75i −0.284394 0.492585i 0.688068 0.725646i \(-0.258459\pi\)
−0.972462 + 0.233061i \(0.925126\pi\)
\(500\) 522.008 + 904.144i 0.0466898 + 0.0808691i
\(501\) 11861.4 + 1470.37i 1.05775 + 0.131120i
\(502\) 6058.87 10494.3i 0.538686 0.933032i
\(503\) 18901.4 1.67549 0.837747 0.546059i \(-0.183873\pi\)
0.837747 + 0.546059i \(0.183873\pi\)
\(504\) 4390.37 + 1105.47i 0.388021 + 0.0977012i
\(505\) −4587.00 −0.404195
\(506\) 4772.57 8266.34i 0.419302 0.726252i
\(507\) 3282.66 + 7758.47i 0.287551 + 0.679617i
\(508\) −525.744 910.616i −0.0459176 0.0795316i
\(509\) 6838.35 + 11844.4i 0.595491 + 1.03142i 0.993477 + 0.114029i \(0.0363757\pi\)
−0.397987 + 0.917391i \(0.630291\pi\)
\(510\) 8842.43 11706.0i 0.767744 1.01638i
\(511\) 3638.84 6302.65i 0.315015 0.545622i
\(512\) −13007.5 −1.12277
\(513\) −6546.15 2539.00i −0.563391 0.218518i
\(514\) 8256.61 0.708528
\(515\) −3050.38 + 5283.40i −0.261001 + 0.452067i
\(516\) 1532.94 2029.38i 0.130783 0.173136i
\(517\) −1204.39 2086.06i −0.102454 0.177456i
\(518\) 2926.16 + 5068.26i 0.248201 + 0.429897i
\(519\) 632.825 + 1495.66i 0.0535220 + 0.126498i
\(520\) −3892.11 + 6741.33i −0.328231 + 0.568513i
\(521\) −10323.9 −0.868139 −0.434069 0.900879i \(-0.642923\pi\)
−0.434069 + 0.900879i \(0.642923\pi\)
\(522\) −12595.8 + 12982.9i −1.05614 + 1.08860i
\(523\) 9294.18 0.777067 0.388534 0.921435i \(-0.372982\pi\)
0.388534 + 0.921435i \(0.372982\pi\)
\(524\) −358.819 + 621.493i −0.0299143 + 0.0518130i
\(525\) −2108.57 261.382i −0.175287 0.0217289i
\(526\) 2339.24 + 4051.69i 0.193909 + 0.335859i
\(527\) 108.590 + 188.084i 0.00897585 + 0.0155466i
\(528\) −6627.58 821.569i −0.546266 0.0677163i
\(529\) −5408.95 + 9368.57i −0.444559 + 0.769999i
\(530\) −6907.30 −0.566102
\(531\) −10838.9 + 11172.1i −0.885819 + 0.913044i
\(532\) −405.582 −0.0330531
\(533\) −1976.88 + 3424.06i −0.160653 + 0.278260i
\(534\) −8114.54 19178.5i −0.657585 1.55418i
\(535\) −3935.66 6816.77i −0.318044 0.550869i
\(536\) −12175.1 21087.8i −0.981124 1.69936i
\(537\) −13610.9 + 18018.8i −1.09377 + 1.44798i
\(538\) −7560.08 + 13094.4i −0.605833 + 1.04933i
\(539\) 1179.39 0.0942485
\(540\) −1714.33 + 1378.38i −0.136616 + 0.109845i
\(541\) 4432.55 0.352256 0.176128 0.984367i \(-0.443643\pi\)
0.176128 + 0.984367i \(0.443643\pi\)
\(542\) −7515.08 + 13016.5i −0.595572 + 1.03156i
\(543\) 347.629 460.208i 0.0274736 0.0363709i
\(544\) −2070.53 3586.26i −0.163186 0.282647i
\(545\) −9354.07 16201.7i −0.735201 1.27340i
