Properties

Label 63.4.f.b.43.2
Level $63$
Weight $4$
Character 63.43
Analytic conductor $3.717$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 3 x^{15} + 58 x^{14} - 129 x^{13} + 2107 x^{12} - 4455 x^{11} + 42901 x^{10} - 76404 x^{9} + 599392 x^{8} - 1089732 x^{7} + 4808401 x^{6} - 7939134 x^{5} + 26225236 x^{4} - 39450864 x^{3} + 62254768 x^{2} - 39660672 x + 21307456\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 43.2
Root \(2.28179 - 3.95218i\) of defining polynomial
Character \(\chi\) \(=\) 63.43
Dual form 63.4.f.b.22.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.28179 + 3.95218i) q^{2} +(1.09409 + 5.07966i) q^{3} +(-6.41313 - 11.1079i) q^{4} +(-10.3955 - 18.0055i) q^{5} +(-22.5722 - 7.26670i) q^{6} +(3.50000 - 6.06218i) q^{7} +22.0250 q^{8} +(-24.6060 + 11.1152i) q^{9} +O(q^{10})\) \(q+(-2.28179 + 3.95218i) q^{2} +(1.09409 + 5.07966i) q^{3} +(-6.41313 - 11.1079i) q^{4} +(-10.3955 - 18.0055i) q^{5} +(-22.5722 - 7.26670i) q^{6} +(3.50000 - 6.06218i) q^{7} +22.0250 q^{8} +(-24.6060 + 11.1152i) q^{9} +94.8813 q^{10} +(-22.6993 + 39.3163i) q^{11} +(49.4077 - 44.7295i) q^{12} +(-14.6521 - 25.3782i) q^{13} +(15.9725 + 27.6652i) q^{14} +(80.0884 - 72.5052i) q^{15} +(1.04863 - 1.81629i) q^{16} -98.0555 q^{17} +(12.2165 - 122.610i) q^{18} +31.1554 q^{19} +(-133.335 + 230.943i) q^{20} +(34.6231 + 11.1463i) q^{21} +(-103.590 - 179.423i) q^{22} +(-4.19596 - 7.26761i) q^{23} +(24.0972 + 111.879i) q^{24} +(-153.632 + 266.099i) q^{25} +133.732 q^{26} +(-83.3823 - 112.829i) q^{27} -89.7838 q^{28} +(36.1332 - 62.5845i) q^{29} +(103.808 + 481.965i) q^{30} +(15.4299 + 26.7254i) q^{31} +(92.8855 + 160.882i) q^{32} +(-224.548 - 72.2893i) q^{33} +(223.742 - 387.533i) q^{34} -145.537 q^{35} +(281.267 + 202.036i) q^{36} -196.369 q^{37} +(-71.0900 + 123.131i) q^{38} +(112.882 - 102.194i) q^{39} +(-228.961 - 396.571i) q^{40} +(-106.336 - 184.180i) q^{41} +(-123.055 + 111.403i) q^{42} +(-118.438 + 205.141i) q^{43} +582.293 q^{44} +(455.925 + 327.495i) q^{45} +38.2972 q^{46} +(110.018 - 190.557i) q^{47} +(10.3734 + 3.33953i) q^{48} +(-24.5000 - 42.4352i) q^{49} +(-701.114 - 1214.36i) q^{50} +(-107.281 - 498.089i) q^{51} +(-187.932 + 325.507i) q^{52} +55.9028 q^{53} +(636.181 - 72.0896i) q^{54} +943.880 q^{55} +(77.0874 - 133.519i) q^{56} +(34.0866 + 158.259i) q^{57} +(164.897 + 285.609i) q^{58} +(327.326 + 566.946i) q^{59} +(-1318.99 - 424.626i) q^{60} +(-174.391 + 302.055i) q^{61} -140.831 q^{62} +(-18.7387 + 188.069i) q^{63} -831.002 q^{64} +(-304.632 + 527.638i) q^{65} +(798.072 - 722.506i) q^{66} +(-105.247 - 182.293i) q^{67} +(628.842 + 1089.19i) q^{68} +(32.3263 - 29.2654i) q^{69} +(332.085 - 575.187i) q^{70} -548.252 q^{71} +(-541.946 + 244.811i) q^{72} -266.888 q^{73} +(448.073 - 776.086i) q^{74} +(-1519.78 - 489.266i) q^{75} +(-199.803 - 346.070i) q^{76} +(158.895 + 275.214i) q^{77} +(146.314 + 679.314i) q^{78} +(134.946 - 233.733i) q^{79} -43.6042 q^{80} +(481.906 - 546.999i) q^{81} +970.550 q^{82} +(-312.634 + 541.499i) q^{83} +(-98.2311 - 456.071i) q^{84} +(1019.34 + 1765.54i) q^{85} +(-540.503 - 936.178i) q^{86} +(357.441 + 115.072i) q^{87} +(-499.951 + 865.941i) q^{88} +1605.63 q^{89} +(-2334.64 + 1054.62i) q^{90} -205.129 q^{91} +(-53.8184 + 93.2162i) q^{92} +(-118.874 + 107.618i) q^{93} +(502.076 + 869.621i) q^{94} +(-323.875 - 560.969i) q^{95} +(-715.603 + 647.846i) q^{96} +(145.549 - 252.099i) q^{97} +223.615 q^{98} +(121.530 - 1219.72i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} + O(q^{10}) \) \( 16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} - 28q^{10} - 24q^{11} + 268q^{12} - 68q^{13} + 21q^{14} + 56q^{15} - 103q^{16} + 336q^{17} - 479q^{18} + 352q^{19} - 330q^{20} + 70q^{21} - 151q^{22} - 228q^{23} - 195q^{24} - 244q^{25} + 1590q^{26} + 272q^{27} - 602q^{28} - 618q^{29} + 1030q^{30} - 72q^{31} - 786q^{32} - 700q^{33} + 261q^{34} - 420q^{35} + 727q^{36} + 420q^{37} - 1032q^{38} - 22q^{39} + 375q^{40} - 420q^{41} - 175q^{42} + 2q^{43} + 774q^{44} + 1406q^{45} + 804q^{46} - 570q^{47} + 1864q^{48} - 392q^{49} - 1110q^{50} - 2940q^{51} + 431q^{52} + 1056q^{53} + 2269q^{54} - 1676q^{55} + 42q^{56} + 122q^{57} - 37q^{58} + 150q^{59} - 6350q^{60} - 578q^{61} + 2340q^{62} - 350q^{63} - 224q^{64} + 366q^{65} + 5812q^{66} + 898q^{67} - 2526q^{68} - 2166q^{69} - 98q^{70} + 1764q^{71} + 1350q^{72} + 1944q^{73} + 222q^{74} - 2096q^{75} - 1423q^{76} + 168q^{77} - 5558q^{78} + 158q^{79} + 4950q^{80} + 476q^{81} - 422q^{82} - 2958q^{83} + 1715q^{84} + 774q^{85} + 114q^{86} + 44q^{87} - 1317q^{88} + 8760q^{89} - 3659q^{90} - 952q^{91} - 4629q^{92} + 3954q^{93} + 3234q^{94} - 930q^{95} - 5923q^{96} + 60q^{97} + 294q^{98} + 1214q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.28179 + 3.95218i −0.806734 + 1.39730i 0.108380 + 0.994110i \(0.465434\pi\)
−0.915114 + 0.403195i \(0.867900\pi\)
\(3\) 1.09409 + 5.07966i 0.210557 + 0.977582i
\(4\) −6.41313 11.1079i −0.801641 1.38848i
\(5\) −10.3955 18.0055i −0.929801 1.61046i −0.783652 0.621200i \(-0.786645\pi\)
−0.146149 0.989263i \(-0.546688\pi\)
\(6\) −22.5722 7.26670i −1.53584 0.494437i
\(7\) 3.50000 6.06218i 0.188982 0.327327i
\(8\) 22.0250 0.973376
\(9\) −24.6060 + 11.1152i −0.911332 + 0.411673i
\(10\) 94.8813 3.00041
\(11\) −22.6993 + 39.3163i −0.622190 + 1.07766i 0.366887 + 0.930265i \(0.380423\pi\)
−0.989077 + 0.147399i \(0.952910\pi\)
\(12\) 49.4077 44.7295i 1.18856 1.07602i
\(13\) −14.6521 25.3782i −0.312597 0.541434i 0.666327 0.745660i \(-0.267866\pi\)
−0.978924 + 0.204226i \(0.934532\pi\)
\(14\) 15.9725 + 27.6652i 0.304917 + 0.528132i
\(15\) 80.0884 72.5052i 1.37858 1.24805i
\(16\) 1.04863 1.81629i 0.0163849 0.0283795i
\(17\) −98.0555 −1.39894 −0.699469 0.714663i \(-0.746580\pi\)