\(546\) 889.569 + 2102.47i 0.0697253 + 0.164794i
\(547\) −2164.18 + 3748.47i −0.169166 + 0.293004i −0.938127 0.346292i \(-0.887441\pi\)
0.768961 + 0.639296i \(0.220774\pi\)
\(548\) 882.860 0.0688210
\(549\) −1126.86 283.737i −0.0876017 0.0220575i
\(550\) 3677.74 0.285126
\(551\) 6409.02 11100.8i 0.495524 0.858272i
\(552\) 18727.5 + 2321.50i 1.44401 + 0.179003i
\(553\) −3129.49 5420.44i −0.240650 0.416819i
\(554\) −4569.27 7914.21i −0.350415 0.606936i
\(555\) −22321.2 2766.98i −1.70717 0.211625i
\(556\) 805.862 1395.79i 0.0614679 0.106466i
\(557\) 6102.88 0.464250 0.232125 0.972686i \(-0.425432\pi\)
0.232125 + 0.972686i \(0.425432\pi\)
\(558\) 52.6202 + 185.128i 0.00399209 + 0.0140450i
\(559\) 10144.1 0.767530
\(560\) 2531.09 4383.98i 0.190997 0.330816i
\(561\) −3883.96 9179.63i −0.292301 0.690846i
\(562\) −2425.51 4201.11i −0.182053 0.315326i
\(563\) −2428.85 4206.89i −0.181819 0.314919i 0.760681 0.649126i \(-0.224865\pi\)
−0.942500 + 0.334207i \(0.891532\pi\)
\(564\) 362.875 480.390i 0.0270918 0.0358654i
\(565\) 10155.6 17590.1i 0.756197 1.30977i
\(566\) 14178.3 1.05293
\(567\) 154.429 + 5100.66i 0.0114381 + 0.377791i
\(568\) 12200.2 0.901246
\(569\) −1501.30 + 2600.33i −0.110611 + 0.191585i −0.916017 0.401140i \(-0.868614\pi\)
0.805406 + 0.592724i \(0.201948\pi\)
\(570\) −5552.66 + 7350.87i −0.408027 + 0.540165i
\(571\) −9682.85 16771.2i −0.709658 1.22916i −0.964984 0.262309i \(-0.915516\pi\)
0.255326 0.966855i \(-0.417817\pi\)
\(572\) 334.311 + 579.044i 0.0244375 + 0.0423270i
\(573\) −4466.36 10556.1i −0.325628 0.769612i
\(574\) 1508.58 2612.94i 0.109698 0.190003i
\(575\) −8856.06 −0.642301
\(576\) −4156.78 14624.4i −0.300693 1.05790i
\(577\) 9688.50 0.699025 0.349512 0.936932i \(-0.386347\pi\)
0.349512 + 0.936932i \(0.386347\pi\)
\(578\) −1881.56 + 3258.96i −0.135402 + 0.234524i
\(579\) −2261.29 280.315i −0.162308 0.0201200i
\(580\) −2007.92 3477.82i −0.143749 0.248980i
\(581\) 50.6140 + 87.6660i 0.00361415 + 0.00625989i
\(582\) −23944.5 2968.21i −1.70538 0.211402i
\(583\) −2346.52 + 4064.28i −0.166694 + 0.288723i
\(584\) −24904.8 −1.76467
\(585\) −8508.29 2142.33i −0.601324 0.151409i
\(586\) 3701.98 0.260968
\(587\) 872.314 1510.89i 0.0613360 0.106237i −0.833727 0.552177i \(-0.813797\pi\)
0.895063 + 0.445940i \(0.147131\pi\)
\(588\) 114.862 + 271.473i 0.00805583 + 0.0190397i
\(589\) −68.1900 118.109i −0.00477033 0.00826245i
\(590\) 10211.7 + 17687.2i 0.712556 + 1.23418i
\(591\) −7942.61 + 10514.8i −0.552818 + 0.731846i