−0.699469 + 0.714663i \(0.746580\pi\)
\(18\) 12.2165 122.610i 0.159970 1.60552i
\(19\) 31.1554 0.376186 0.188093 0.982151i \(-0.439769\pi\)
0.188093 + 0.982151i \(0.439769\pi\)
\(20\) −133.335 + 230.943i −1.49073 + 2.58202i
\(21\) 34.6231 + 11.1463i 0.359780 + 0.115825i
\(22\) −103.590 179.423i −1.00388 1.73878i
\(23\) −4.19596 7.26761i −0.0380399 0.0658870i 0.846379 0.532582i \(-0.178778\pi\)
−0.884419 + 0.466695i \(0.845445\pi\)
\(24\) 24.0972 + 111.879i 0.204951 + 0.951554i
\(25\) −153.632 + 266.099i −1.22906 + 2.12879i
\(26\) 133.732 1.00873
\(27\) −83.3823 112.829i −0.594331 0.804220i
\(28\) −89.7838 −0.605983
\(29\) 36.1332 62.5845i 0.231371 0.400747i −0.726841 0.686806i \(-0.759012\pi\)
0.958212 + 0.286059i \(0.0923455\pi\)
\(30\) 103.808 + 481.965i 0.631757 + 2.93315i
\(31\) 15.4299 + 26.7254i 0.0893965 + 0.154839i 0.907256 0.420578i \(-0.138173\pi\)
−0.817860 + 0.575418i \(0.804840\pi\)
\(32\) 92.8855 + 160.882i 0.513125 + 0.888758i
\(33\) −224.548 72.2893i −1.18451 0.381332i
\(34\) 223.742 387.533i 1.12857 1.95474i
\(35\) −145.537 −0.702863
\(36\) 281.267 + 202.036i 1.30216 + 0.935354i
\(37\) −196.369 −0.872511 −0.436255 0.899823i \(-0.643696\pi\)
−0.436255 + 0.899823i \(0.643696\pi\)
\(38\) −71.0900 + 123.131i −0.303482 + 0.525646i
\(39\) 112.882 102.194i 0.463477 0.419592i
\(40\) −228.961 396.571i −0.905046 1.56759i
\(41\) −106.336 184.180i −0.405048 0.701564i 0.589279 0.807930i \(-0.299412\pi\)
−0.994327 + 0.106366i \(0.966079\pi\)
\(42\) −123.055 + 111.403i −0.452089 + 0.409283i
\(43\) −118.438 + 205.141i −0.420039 + 0.727529i −0.995943 0.0899887i \(-0.971317\pi\)
0.575904 + 0.817517i \(0.304650\pi\)
\(44\) 582.293 1.99509
\(45\) 455.925 + 327.495i 1.51034 + 1.08489i
\(46\) 38.2972 0.122752
\(47\) 110.018 190.557i 0.341442 0.591395i −0.643259 0.765649i \(-0.722418\pi\)
0.984701 + 0.174254i \(0.0557513\pi\)
\(48\) 10.3734 + 3.33953i 0.0311932 + 0.0100421i
\(49\) −24.5000 42.4352i −0.0714286 0.123718i
\(50\) −701.114 1214.36i −1.98305 3.43474i
\(51\) −107.281 498.089i −0.294556 1.36758i
\(52\) −187.932 + 325.507i −0.501181 + 0.868071i
\(53\) 55.9028 0.144884 0.0724419 0.997373i \(-0.476921\pi\)
0.0724419 + 0.997373i \(0.476921\pi\)
\(54\) 636.181 72.0896i 1.60321 0.181670i
\(55\) 943.880 2.31405
\(56\) 77.0874 133.519i 0.183951 0.318612i
\(57\) 34.0866 + 158.259i 0.0792085 + 0.367752i
\(58\) 164.897 + 285.609i 0.373310 + 0.646592i
\(59\) 327.326 + 566.946i 0.722275 + 1.25102i 0.960086 + 0.279706i \(0.0902370\pi\)
−0.237810 + 0.971312i \(0.576430\pi\)
\(60\) −1318.99 424.626i −2.83802 0.913650i
\(61\) −174.391 + 302.055i −0.366041 + 0.634002i −0.988943 0.148298i \(-0.952620\pi\)
0.622901 + 0.782300i \(0.285954\pi\)
\(62\) −140.831 −0.288477
\(63\) −18.7387 + 188.069i −0.0374739 + 0.376102i
\(64\) −831.002 −1.62305
\(65\) −304.632 + 527.638i −0.581306 + 1.00685i
\(66\) 798.072 722.506i 1.48842 1.34749i
\(67\) −105.247 182.293i −0.191910 0.332398i 0.753973 0.656905i \(-0.228135\pi\)
−0.945883 + 0.324507i \(0.894802\pi\)
\(68\) 628.842 + 1089.19i 1.12145 + 1.94240i
\(69\) 32.3263 29.2654i 0.0564004 0.0510601i
\(70\) 332.085 575.187i 0.567024 0.982115i
\(71\) −548.252 −0.916416 −0.458208 0.888845i \(-0.651508\pi\)
−0.458208 + 0.888845i \(0.651508\pi\)
\(72\) −541.946 + 244.811i −0.887068 + 0.400713i
\(73\) −266.888 −0.427902 −0.213951 0.976844i \(-0.568633\pi\)
−0.213951 + 0.976844i \(0.568633\pi\)
\(74\) 448.073 776.086i 0.703884 1.21916i
\(75\) −1519.78 489.266i −2.33986 0.753274i
\(76\) −199.803 346.070i −0.301566 0.522328i
\(77\) 158.895 + 275.214i 0.235166 + 0.407319i
\(78\) 146.314 + 679.314i 0.212395 + 0.986117i
\(79\) 134.946 233.733i 0.192185 0.332874i −0.753789 0.657116i \(-0.771776\pi\)
0.945974 + 0.324242i \(0.105109\pi\)
\(80\) −43.6042 −0.0609388
\(81\) 481.906 546.999i 0.661051 0.750341i
\(82\) 970.550 1.30706
\(83\) −312.634 + 541.499i −0.413447 + 0.716111i −0.995264 0.0972088i \(-0.969009\pi\)
0.581817 + 0.813320i \(0.302342\pi\)
\(84\) −98.2311 456.071i −0.127594 0.592398i
\(85\) 1019.34 + 1765.54i 1.30073 + 2.25294i
\(86\) −540.503 936.178i −0.677720 1.17384i
\(87\) 357.441 + 115.072i 0.440479 + 0.141804i
\(88\) −499.951 + 865.941i −0.605625 + 1.04897i
\(89\) 1605.63 1.91232 0.956162 0.292838i \(-0.0945996\pi\)
0.956162 + 0.292838i \(0.0945996\pi\)
\(90\) −2334.64 + 1054.62i −2.73437 + 1.23519i
\(91\) −205.129 −0.236301
\(92\) −53.8184 + 93.2162i −0.0609887 + 0.105635i
\(93\) −118.874 + 107.618i −0.132545 + 0.119995i
\(94\) 502.076 + 869.621i 0.550906 + 0.954198i
\(95\) −323.875 560.969i −0.349778 0.605833i
\(96\) −715.603 + 647.846i −0.760791 + 0.688755i
\(97\) 145.549 252.099i 0.152354 0.263884i −0.779739 0.626105i \(-0.784648\pi\)
0.932092 + 0.362221i \(0.117981\pi\)
\(98\) 223.615 0.230496
\(99\) 121.530 1219.72i 0.123376 1.23825i
\(100\) 3941.06 3.94106
\(101\) 726.307 1258.00i 0.715547 1.23936i −0.247201 0.968964i \(-0.579511\pi\)
0.962748 0.270399i \(-0.0871557\pi\)
\(102\) 2213.33 + 712.540i 2.14855 + 0.691686i
\(103\) 28.1341 + 48.7296i 0.0269139 + 0.0466162i 0.879169 0.476511i \(-0.158099\pi\)
−0.852255 + 0.523127i \(0.824765\pi\)
\(104\) −322.712 558.954i −0.304275 0.527019i
\(105\) −159.230 739.278i −0.147993 0.687106i
\(106\) −127.558 + 220.938i −0.116883 + 0.202447i
\(107\) −300.124 −0.271160 −0.135580 0.990766i \(-0.543290\pi\)
−0.135580 + 0.990766i \(0.543290\pi\)
\(108\) −718.547 + 1649.79i −0.640206 + 1.46991i
\(109\) −936.906 −0.823296 −0.411648 0.911343i \(-0.635047\pi\)
−0.411648 + 0.911343i \(0.635047\pi\)
\(110\) −2153.74 + 3730.38i −1.86682 + 3.23343i
\(111\) −214.845 997.489i −0.183713 0.852951i
\(112\) −7.34044 12.7140i −0.00619291 0.0107264i
\(113\) −697.297 1207.75i −0.580498 1.00545i −0.995420 0.0955946i \(-0.969525\pi\)