\(592\) 8533.43 14780.3i 0.592435 1.02613i
\(593\) 20857.6 1.44438 0.722192 0.691692i \(-0.243135\pi\)
0.722192 + 0.691692i \(0.243135\pi\)
\(594\) −1351.42 8728.98i −0.0933490 0.602954i
\(595\) 7555.39 0.520573
\(596\) 603.324 1044.99i 0.0414649 0.0718194i
\(597\) −8760.06 + 11597.0i −0.600545 + 0.795030i
\(598\) 4757.75 + 8240.66i 0.325349 + 0.563521i
\(599\) −3598.35 6232.52i −0.245450 0.425132i 0.716808 0.697271i \(-0.245602\pi\)
−0.962258 + 0.272139i \(0.912269\pi\)
\(600\) 2833.21 + 6696.20i 0.192775 + 0.455619i
\(601\) −5649.25 + 9784.79i −0.383424 + 0.664110i −0.991549 0.129731i \(-0.958589\pi\)
0.608125 + 0.793841i \(0.291922\pi\)
\(602\) −7741.07 −0.524091
\(603\) 19111.2 19698.6i 1.29066 1.33033i
\(604\) −115.574 −0.00778583
\(605\) −5089.98 + 8816.11i −0.342045 + 0.592439i
\(606\) 4568.59 + 566.332i 0.306248 + 0.0379631i
\(607\) 9204.31 + 15942.3i 0.615472 + 1.06603i 0.990301 + 0.138935i \(0.0443680\pi\)
−0.374829 + 0.927094i \(0.622299\pi\)
\(608\) 1300.20 + 2252.02i 0.0867272 + 0.150216i
\(609\) −9245.25 1146.06i −0.615166 0.0762573i
\(610\) −762.328 + 1320.39i −0.0505996 + 0.0876411i
\(611\) 2401.29 0.158995
\(612\) 1734.71 1788.03i 0.114578 0.118099i
\(613\) −8745.01 −0.576195 −0.288098 0.957601i \(-0.593023\pi\)
−0.288098 + 0.957601i \(0.593023\pi\)
\(614\) −8627.01 + 14942.4i −0.567032 + 0.982129i
\(615\) 4518.44 + 10679.2i 0.296262 + 0.700206i
\(616\) −2017.98 3495.25i −0.131992 0.228616i
\(617\) 14619.8 + 25322.2i 0.953923 + 1.65224i 0.736813 + 0.676096i \(0.236330\pi\)
0.217110 + 0.976147i \(0.430337\pi\)
\(618\) 3690.45 4885.59i 0.240213 0.318005i
\(619\) −1289.82 + 2234.04i −0.0837518 + 0.145062i −0.904859 0.425712i \(-0.860024\pi\)
0.821107 + 0.570775i \(0.193357\pi\)
\(620\) −42.7273 −0.00276769
\(621\) 3254.24 + 21019.6i 0.210287 + 1.35827i
\(622\) −1982.77 −0.127816
\(623\) 5362.42 9287.98i 0.344849 0.597295i
\(624\) 4012.78 5312.31i 0.257436 0.340806i
\(625\) 9757.28 + 16900.1i 0.624466 + 1.08161i
\(626\) −9293.21 16096.3i −0.593341 1.02770i
\(627\) 2438.96 + 5764.41i 0.155347 + 0.367158i
\(628\) 285.638 494.739i 0.0181500 0.0314367i
\(629\) 25472.6 1.61472
\(630\) 6492.77 + 1634.84i 0.410600 + 0.103386i
\(631\) 15166.5 0.956847 0.478424 0.878129i \(-0.341208\pi\)
0.478424 + 0.878129i \(0.341208\pi\)
\(632\) −10709.4 + 18549.2i −0.674044 + 1.16748i
\(633\) 9736.64 + 1206.97i 0.611369 + 0.0757866i
\(634\) 6878.67 + 11914.2i 0.430894 + 0.746330i
\(635\) −6150.10 10652.3i −0.384345 0.665705i
\(636\) −1164.05 144.298i −0.0725748 0.00899652i
\(637\) −587.863 + 1018.21i −0.0365651 + 0.0633327i
\(638\) 16125.4 1.00065
\(639\) 3759.68 + 13227.3i 0.232755 + 0.818879i
\(640\) −14318.5 −0.884355
\(641\) 5784.05 10018.3i 0.356406 0.617313i −0.630952 0.775822i \(-0.717335\pi\)
0.987357 + 0.158509i \(0.0506688\pi\)
\(642\) 3078.24 + 7275.33i 0.189234 + 0.447250i
\(643\) 26.3640 + 45.6638i 0.00161694 + 0.00280063i 0.866833 0.498599i \(-0.166152\pi\)
−0.865216 + 0.501400i \(0.832819\pi\)
\(644\) 614.325 + 1064.04i 0.0375898 + 0.0651074i
\(645\) 17932.1 23739.4i 1.09469 1.44921i
\(646\) 5216.56 9035.35i 0.317713 0.550296i
\(647\) −13568.7 −0.824484 −0.412242 0.911074i \(-0.635254\pi\)
−0.412242 + 0.911074i \(0.635254\pi\)
\(648\) 14852.1 9185.10i 0.900381 0.556829i
\(649\) 13876.3 0.839277
\(650\) −1833.15 + 3175.12i −0.110619 + 0.191597i
\(651\) −59.7434 + 79.0911i −0.00359682 + 0.00476164i
\(652\) 1258.93 + 2180.53i 0.0756188 + 0.130976i
\(653\) 7707.15 + 13349.2i 0.461875 + 0.799990i 0.999054 0.0434774i \(-0.0138437\pi\)
−0.537180 + 0.843468i \(0.680510\pi\)
\(654\) 7316.20 + 17291.6i 0.437440 + 1.03388i
\(655\) −4197.42 + 7270.15i −0.250392 + 0.433692i
\(656\) −8798.80 −0.523682
\(657\) −7674.81 27001.5i −0.455743 1.60339i
\(658\) −1832.45 −0.108566
\(659\) 9417.53 16311.6i 0.556684 0.964206i −0.441086 0.897465i \(-0.645407\pi\)
0.997770 0.0667409i \(-0.0212601\pi\)
\(660\) 1946.07 + 241.238i 0.114774 + 0.0142276i
\(661\) −4509.40 7810.50i −0.265348 0.459597i 0.702307 0.711875i \(-0.252154\pi\)
−0.967655 + 0.252278i \(0.918820\pi\)
\(662\) 5561.38 + 9632.59i 0.326509 + 0.565531i
\(663\) 9861.05 + 1222.40i 0.577634 + 0.0716047i
\(664\) 173.205 300.000i 0.0101230 0.0175335i
\(665\) −4744.46 −0.276665
\(666\) 21890.0 + 5511.76i 1.27360 + 0.320685i
\(667\) −38830.4 −2.25415
\(668\) 1331.52 2306.25i 0.0771226 0.133580i
\(669\) −2732.90 6459.13i −0.157937 0.373280i
\(670\) −18005.3 31186.0i −1.03822 1.79824i
\(671\) 517.949 + 897.114i 0.0297991 + 0.0516136i
\(672\) 1139.15 1508.06i 0.0653922 0.0865693i
\(673\) −11519.7 + 19952.8i −0.659812 + 1.14283i 0.320852 + 0.947129i \(0.396031\pi\)
−0.980664 + 0.195699i \(0.937303\pi\)
\(674\) 6780.49 0.387500
\(675\) −6386.85 + 5135.27i −0.364193 + 0.292825i
\(676\) 1877.00 0.106793
\(677\) 14577.1 25248.3i 0.827539 1.43334i −0.0724245 0.997374i \(-0.523074\pi\)
0.899963 0.435965i \(-0.143593\pi\)
\(678\) −12286.6 + 16265.6i −0.695967 + 0.921354i
\(679\) −6213.02 10761.3i −0.351154 0.608217i