0.414923 0.909857i \(-0.363809\pi\)
\(114\) −703.245 226.397i −0.577763 0.186000i
\(115\) −87.2381 + 151.101i −0.0707391 + 0.122524i
\(116\) −926.907 −0.741906
\(117\) 642.612 + 461.594i 0.507773 + 0.364738i
\(118\) −2987.56 −2.33074
\(119\) −343.194 + 594.430i −0.264375 + 0.457910i
\(120\) 1763.95 1596.93i 1.34188 1.21482i
\(121\) −365.014 632.222i −0.274240 0.474998i
\(122\) −795.849 1378.45i −0.590596 1.02294i
\(123\) 819.232 741.662i 0.600550 0.543686i
\(124\) 197.908 342.786i 0.143328 0.248251i
\(125\) 3789.47 2.71152
\(126\) −700.523 503.192i −0.495298 0.355777i
\(127\) −2387.37 −1.66807 −0.834034 0.551714i \(-0.813974\pi\)
−0.834034 + 0.551714i \(0.813974\pi\)
\(128\) 1153.09 1997.21i 0.796247 1.37914i
\(129\) −1171.63 377.185i −0.799661 0.257436i
\(130\) −1390.21 2407.92i −0.937920 1.62452i
\(131\) −1060.00 1835.97i −0.706963 1.22450i −0.965978 0.258623i \(-0.916731\pi\)
0.259015 0.965873i \(-0.416602\pi\)
\(132\) 637.078 + 2957.85i 0.420080 + 1.95036i
\(133\) 109.044 188.869i 0.0710925 0.123136i
\(134\) 960.606 0.619282
\(135\) −1164.74 + 2674.26i −0.742557 + 1.70491i
\(136\) −2159.67 −1.36169
\(137\) 32.9508 57.0725i 0.0205487 0.0355915i −0.855568 0.517690i \(-0.826792\pi\)
0.876117 + 0.482099i \(0.160125\pi\)
\(138\) 41.9004 + 194.537i 0.0258463 + 0.120000i
\(139\) 981.641 + 1700.25i 0.599005 + 1.03751i 0.992968 + 0.118381i \(0.0377705\pi\)
−0.393963 + 0.919126i \(0.628896\pi\)
\(140\) 933.346 + 1616.60i 0.563444 + 0.975914i
\(141\) 1088.33 + 350.369i 0.650030 + 0.209265i
\(142\) 1251.00 2166.79i 0.739304 1.28051i
\(143\) 1330.37 0.777979
\(144\) −5.61429 + 56.3472i −0.00324901 + 0.0326083i
\(145\) −1502.49 −0.860517
\(146\) 608.982 1054.79i 0.345203 0.597910i
\(147\) 188.752 170.880i 0.105905 0.0958769i
\(148\) 1259.34 + 2181.24i 0.699440 + 1.21147i
\(149\) 1316.91 + 2280.95i 0.724063 + 1.25411i 0.959359 + 0.282190i \(0.0910607\pi\)
−0.235296 + 0.971924i \(0.575606\pi\)
\(150\) 5401.49 4890.04i 2.94020 2.66180i
\(151\) 368.737 638.671i 0.198724 0.344200i −0.749391 0.662128i \(-0.769654\pi\)
0.948115 + 0.317927i \(0.102987\pi\)
\(152\) 686.197 0.366170
\(153\) 2412.75 1089.90i 1.27490 0.575905i
\(154\) −1450.26 −0.758865
\(155\) 320.803 555.646i 0.166242 0.287939i
\(156\) −1859.08 598.497i −0.954138 0.307167i
\(157\) −1173.36 2032.32i −0.596462 1.03310i −0.993339 0.115230i \(-0.963239\pi\)
0.396877 0.917872i \(-0.370094\pi\)
\(158\) 615.837 + 1066.66i 0.310084 + 0.537082i
\(159\) 61.1624 + 283.967i 0.0305063 + 0.141636i
\(160\) 1931.18 3344.90i 0.954207 1.65274i
\(161\) −58.7434 −0.0287555
\(162\) 1062.23 + 3152.71i 0.515163 + 1.52902i
\(163\) −572.002 −0.274863 −0.137431 0.990511i \(-0.543885\pi\)
−0.137431 + 0.990511i \(0.543885\pi\)
\(164\) −1363.90 + 2362.34i −0.649406 + 1.12480i
\(165\) 1032.69 + 4794.59i 0.487239 + 2.26217i
\(166\) −1426.73 2471.17i −0.667083 1.15542i
\(167\) −271.886 470.920i −0.125983 0.218209i 0.796134 0.605121i \(-0.206875\pi\)
−0.922117 + 0.386912i \(0.873542\pi\)
\(168\) 762.574 + 245.497i 0.350201 + 0.112741i
\(169\) 669.132 1158.97i 0.304566 0.527524i
\(170\) −9303.63 −4.19739
\(171\) −766.608 + 346.297i −0.342830 + 0.154866i
\(172\) 3038.24 1.34688
\(173\) −1017.23 + 1761.89i −0.447042 + 0.774299i −0.998192 0.0601072i \(-0.980856\pi\)
0.551150 + 0.834406i \(0.314189\pi\)
\(174\) −1270.39 + 1150.10i −0.553494 + 0.501086i
\(175\) 1075.43 + 1862.69i 0.464541 + 0.804608i
\(176\) 47.6064 + 82.4568i 0.0203890 + 0.0353148i
\(177\) −2521.77 + 2282.99i −1.07089 + 0.969493i
\(178\) −3663.72 + 6345.75i −1.54274 + 2.67210i
\(179\) −931.218 −0.388841 −0.194420 0.980918i \(-0.562283\pi\)
−0.194420 + 0.980918i \(0.562283\pi\)
\(180\) 713.865 7164.62i 0.295602 2.96678i
\(181\) 1002.74 0.411785 0.205892 0.978575i \(-0.433990\pi\)
0.205892 + 0.978575i \(0.433990\pi\)
\(182\) 468.062 810.708i 0.190632 0.330185i
\(183\) −1725.13 555.376i −0.696861 0.224342i
\(184\) −92.4159 160.069i −0.0370271 0.0641328i
\(185\) 2041.35 + 3535.73i 0.811261 + 1.40515i
\(186\) −154.081 715.374i −0.0607408 0.282010i
\(187\) 2225.79 3855.18i 0.870405 1.50759i
\(188\) −2822.24 −1.09486
\(189\) −975.828 + 110.577i −0.375561 + 0.0425572i
\(190\) 2956.06 1.12871
\(191\) 1921.54 3328.21i 0.727947 1.26084i −0.229803 0.973237i \(-0.573808\pi\)
0.957750 0.287604i \(-0.0928586\pi\)
\(192\) −909.187 4221.21i −0.341745 1.58666i
\(193\) 1733.05 + 3001.73i 0.646361 + 1.11953i 0.983985 + 0.178250i \(0.0570435\pi\)
−0.337624 + 0.941281i \(0.609623\pi\)
\(194\) 664.227 + 1150.47i 0.245818 + 0.425769i
\(195\) −3013.51 970.146i −1.10668 0.356275i
\(196\) −314.243 + 544.285i −0.114520 + 0.198355i
\(197\) −3691.99 −1.33525 −0.667623 0.744500i \(-0.732688\pi\)
−0.667623 + 0.744500i \(0.732688\pi\)
\(198\) 4543.25 + 3263.45i 1.63068 + 1.17133i
\(199\) −481.783 −0.171622 −0.0858108 0.996311i \(-0.527348\pi\)
−0.0858108 + 0.996311i \(0.527348\pi\)
\(200\) −3383.75 + 5860.83i −1.19634 + 2.07212i
\(201\) 810.839 734.064i 0.284538 0.257596i
\(202\) 3314.56 + 5740.98i 1.15451 + 1.99967i
\(203\) −252.932 438.092i −0.0874501 0.151468i
\(204\) −4844.70 + 4385.97i −1.66273 + 1.50529i
\(205\) −2210.84 + 3829.29i −0.753228 + 1.30463i
\(206\) −256.784 −0.0868494
\(207\) 184.026 + 132.188i 0.0617909 + 0.0443849i
\(208\) −61.4588 −0.0204875
\(209\) −707.204 + 1224.91i −0.234059 + 0.405402i
\(210\) 3285.09 + 1057.57i 1.07949 + 0.347521i
\(211\) −574.892 995.742i −0.187570 0.324880i 0.756870 0.653566i \(-0.226728\pi\)
−0.944439 + 0.328686i \(0.893394\pi\)
\(212\) −358.512 620.960i −0.116145 0.201169i
\(213\) −599.834 2784.93i −0.192958 0.895871i
\(214\) 684.820 1186.14i 0.218754 0.378893i
\(215\) 4924.90 1.56221
\(216\) −1836.49 2485.06i −0.578508 0.782809i
\(217\) 216.018 0.0675774
\(218\) 2137.82 3702.82i 0.664182 1.15040i
\(219\) −291.998 1355.70i −0.0900978 0.418309i
\(220\) −6053.22 10484.5i −1.85504 3.21302i
\(221\) 1436.72 + 2488.47i 0.437304 + 0.757433i
\(222\) 4432.48 + 1426.96i 1.34004 + 0.431401i
\(223\) 1007.98 1745.87i 0.302687 0.524269i −0.674057 0.738680i \(-0.735450\pi\)
0.976744 + 0.214411i \(0.0687830\pi\)
\(224\) 1300.40 0.387886
\(225\) 822.534 8255.28i 0.243714 2.44601i
\(226\) 6364.34 1.87323
\(227\) −1521.10 + 2634.62i −0.444753 + 0.770335i −0.998035 0.0626590i \(-0.980042\pi\)
0.553282 + 0.832994i \(0.313375\pi\)
\(228\) 1539.31 1393.56i 0.447121 0.404785i
\(229\) −2040.67 3534.54i −0.588870 1.01995i −0.994381 0.105863i \(-0.966240\pi\)
0.405511 0.914090i \(-0.367094\pi\)
\(230\) −398.118 689.560i −0.114135 0.197688i
\(231\) −1224.15 + 1108.24i −0.348672 + 0.315657i
\(232\) 795.833 1378.42i 0.225211 0.390077i
\(233\) 2667.57 0.750035 0.375017 0.927018i \(-0.377637\pi\)
0.375017 + 0.927018i \(0.377637\pi\)
\(234\) −3290.61 + 1486.46i −0.919289 + 0.415268i
\(235\) −4574.77 −1.26989
\(236\) 4198.37 7271.79i 1.15801 2.00573i
\(237\) 1334.93 + 429.756i 0.365878 + 0.117788i
\(238\) −1566.19 2712.73i −0.426560 0.738824i
\(239\) 2986.31 + 5172.45i 0.808237 + 1.39991i 0.914084 + 0.405525i \(0.132911\pi\)
−0.105848 + 0.994382i \(0.533756\pi\)
\(240\) −47.7068 221.495i −0.0128311 0.0595726i
\(241\) 1320.63 2287.40i 0.352984 0.611387i −0.633787 0.773508i \(-0.718500\pi\)
0.986771 + 0.162121i \(0.0518336\pi\)
\(242\) 3331.54 0.884956
\(243\) 3305.82 + 1849.46i 0.872709 + 0.488241i
\(244\) 4473.57 1.17373
\(245\) −509.379 + 882.270i −0.132829 + 0.230066i
\(246\) 1061.86 + 4930.07i 0.275211 + 1.27776i
\(247\) −456.492 790.667i −0.117595 0.203680i
\(248\) 339.843 + 588.626i 0.0870164 + 0.150717i
\(249\) −3092.68 995.631i −0.787111 0.253396i
\(250\) −8646.77 + 14976.6i −2.18748 + 3.78882i
\(251\) −7001.16 −1.76060 −0.880298 0.474422i \(-0.842657\pi\)
−0.880298 + 0.474422i \(0.842657\pi\)
\(252\) 2209.22 997.962i 0.552252 0.249467i
\(253\) 380.981 0.0946721
\(254\) 5447.47 9435.29i 1.34569 2.33080i
\(255\) −7853.11 + 7109.53i −1.92855 + 1.74595i
\(256\) 1938.20 + 3357.06i 0.473193 + 0.819595i
\(257\) −2893.85 5012.30i −0.702388 1.21657i −0.967626 0.252388i \(-0.918784\pi\)
0.265239 0.964183i \(-0.414549\pi\)
\(258\) 4164.11 3769.83i 1.00483 0.909687i
\(259\) −687.292 + 1190.43i −0.164889 + 0.285596i
\(260\) 7814.57 1.86400
\(261\) −193.454 + 1941.58i −0.0458793 + 0.460462i
\(262\) 9674.74 2.28133
\(263\) 3743.32 6483.62i 0.877653 1.52014i 0.0237442 0.999718i \(-0.492441\pi\)
0.853909 0.520422i \(-0.174225\pi\)
\(264\) −4945.68 1592.17i −1.15297 0.371179i
\(265\) −581.137 1006.56i −0.134713 0.233330i
\(266\) 497.630 + 861.920i 0.114705 + 0.198676i
\(267\) 1756.70 + 8156.08i 0.402653 + 1.86945i
\(268\) −1349.93 + 2338.14i −0.307686 + 0.532928i
\(269\) −3249.42 −0.736508 −0.368254 0.929725i \(-0.620044\pi\)
−0.368254 + 0.929725i \(0.620044\pi\)
\(270\) −7911.42 10705.4i −1.78324 2.41299i
\(271\) −3946.32 −0.884581 −0.442291 0.896872i \(-0.645834\pi\)
−0.442291 + 0.896872i \(0.645834\pi\)
\(272\) −102.824 + 178.097i −0.0229215 + 0.0397012i
\(273\) −224.429 1041.99i −0.0497548 0.231004i
\(274\) 150.374 + 260.455i 0.0331547 + 0.0574257i
\(275\) −6974.69 12080.5i −1.52942 2.64903i
\(276\) −532.389 171.393i −0.116109 0.0373791i
\(277\) −2327.13 + 4030.71i −0.504779 + 0.874303i 0.495206 + 0.868776i \(0.335093\pi\)
−0.999985 + 0.00552735i \(0.998241\pi\)
\(278\) −8959.60 −1.93295
\(279\) −676.724 486.097i −0.145213 0.104308i
\(280\) −3205.45 −0.684150
\(281\) −3223.44 + 5583.17i −0.684322 + 1.18528i 0.289327 + 0.957230i \(0.406569\pi\)
−0.973649 + 0.228051i \(0.926765\pi\)
\(282\) −3868.07 + 3501.82i −0.816809 + 0.739469i
\(283\) 1819.23 + 3151.00i 0.382127 + 0.661864i 0.991366 0.131123i \(-0.0418583\pi\)
−0.609239 + 0.792987i \(0.708525\pi\)
\(284\) 3516.01 + 6089.91i 0.734636 + 1.27243i
\(285\) 2495.18 2258.93i 0.518603 0.469499i
\(286\) −3035.62 + 5257.85i −0.627622 + 1.08707i
\(287\) −1488.71 −0.306187
\(288\) −4073.77 2926.23i −0.833504 0.598713i
\(289\) 4701.88 0.957029
\(290\) 3428.36 5938.10i 0.694208 1.20240i
\(291\) 1439.82 + 463.524i 0.290048 + 0.0933755i
\(292\) 1711.59 + 2964.55i 0.343024 + 0.594135i
\(293\) −3163.73 5479.74i −0.630809 1.09259i −0.987387 0.158328i \(-0.949390\pi\)
0.356578 0.934266i \(-0.383944\pi\)
\(294\) 244.654 + 1135.89i 0.0485324 + 0.225328i
\(295\) 6805.43 11787.4i 1.34314 2.32639i
\(296\) −4325.03 −0.849281
\(297\) 6328.74 717.148i 1.23647 0.140112i
\(298\) −12019.6 −2.33651
\(299\) −122.959 + 212.972i −0.0237823 + 0.0411922i
\(300\) 4311.85 + 20019.2i 0.829817 + 3.85271i
\(301\) 829.068 + 1435.99i 0.158760 + 0.274980i
\(302\) 1682.76 + 2914.62i 0.320635 + 0.555357i
\(303\) 7184.86 + 2313.03i 1.36224 + 0.438549i
\(304\) 32.6706 56.5871i 0.00616377 0.0106760i
\(305\) 7251.53 1.36138
\(306\) −1197.89 + 12022.5i −0.223788 + 2.24602i
\(307\) 2712.80 0.504324 0.252162 0.967685i \(-0.418858\pi\)
0.252162 + 0.967685i \(0.418858\pi\)
\(308\) 2038.03 3529.96i 0.377037 0.653047i
\(309\) −216.749 + 196.226i −0.0399043 + 0.0361259i
\(310\) 1464.01 + 2535.74i 0.268226 + 0.464581i
\(311\) −1523.04 2637.98i −0.277696 0.480983i 0.693116 0.720826i \(-0.256237\pi\)
−0.970812 + 0.239843i \(0.922904\pi\)
\(312\) 2486.22 2250.81i 0.451137 0.408421i
\(313\) −2190.26 + 3793.65i −0.395531 + 0.685079i −0.993169 0.116687i \(-0.962773\pi\)
0.597638 + 0.801766i \(0.296106\pi\)
\(314\) 10709.5 1.92475
\(315\) 3581.07 1617.67i 0.640542 0.289350i
\(316\) −3461.70 −0.616253
\(317\) −3453.12 + 5980.99i −0.611820 + 1.05970i 0.379114 + 0.925350i \(0.376229\pi\)
−0.990934 + 0.134353i \(0.957105\pi\)
\(318\) −1261.85 406.229i −0.222519 0.0716358i