\(680\) −12927.6 22391.2i −0.729044 1.26274i
\(681\) −5031.64 11892.1i −0.283132 0.669174i
\(682\) 85.7848 148.584i 0.00481653 0.00834247i
\(683\) −8818.55 −0.494045 −0.247022 0.969010i \(-0.579452\pi\)
−0.247022 + 0.969010i \(0.579452\pi\)
\(684\) −1089.32 + 1122.80i −0.0608937 + 0.0627653i
\(685\) 10327.6 0.576054
\(686\) 448.605 777.007i 0.0249677 0.0432453i
\(687\) −9601.84 1190.26i −0.533236 0.0661010i
\(688\) 11287.5 + 19550.5i 0.625480 + 1.08336i
\(689\) −2339.23 4051.66i −0.129343 0.224029i
\(690\) 27695.4 + 3433.18i 1.52804 + 0.189419i
\(691\) 4721.50 8177.88i 0.259934 0.450219i −0.706290 0.707923i \(-0.749633\pi\)
0.966224 + 0.257704i \(0.0829659\pi\)
\(692\) 361.844 0.0198775
\(693\) 3167.64 3264.99i 0.173634 0.178971i
\(694\) −1286.90 −0.0703894
\(695\) 9426.88 16327.8i 0.514507 0.891152i
\(696\) 12422.5 + 29360.2i 0.676543 + 1.59899i
\(697\) −6566.18 11373.0i −0.356832 0.618051i
\(698\) 15586.7 + 26997.0i 0.845225 + 1.46397i
\(699\) 12825.1 16978.5i 0.693977 0.918719i
\(700\) −236.699 + 409.975i −0.0127805 + 0.0221365i
\(701\) −11255.0 −0.606411 −0.303205 0.952925i \(-0.598057\pi\)
−0.303205 + 0.952925i \(0.598057\pi\)
\(702\) 8209.64 + 3184.21i 0.441386 + 0.171197i
\(703\) −15995.7 −0.858162
\(704\) −6776.65 + 11737.5i −0.362791 + 0.628372i
\(705\) 4244.87 5619.55i 0.226767 0.300205i
\(706\) −10567.7 18303.7i −0.563342 0.975737i
\(707\) 1185.44 + 2053.24i 0.0630595 + 0.109222i
\(708\) 1351.42 + 3194.05i 0.0717367 + 0.169548i
\(709\) −11242.5 + 19472.6i −0.595515 + 1.03146i 0.397958 + 0.917403i \(0.369719\pi\)
−0.993474 + 0.114060i \(0.963615\pi\)
\(710\) 18042.4 0.953689
\(711\) −23411.1 5894.76i −1.23486 0.310929i
\(712\) −36701.2 −1.93179
\(713\) −206.572 + 357.792i −0.0108502 + 0.0187930i
\(714\) −7525.08 932.824i −0.394424 0.0488937i
\(715\) 3910.73 + 6773.59i 0.204550 + 0.354291i
\(716\) 2515.67 + 4357.27i 0.131306 + 0.227428i
\(717\) −10946.2 1356.91i −0.570143 0.0706762i
\(718\) 8730.66 15121.9i 0.453796 0.785997i
\(719\) −27322.6 −1.41719 −0.708595 0.705615i \(-0.750671\pi\)
−0.708595 + 0.705615i \(0.750671\pi\)
\(720\) −5338.42 18781.6i −0.276321 0.972152i
\(721\) 3153.30 0.162878
\(722\) 5695.02 9864.06i 0.293555 0.508452i
\(723\) −10710.9 25314.8i −0.550956 1.30217i
\(724\) −64.2514 111.287i −0.00329818 0.00571262i
\(725\) −7480.65 12956.9i −0.383206 0.663732i
\(726\) 6158.03 8152.30i 0.314802 0.416750i
\(727\) 388.538 672.967i 0.0198213 0.0343315i −0.855945 0.517068i \(-0.827024\pi\)