\(319\) 1640.39 + 2841.25i 0.287914 + 0.498681i
\(320\) 8638.67 + 14962.6i 1.50911 + 2.61386i
\(321\) −328.361 1524.53i −0.0570945 0.265081i
\(322\) 134.040 232.164i 0.0231980 0.0401801i
\(323\) −3054.96 −0.526261
\(324\) −9166.51 1844.97i −1.57176 0.316353i
\(325\) 9004.16 1.53680
\(326\) 1305.19 2260.65i 0.221741 0.384067i
\(327\) −1025.06 4759.17i −0.173351 0.804839i
\(328\) −2342.06 4056.57i −0.394264 0.682885i
\(329\) −770.126 1333.90i −0.129053 0.223526i
\(330\) −21305.4 6858.90i −3.55402 1.14415i
\(331\) −2851.26 + 4938.52i −0.473472 + 0.820078i −0.999539 0.0303654i \(-0.990333\pi\)
0.526067 + 0.850443i \(0.323666\pi\)
\(332\) 8019.85 1.32574
\(333\) 4831.85 2182.68i 0.795147 0.359189i
\(334\) 2481.54 0.406539
\(335\) −2188.19 + 3790.06i −0.356876 + 0.618128i
\(336\) 56.5518 51.1972i 0.00918201 0.00831260i
\(337\) −614.807 1064.88i −0.0993788 0.172129i 0.812049 0.583589i \(-0.198352\pi\)
−0.911428 + 0.411460i \(0.865019\pi\)
\(338\) 3053.63 + 5289.05i 0.491408 + 0.851143i
\(339\) 5372.08 4863.42i 0.860683 0.779188i
\(340\) 13074.3 22645.3i 2.08544 3.61209i
\(341\) −1400.99 −0.222486
\(342\) 380.610 3819.95i 0.0601784 0.603974i
\(343\) −343.000 −0.0539949
\(344\) −2608.60 + 4518.23i −0.408856 + 0.708159i
\(345\) −862.987 277.823i −0.134671 0.0433550i
\(346\) −4642.19 8040.50i −0.721288 1.24931i
\(347\) −2192.74 3797.94i −0.339229 0.587562i 0.645059 0.764133i \(-0.276833\pi\)
−0.984288 + 0.176571i \(0.943500\pi\)
\(348\) −1014.12 4708.37i −0.156213 0.725274i
\(349\) −1460.02 + 2528.82i −0.223934 + 0.387865i −0.955999 0.293370i \(-0.905223\pi\)
0.732065 + 0.681235i \(0.238557\pi\)
\(350\) −9815.59 −1.49904
\(351\) −1641.67 + 3769.28i −0.249646 + 0.573188i
\(352\) −8433.73 −1.27704
\(353\) −5565.95 + 9640.52i −0.839223 + 1.45358i 0.0513214 + 0.998682i \(0.483657\pi\)
−0.890545 + 0.454895i \(0.849677\pi\)
\(354\) −3268.64 15175.8i −0.490753 2.27849i
\(355\) 5699.35 + 9871.56i 0.852084 + 1.47585i
\(356\) −10297.1 17835.2i −1.53300 2.65523i
\(357\) −3394.99 1092.95i −0.503310 0.162032i
\(358\) 2124.84 3680.34i 0.313691 0.543329i
\(359\) 7640.81 1.12330 0.561652 0.827373i \(-0.310166\pi\)
0.561652 + 0.827373i \(0.310166\pi\)
\(360\) 10041.7 + 7213.08i 1.47013 + 1.05601i
\(361\) −5888.34 −0.858484
\(362\) −2288.04 + 3963.00i −0.332201 + 0.575389i
\(363\) 2812.12 2545.85i 0.406606 0.368106i
\(364\) 1315.52 + 2278.55i 0.189429 + 0.328100i
\(365\) 2774.43 + 4805.45i 0.397864 + 0.689121i
\(366\) 6131.34 5550.78i 0.875656 0.792744i
\(367\) −2204.25 + 3817.87i −0.313518 + 0.543028i −0.979121 0.203277i \(-0.934841\pi\)
0.665604 + 0.746305i \(0.268174\pi\)
\(368\) −17.6001 −0.00249312
\(369\) 4663.70 + 3349.98i 0.657948 + 0.472610i
\(370\) −18631.8 −2.61789
\(371\) 195.660 338.893i 0.0273804 0.0474243i
\(372\) 1957.77 + 630.267i 0.272864 + 0.0878436i
\(373\) −2302.17 3987.47i −0.319575 0.553521i 0.660824 0.750541i \(-0.270207\pi\)
−0.980399 + 0.197020i \(0.936874\pi\)
\(374\) 10157.6 + 17593.4i 1.40437 + 2.43244i
\(375\) 4146.00 + 19249.2i 0.570930 + 2.65073i
\(376\) 2423.15 4197.01i 0.332352 0.575650i
\(377\) −2117.71 −0.289304
\(378\) 1789.61 4108.96i 0.243513 0.559106i
\(379\) 14679.5 1.98954 0.994770 0.102143i \(-0.0325700\pi\)
0.994770 + 0.102143i \(0.0325700\pi\)
\(380\) −4154.11 + 7195.13i −0.560793 + 0.971321i
\(381\) −2611.98 12127.0i −0.351223 1.63067i
\(382\) 8769.10 + 15188.5i 1.17452 + 2.03433i
\(383\) −911.873 1579.41i −0.121657 0.210716i 0.798764 0.601644i \(-0.205487\pi\)
−0.920421 + 0.390928i \(0.872154\pi\)
\(384\) 11406.7 + 3672.18i 1.51588 + 0.488009i
\(385\) 3303.58 5721.97i 0.437314 0.757451i
\(386\) −15817.8 −2.08577
\(387\) 634.108 6364.16i 0.0832908 0.835939i
\(388\) −3733.71 −0.488532
\(389\) −4306.80 + 7459.59i −0.561345 + 0.972278i 0.436035 + 0.899930i \(0.356383\pi\)
−0.997379 + 0.0723480i \(0.976951\pi\)
\(390\) 10710.4 9696.27i 1.39062 1.25895i
\(391\) 411.437 + 712.629i 0.0532155 + 0.0921719i
\(392\) −539.612 934.636i −0.0695269 0.120424i
\(393\) 8166.36 7393.12i 1.04819 0.948941i
\(394\) 8424.34 14591.4i 1.07719 1.86575i
\(395\) −5611.32 −0.714775
\(396\) −14327.9 + 6472.29i −1.81819 + 0.821325i
\(397\) −5497.04 −0.694933 −0.347467 0.937692i \(-0.612958\pi\)
−0.347467 + 0.937692i \(0.612958\pi\)
\(398\) 1099.33 1904.09i 0.138453 0.239808i
\(399\) 1078.70 + 347.267i 0.135344 + 0.0435716i
\(400\) 322.208 + 558.081i 0.0402760 + 0.0697602i
\(401\) 4310.52 + 7466.04i 0.536801 + 0.929767i 0.999074 + 0.0430288i \(0.0137007\pi\)
−0.462273 + 0.886738i \(0.652966\pi\)
\(402\) 1050.99 + 4879.56i 0.130394 + 0.605398i
\(403\) 452.161 783.165i 0.0558902 0.0968046i
\(404\) −18631.6 −2.29445
\(405\) −14858.6 2990.64i −1.82304 0.366929i
\(406\) 2308.55 0.282196
\(407\) 4457.44 7720.51i 0.542867 0.940274i
\(408\) −2362.87 10970.4i −0.286714 1.33117i
\(409\) −4699.45 8139.69i −0.568149 0.984063i −0.996749 0.0805684i \(-0.974326\pi\)
0.428600 0.903494i \(-0.359007\pi\)
\(410\) −10089.3 17475.3i −1.21531 2.10498i
\(411\) 325.960 + 104.937i 0.0391202 + 0.0125940i
\(412\) 360.854 625.018i 0.0431505 0.0747389i
\(413\) 4582.57 0.545989
\(414\) −942.338 + 425.680i −0.111868 + 0.0505338i
\(415\) 13000.0 1.53769
\(416\) 2721.94 4714.53i 0.320803 0.555646i
\(417\) −7562.71 + 6846.63i −0.888124 + 0.804031i
\(418\) −3227.38 5589.99i −0.377647 0.654104i
\(419\) 297.363 + 515.048i 0.0346710 + 0.0600519i 0.882840 0.469673i \(-0.155628\pi\)
−0.848169 + 0.529725i \(0.822295\pi\)
\(420\) −7190.64 + 6509.79i −0.835398 + 0.756298i
\(421\) −1558.89 + 2700.07i −0.180464 + 0.312574i −0.942039 0.335504i \(-0.891093\pi\)
0.761574 + 0.648078i \(0.224427\pi\)
\(422\) 5247.13 0.605276
\(423\) −589.027 + 5911.70i −0.0677056 + 0.679520i
\(424\) 1231.26 0.141026
\(425\) 15064.5 26092.5i 1.71938 2.97805i
\(426\) 12375.2 + 3983.98i 1.40747 + 0.453109i
\(427\) 1220.74 + 2114.38i 0.138351 + 0.239630i
\(428\) 1924.73 + 3333.73i 0.217373 + 0.376500i
\(429\) 1455.54 + 6757.82i 0.163809 + 0.760538i
\(430\) −11237.6 + 19464.1i −1.26029 + 2.18288i
\(431\) −8465.93 −0.946148 −0.473074 0.881023i \(-0.656856\pi\)
−0.473074 + 0.881023i \(0.656856\pi\)
\(432\) −292.367 + 33.1300i −0.0325614 + 0.00368974i
\(433\) 5368.98 0.595881 0.297941 0.954584i \(-0.403700\pi\)
0.297941 + 0.954584i \(0.403700\pi\)
\(434\) −492.909 + 853.743i −0.0545170 + 0.0944262i
\(435\) −1643.85 7632.14i −0.181188 0.841225i
\(436\) 6008.50 + 10407.0i 0.659988 + 1.14313i
\(437\) −130.727 226.425i −0.0143101 0.0247858i
\(438\) 6024.24 + 1939.40i 0.657191 + 0.211571i
\(439\) 8896.36 15408.9i 0.967198 1.67524i 0.263609 0.964630i \(-0.415087\pi\)
0.703589 0.710607i \(-0.251580\pi\)
\(440\) 20788.9 2.25244
\(441\) 1074.52 + 771.838i 0.116026 + 0.0833428i
\(442\) −13113.2 −1.41115
\(443\) −4431.80 + 7676.10i −0.475307 + 0.823256i −0.999600 0.0282821i \(-0.990996\pi\)
0.524293 + 0.851538i \(0.324330\pi\)
\(444\) −9702.15 + 8783.49i −1.03703 + 0.938842i
\(445\) −16691.4 28910.3i −1.77808 3.07973i
\(446\) 4599.99 + 7967.41i 0.488376 + 0.845892i
\(447\) −10145.7 + 9185.01i −1.07354 + 0.971893i
\(448\) −2908.51 + 5037.68i −0.306728 + 0.531268i
\(449\) 114.115 0.0119943 0.00599714 0.999982i \(-0.498091\pi\)
0.00599714 + 0.999982i \(0.498091\pi\)
\(450\) 30749.5 + 22087.6i 3.22121 + 2.31382i
\(451\) 9655.04 1.00807
\(452\) −8943.71 + 15491.0i −0.930701 + 1.61202i
\(453\) 3647.66 + 1174.30i 0.378327 + 0.121795i
\(454\) −6941.66 12023.3i −0.717595 1.24291i
\(455\) 2132.42 + 3693.46i 0.219713 + 0.380554i
\(456\) 750.758 + 3485.65i 0.0770997 + 0.357961i
\(457\) −4031.28 + 6982.39i −0.412638 + 0.714710i −0.995177 0.0980929i \(-0.968726\pi\)
0.582540 + 0.812802i \(0.302059\pi\)
\(458\) 18625.5 1.90025
\(459\) 8176.10 + 11063.5i 0.831433 + 1.12505i
\(460\) 2237.87 0.226829
\(461\) −2064.94 + 3576.57i −0.208620 + 0.361340i −0.951280 0.308329i \(-0.900230\pi\)
0.742660 + 0.669668i \(0.233564\pi\)
\(462\) −1586.71 7366.83i −0.159784 0.741852i
\(463\) −5909.24 10235.1i −0.593144 1.02736i −0.993806 0.111130i \(-0.964553\pi\)
0.400662 0.916226i \(-0.368780\pi\)
\(464\) −75.7810 131.256i −0.00758199 0.0131324i
\(465\) 3173.48 + 1021.64i 0.316488 + 0.101887i
\(466\) −6086.83 + 10542.7i −0.605079 + 1.04803i
\(467\) 1590.26 0.157577 0.0787884 0.996891i \(-0.474895\pi\)
0.0787884 + 0.996891i \(0.474895\pi\)
\(468\) 1006.17 10098.3i 0.0993807 0.997424i
\(469\) −1473.46 −0.145070
\(470\) 10438.7 18080.3i 1.02447 1.77443i
\(471\) 9039.76 8183.82i 0.884353 0.800617i
\(472\) 7209.35 + 12487.0i 0.703045 + 1.21771i
\(473\) −5376.93 9313.11i −0.522688 0.905322i
\(474\) −4744.50 + 4295.26i −0.459751 + 0.416219i
\(475\) −4786.48 + 8290.42i −0.462355 + 0.800822i
\(476\) 8803.79 0.847734
\(477\) −1375.54 + 621.369i −0.132037 + 0.0596447i
\(478\) −27256.6 −2.60813
\(479\) −6567.28 + 11374.9i −0.626444 + 1.08503i 0.361816 + 0.932249i \(0.382157\pi\)
−0.988260 + 0.152783i \(0.951177\pi\)
\(480\) 19103.8 + 6150.13i 1.81660 + 0.584821i
\(481\) 2877.22 + 4983.50i 0.272744 + 0.472407i
\(482\) 6026.80 + 10438.7i 0.569529 + 0.986453i
\(483\) −64.2703 298.397i −0.00605466 0.0281108i
\(484\) −4681.76 + 8109.04i −0.439684 + 0.761555i
\(485\) −6052.23 −0.566635
\(486\) −14852.6 + 8845.09i −1.38627 + 0.825559i
\(487\) −18337.9 −1.70631 −0.853153 0.521661i \(-0.825313\pi\)
−0.853153 + 0.521661i \(0.825313\pi\)
\(488\) −3840.97 + 6652.75i −0.356296 + 0.617122i
\(489\) −625.819 2905.58i −0.0578743 0.268701i
\(490\) −2324.59 4026.31i −0.214315 0.371204i
\(491\) 4048.59 + 7012.36i 0.372119 + 0.644528i 0.989891 0.141828i \(-0.0452981\pi\)
−0.617773 + 0.786357i \(0.711965\pi\)
\(492\) −13492.1 4343.54i −1.23632 0.398012i
\(493\) −3543.06 + 6136.76i −0.323674 + 0.560620i
\(494\) 4166.47 0.379471
\(495\) −23225.1 + 10491.4i −2.10887 + 0.952632i
\(496\) 64.7212 0.00585901
\(497\) −1918.88 + 3323.60i −0.173186 + 0.299968i
\(498\) 10991.8 9950.99i 0.989061 0.895411i
\(499\) 301.177 + 521.655i 0.0270191 + 0.0467985i 0.879219 0.476418i \(-0.158065\pi\)
−0.852200 + 0.523217i \(0.824732\pi\)
\(500\) −24302.3 42092.9i −2.17367 3.76490i
\(501\) 2094.65 1896.32i 0.186790 0.169104i
\(502\) 15975.2 27669.8i 1.42033 2.46009i
\(503\) 11416.3 1.01198 0.505992 0.862538i \(-0.331126\pi\)
0.505992 + 0.862538i \(0.331126\pi\)
\(504\) −412.719 + 4142.21i −0.0364761 + 0.366089i
\(505\) −30201.3 −2.66126
\(506\) −869.317 + 1505.70i −0.0763752 + 0.132286i
\(507\) 6619.26 + 2130.95i 0.579826 + 0.186664i
\(508\) 15310.5 + 26518.5i 1.33719 + 2.31608i
\(509\) −6406.07 11095.6i −0.557847 0.966220i −0.997676 0.0681380i \(-0.978294\pi\)
0.439829 0.898082i \(-0.355039\pi\)
\(510\) −10179.0 47259.3i −0.883789 4.10329i
\(511\) −934.108 + 1617.92i −0.0808659 + 0.140064i
\(512\) 759.150 0.0655273
\(513\) −2597.81 3515.23i −0.223579 0.302536i
\(514\) 26412.7 2.26656
\(515\) 584.935 1013.14i 0.0500491 0.0866876i
\(516\) 3324.09 + 15433.2i 0.283595 + 1.31669i
\(517\) 4994.66 + 8651.00i 0.424884 + 0.735920i
\(518\) −3136.51 5432.60i −0.266043 0.460801i
\(519\) −10062.7 3239.51i −0.851068 0.273986i
\(520\) −6709.51 + 11621.2i −0.565830 + 0.980046i
\(521\) 3033.32 0.255071 0.127536 0.991834i \(-0.459293\pi\)
0.127536 + 0.991834i \(0.459293\pi\)
\(522\) −7232.04 5194.84i −0.606394 0.435578i
\(523\) 12789.3 1.06928 0.534642 0.845078i \(-0.320446\pi\)
0.534642 + 0.845078i \(0.320446\pi\)
\(524\) −13595.8 + 23548.6i −1.13346 + 1.96321i
\(525\) −8285.25 + 7500.76i −0.688758 + 0.623543i
\(526\) 17082.9 + 29588.5i 1.41607 + 2.45270i
\(527\) −1512.99 2620.57i −0.125060 0.216611i