0.875766 + 0.482736i \(0.160357\pi\)
\(728\) 4023.43 0.204833
\(729\) 14535.3 + 13272.0i 0.738470 + 0.674286i
\(730\) −36830.8 −1.86736
\(731\) −16846.7 + 29179.4i −0.852392 + 1.47639i
\(732\) −156.055 + 206.593i −0.00787972 + 0.0104315i
\(733\) 12682.6 + 21966.9i 0.639075 + 1.10691i 0.985636 + 0.168883i \(0.0540161\pi\)
−0.346561 + 0.938028i \(0.612651\pi\)
\(734\) 15402.8 + 26678.5i 0.774563 + 1.34158i
\(735\) 1343.64 + 3175.66i 0.0674300 + 0.159369i
\(736\) 3938.77 6822.15i 0.197262 0.341668i
\(737\) −24466.7 −1.22285
\(738\) −3181.80 11194.2i −0.158704 0.558353i
\(739\) 851.804 0.0424007 0.0212004 0.999775i \(-0.493251\pi\)
0.0212004 + 0.999775i \(0.493251\pi\)
\(740\) −2505.68 + 4339.97i −0.124474 + 0.215595i
\(741\) −6192.31 767.611i −0.306991 0.0380552i
\(742\) 1785.09 + 3091.86i 0.0883190 + 0.152973i
\(743\) 16910.0 + 29289.0i 0.834950 + 1.44618i 0.894071 + 0.447926i \(0.147837\pi\)
−0.0591206 + 0.998251i \(0.518830\pi\)
\(744\) 336.618 + 41.7279i 0.0165874 + 0.00205621i
\(745\) 7057.61 12224.1i 0.347075 0.601152i
\(746\) 3879.91 0.190420
\(747\) 378.632 + 95.3371i 0.0185454 + 0.00466962i
\(748\) −2220.82 −0.108558
\(749\) −2034.23 + 3523.39i −0.0992377 + 0.171885i
\(750\) −4776.05 11288.1i −0.232529 0.549575i
\(751\) 376.630 + 652.341i 0.0183001 + 0.0316968i 0.875030 0.484068i \(-0.160841\pi\)
−0.856730 + 0.515765i \(0.827508\pi\)
\(752\) 2671.95 + 4627.95i 0.129569 + 0.224420i
\(753\) 14508.9 19207.5i 0.702169 0.929564i
\(754\) −8037.67 + 13921.7i −0.388216 + 0.672409i
\(755\) −1351.97 −0.0651699
\(756\) 1060.04 + 411.148i 0.0509963 + 0.0197795i
\(757\) −8507.90 −0.408487 −0.204244 0.978920i \(-0.565473\pi\)
−0.204244 + 0.978920i \(0.565473\pi\)
\(758\) 17526.9 30357.4i 0.839847 1.45466i
\(759\) 11428.7 15129.8i 0.546553 0.723553i
\(760\) 8117.95 + 14060.7i 0.387459 + 0.671099i
\(761\) −1839.97 3186.93i −0.0876466 0.151808i 0.818869 0.573980i \(-0.194601\pi\)
−0.906516 + 0.422172i \(0.861268\pi\)
\(762\) 4810.24 + 11368.9i 0.228683 + 0.540486i
\(763\) −4834.84 + 8374.19i −0.229401 + 0.397334i
\(764\) −2553.83 −0.120935
\(765\) 20292.5 20916.2i 0.959053 0.988529i
\(766\) 30780.2 1.45187
\(767\) −6916.57 + 11979.9i −0.325610 + 0.563973i
\(768\) −8968.72 1111.78i −0.421394 0.0522369i
\(769\) −10837.0 18770.3i −0.508184 0.880201i −0.999955 0.00947643i \(-0.996984\pi\)
0.491771 0.870725i \(-0.336350\pi\)
\(770\) −2984.32 5169.00i −0.139672 0.241919i
\(771\) 16276.9 + 2017.72i 0.760310 + 0.0942496i
\(772\) −253.843 + 439.670i