\(528\) −366.767 + 332.039i −0.0302301 + 0.0273677i
\(529\) 6048.29 10475.9i 0.497106 0.861013i
\(530\) 5304.13 0.434711
\(531\) −14355.9 10312.0i −1.17324 0.842751i
\(532\) −2797.25 −0.227962
\(533\) −3116.11 + 5397.25i −0.253234 + 0.438614i
\(534\) −36242.7 11667.7i −2.93703 0.945523i
\(535\) 3119.94 + 5403.89i 0.252124 + 0.436692i
\(536\) −2318.06 4015.01i −0.186801 0.323548i
\(537\) −1018.83 4730.28i −0.0818731 0.380124i
\(538\) 7414.49 12842.3i 0.594166 1.02913i
\(539\) 2224.53 0.177768
\(540\) 37174.9 4212.52i 2.96251 0.335700i
\(541\) 3836.05 0.304851 0.152426 0.988315i \(-0.451292\pi\)
0.152426 + 0.988315i \(0.451292\pi\)
\(542\) 9004.66 15596.5i 0.713622 1.23603i
\(543\) 1097.08 + 5093.58i 0.0867041 + 0.402553i
\(544\) −9107.93 15775.4i −0.717830 1.24332i
\(545\) 9739.60 + 16869.5i 0.765502 + 1.32589i
\(546\) 4630.22 + 1490.62i 0.362922 + 0.116836i
\(547\) −2438.27 + 4223.20i −0.190590 + 0.330112i −0.945446 0.325779i \(-0.894373\pi\)
0.754856 + 0.655891i \(0.227707\pi\)
\(548\) −845.271 −0.0658908
\(549\) 933.676 9370.73i 0.0725834 0.728476i
\(550\) 63659.1 4.93533
\(551\) 1125.74 1949.84i 0.0870386 0.150755i
\(552\) 711.986 644.571i 0.0548988 0.0497006i
\(553\) −944.622 1636.13i −0.0726391 0.125815i
\(554\) −10620.1 18394.5i −0.814445 1.41066i
\(555\) −15726.9 + 14237.8i −1.20283 + 1.08894i
\(556\) 12590.8 21807.9i 0.960374 1.66342i
\(557\) 26004.6 1.97819 0.989095 0.147276i \(-0.0470506\pi\)
0.989095 + 0.147276i \(0.0470506\pi\)
\(558\) 3465.28 1565.36i 0.262898 0.118758i
\(559\) 6941.48 0.525212
\(560\) −152.615 + 264.337i −0.0115163 + 0.0199469i
\(561\) 22018.2 + 7088.36i 1.65706 + 0.533460i
\(562\) −14710.4 25479.2i −1.10413 1.91241i
\(563\) −7675.11 13293.7i −0.574542 0.995137i −0.996091 0.0883309i \(-0.971847\pi\)
0.421549 0.906806i \(-0.361487\pi\)
\(564\) −3087.77 14336.0i −0.230529 1.07031i
\(565\) −14497.5 + 25110.4i −1.07949 + 1.86974i
\(566\) −16604.4 −1.23310
\(567\) −1629.33 4835.90i −0.120680 0.358181i
\(568\) −12075.2 −0.892017
\(569\) 10436.7 18077.0i 0.768947 1.33186i −0.169187 0.985584i \(-0.554114\pi\)
0.938134 0.346272i \(-0.112552\pi\)
\(570\) 3234.18 + 15015.8i 0.237658 + 1.10341i
\(571\) 3.53471 + 6.12229i 0.000259059 + 0.000448704i 0.866155 0.499776i \(-0.166584\pi\)
−0.865896 + 0.500224i \(0.833251\pi\)
\(572\) −8531.82 14777.5i −0.623660 1.08021i
\(573\) 19008.5 + 6119.44i 1.38585 + 0.446149i
\(574\) 3396.92 5883.64i 0.247012 0.427837i
\(575\) 2578.54 0.187013
\(576\) 20447.6 9236.73i 1.47914 0.668166i
\(577\) −13121.5 −0.946715 −0.473357 0.880870i \(-0.656958\pi\)
−0.473357 + 0.880870i \(0.656958\pi\)
\(578\) −10728.7 + 18582.7i −0.772068 + 1.33726i
\(579\) −13351.7 + 12087.5i −0.958337 + 0.867596i
\(580\) 9635.65 + 16689.4i 0.689825 + 1.19481i
\(581\) 2188.44 + 3790.49i 0.156268 + 0.270664i
\(582\) −5117.30 + 4632.76i −0.364466 + 0.329956i
\(583\) −1268.95 + 2197.89i −0.0901452 + 0.156136i
\(584\) −5878.20 −0.416510
\(585\) 1630.97 16369.1i 0.115269 1.15688i
\(586\) 28875.9 2.03558
\(587\) 1918.15 3322.34i 0.134873 0.233607i −0.790676 0.612235i \(-0.790271\pi\)
0.925549 + 0.378628i \(0.123604\pi\)
\(588\) −3108.59 1000.75i −0.218021 0.0701878i
\(589\) 480.724 + 832.638i 0.0336297 + 0.0582483i
\(590\) 31057.1 + 53792.5i 2.16712 + 3.75357i
\(591\) −4039.35 18754.1i −0.281145 1.30531i
\(592\) −205.919 + 356.663i −0.0142960 + 0.0247614i
\(593\) 2999.00 0.207680 0.103840 0.994594i \(-0.466887\pi\)
0.103840 + 0.994594i \(0.466887\pi\)
\(594\) −11606.5 + 26648.7i −0.801721 + 1.84075i
\(595\) 14270.7 0.983263
\(596\) 16891.0 29256.1i 1.16088 2.01070i
\(597\) −527.112 2447.30i −0.0361361 0.167774i
\(598\) −561.134 971.913i −0.0383720 0.0664623i
\(599\) −4181.01 7241.73i −0.285195 0.493972i 0.687462 0.726221i \(-0.258725\pi\)
−0.972656 + 0.232249i \(0.925392\pi\)
\(600\) −33473.2 10776.1i −2.27756 0.733219i
\(601\) 7265.07 12583.5i 0.493092 0.854061i −0.506876 0.862019i \(-0.669200\pi\)
0.999968 + 0.00795794i \(0.00253312\pi\)
\(602\) −7567.04 −0.512308
\(603\) 4615.92 + 3315.66i 0.311733 + 0.223921i
\(604\) −9459.02 −0.637222
\(605\) −7588.99 + 13144.5i −0.509977 + 0.883307i
\(606\) −25535.9 + 23118.0i −1.71175 + 1.54968i
\(607\) 6504.64 + 11266.4i 0.434951 + 0.753357i 0.997292 0.0735487i \(-0.0234324\pi\)
−0.562341 + 0.826906i \(0.690099\pi\)
\(608\) 2893.88 + 5012.35i 0.193030 + 0.334338i
\(609\) 1948.63 1764.12i 0.129659 0.117382i
\(610\) −16546.5 + 28659.3i −1.09827 + 1.90227i
\(611\) −6447.98 −0.426935
\(612\) −27579.8 19810.8i −1.82164 1.30850i
\(613\) 3740.67 0.246467 0.123233 0.992378i \(-0.460674\pi\)
0.123233 + 0.992378i \(0.460674\pi\)
\(614\) −6190.03 + 10721.5i −0.406856 + 0.704695i
\(615\) −21870.3 7040.75i −1.43398 0.461643i
\(616\) 3499.66 + 6061.58i 0.228905 + 0.396474i
\(617\) −11342.8 19646.3i −0.740104 1.28190i −0.952448 0.304703i \(-0.901443\pi\)
0.212344 0.977195i \(-0.431890\pi\)
\(618\) −280.944 1304.38i −0.0182867 0.0849024i
\(619\) 594.523 1029.74i 0.0386040 0.0668641i −0.846078 0.533059i \(-0.821042\pi\)
0.884682 + 0.466195i \(0.154376\pi\)
\(620\) −8229.39 −0.533065
\(621\) −470.128 + 1079.42i −0.0303794 + 0.0697512i
\(622\) 13901.0 0.896107
\(623\) 5619.72 9733.64i 0.361395 0.625955i
\(624\) −67.2412 312.190i −0.00431378 0.0200282i
\(625\) −20189.3 34968.9i −1.29212 2.23801i
\(626\) −9995.45 17312.6i −0.638176 1.10535i
\(627\) −6995.89 2252.20i −0.445596 0.143452i
\(628\) −15049.8 + 26067.1i −0.956296 + 1.65635i
\(629\) 19255.1 1.22059
\(630\) −1777.95 + 17844.2i −0.112437 + 1.12846i
\(631\) 23574.4 1.48729 0.743646 0.668574i \(-0.233095\pi\)
0.743646 + 0.668574i \(0.233095\pi\)
\(632\) 2972.18 5147.97i 0.187068 0.324012i
\(633\) 4429.05 4009.69i 0.278103 0.251770i
\(634\) −15758.6 27294.7i −0.987152 1.70980i
\(635\) 24817.8 + 42985.8i 1.55097 + 2.68636i
\(636\) 2762.03 2500.50i 0.172204 0.155898i
\(637\) −717.953 + 1243.53i −0.0446567 + 0.0773477i
\(638\) −14972.1 −0.929079
\(639\) 13490.3 6093.91i 0.835159 0.377264i
\(640\) −47947.7 −2.96140
\(641\) 6996.33 12118.0i 0.431105 0.746696i −0.565863 0.824499i \(-0.691457\pi\)
0.996969 + 0.0778026i \(0.0247904\pi\)
\(642\) 6774.45 + 2180.91i 0.416459 + 0.134071i
\(643\) −5948.33 10302.8i −0.364820 0.631886i 0.623927 0.781482i \(-0.285536\pi\)
−0.988747 + 0.149596i \(0.952203\pi\)
\(644\) 376.729 + 652.513i 0.0230515 + 0.0399264i
\(645\) 5388.26 + 25016.8i 0.328934 + 1.52719i
\(646\) 6970.77 12073.7i 0.424553 0.735347i
\(647\) −5011.63 −0.304525 −0.152262 0.988340i \(-0.548656\pi\)
−0.152262 + 0.988340i \(0.548656\pi\)
\(648\) 10614.0 12047.6i 0.643451 0.730364i
\(649\) −29720.3 −1.79757
\(650\) −20545.6 + 35586.0i −1.23979 + 2.14738i
\(651\) 236.343 + 1097.30i 0.0142289 + 0.0660624i
\(652\) 3668.32 + 6353.72i 0.220341 + 0.381642i
\(653\) 6238.61 + 10805.6i 0.373868 + 0.647558i 0.990157 0.139962i \(-0.0446981\pi\)
−0.616289 + 0.787520i \(0.711365\pi\)
\(654\) 21148.0 + 6808.22i 1.26445 + 0.407068i
\(655\) −22038.3 + 38171.5i −1.31467 + 2.27708i
\(656\) −446.032 −0.0265467
\(657\) 6567.03 2966.50i 0.389961 0.176156i
\(658\) 7029.06 0.416446
\(659\) −14463.6 + 25051.6i −0.854962 + 1.48084i 0.0217183 + 0.999764i \(0.493086\pi\)
−0.876680 + 0.481073i \(0.840247\pi\)
\(660\) 46634.9 42219.3i 2.75040 2.48997i
\(661\) 12339.9 + 21373.3i 0.726121 + 1.25768i 0.958511 + 0.285056i \(0.0920123\pi\)
−0.232389 + 0.972623i \(0.574654\pi\)
\(662\) −13011.9 22537.3i −0.763933 1.32317i
\(663\) −11068.7 + 10020.7i −0.648375 + 0.586983i
\(664\) −6885.77 + 11926.5i −0.402439 + 0.697045i
\(665\) −4534.26 −0.264407
\(666\) −2398.94 + 24076.7i −0.139575 + 1.40083i
\(667\) −606.453 −0.0352053
\(668\) −3487.28 + 6040.14i −0.201986 + 0.349850i
\(669\) 9971.24 + 3210.06i 0.576249 + 0.185513i
\(670\) −9985.98 17296.2i −0.575809 0.997330i
\(671\) −7917.11 13712.8i −0.455494 0.788939i
\(672\) 1422.74 + 6605.58i 0.0816720 + 0.379190i
\(673\) 537.810 931.515i 0.0308040 0.0533540i −0.850212 0.526440i \(-0.823527\pi\)
0.881016 + 0.473086i \(0.156860\pi\)
\(674\) 5611.44 0.320689
\(675\) 42833.9 4853.78i 2.44249 0.276774i
\(676\) −17164.9 −0.976610
\(677\) −11518.6 + 19950.8i −0.653908 + 1.13260i 0.328259 + 0.944588i \(0.393538\pi\)
−0.982166 + 0.188013i \(0.939795\pi\)
\(678\) 6963.14 + 32328.7i 0.394421 + 1.83123i
\(679\) −1018.85 1764.69i −0.0575843 0.0997389i
\(680\) 22450.8 + 38886.0i 1.26610 + 2.19296i
\(681\) −15047.2 4844.17i −0.846711 0.272583i
\(682\) 3196.76 5536.95i 0.179487 0.310881i
\(683\) −1233.44 −0.0691015 −0.0345508 0.999403i \(-0.511000\pi\)
−0.0345508 + 0.999403i \(0.511000\pi\)
\(684\) 8762.97 + 6294.52i 0.489855 + 0.351867i
\(685\) −1370.16 −0.0764249
\(686\) 782.654 1355.60i 0.0435596 0.0754474i
\(687\) 15721.6 14233.0i 0.873097 0.790427i
\(688\) 248.397 + 430.236i 0.0137646 + 0.0238410i
\(689\) −819.093 1418.71i −0.0452902 0.0784450i
\(690\) 3067.16 2776.74i 0.169224 0.153201i
\(691\) 15214.0 26351.4i 0.837578 1.45073i −0.0543356 0.998523i \(-0.517304\pi\)
0.891914 0.452205i \(-0.149363\pi\)
\(692\) 26094.4 1.43347
\(693\) −6968.81 5005.76i −0.381996 0.274391i
\(694\) 20013.5 1.09467
\(695\) 20409.3 35349.9i 1.11391 1.92935i
\(696\) 7872.63 + 2534.45i 0.428752 + 0.138029i
\(697\) 10426.9 + 18059.9i 0.566637 + 0.981444i
\(698\) −6662.90 11540.5i −0.361310 0.625808i
\(699\) 2918.55 + 13550.3i 0.157925 + 0.733220i
\(700\) 13793.7 23891.4i 0.744790 1.29001i
\(701\) 359.627 0.0193765 0.00968825 0.999953i \(-0.496916\pi\)
0.00968825 + 0.999953i \(0.496916\pi\)
\(702\) −11150.9 15088.9i −0.599521 0.811242i
\(703\) −6117.96 −0.328226
\(704\) 18863.1 32671.9i 1.00985 1.74910i
\(705\) −5005.19 23238.3i −0.267385 1.24142i
\(706\) −25400.7 43995.3i −1.35406 2.34530i
\(707\) −5084.15 8806.00i −0.270451 0.468435i
\(708\) 41531.6 + 13370.3i 2.20460 + 0.709729i
\(709\) −16634.0 + 28810.9i −0.881103 + 1.52611i −0.0309861 + 0.999520i \(0.509865\pi\)
−0.850116 + 0.526595i \(0.823469\pi\)
\(710\) −52018.8 −2.74962
\(711\) −722.489 + 7251.18i −0.0381089 + 0.382476i
\(712\) 35364.1 1.86141
\(713\) 129.486 224.277i 0.00680126 0.0117801i
\(714\) 12066.2 10923.7i 0.632445 0.572562i
\(715\) −13829.8 23954.0i −0.723366 1.25291i
\(716\) 5972.02 + 10343.8i 0.311711 + 0.539899i
\(717\) −23007.0 + 20828.6i −1.19834 + 1.08488i
\(718\) −17434.7 + 30197.8i −0.906209 + 1.56960i
\(719\) −8882.66 −0.460733 −0.230367 0.973104i \(-0.573993\pi\)
−0.230367 + 0.973104i \(0.573993\pi\)
\(720\) 1072.92 484.669i 0.0555354 0.0250869i
\(721\) 393.877 0.0203450
\(722\) 13436.0 23271.8i 0.692569 1.19956i
\(723\) 13064.1 + 4205.74i 0.672004 + 0.216339i
\(724\) −6430.69 11138.3i −0.330103 0.571756i
\(725\) 11102.5 + 19230.0i 0.568738 + 0.985083i
\(726\) 3644.99 + 16923.1i 0.186333 + 0.865116i
\(727\) 8494.42 14712.8i 0.433343 0.750573i −0.563815 0.825901i \(-0.690667\pi\)
0.997159 + 0.0753280i \(0.0240004\pi\)
\(728\) −4517.97 −0.230010
\(729\) −5777.77 + 18815.9i −0.293541 + 0.955946i
\(730\) −25322.7 −1.28388
\(731\) 11613.5 20115.2i 0.587609 1.01777i
\(732\) 4894.47 + 22724.2i 0.247138 + 1.14742i
\(733\) 10991.9 + 19038.5i 0.553882 + 0.959351i 0.997990 + 0.0633778i \(0.0201873\pi\)
−0.444108 + 0.895973i \(0.646479\pi\)
\(734\) −10059.3 17423.2i −0.505851 0.876159i
\(735\) −5038.94 1622.19i −0.252876 0.0814089i
\(736\) 779.487 1350.11i 0.0390384 0.0676165i
\(737\) 9556.12 0.477618
\(738\) −23881.3 + 10787.8i −1.19117 + 0.538083i
\(739\) 18909.8 0.941284 0.470642 0.882324i \(-0.344022\pi\)
0.470642 + 0.882324i \(0.344022\pi\)
\(740\) 26182.9 45350.2i 1.30068 2.25284i
\(741\) 3516.88 3183.88i 0.174353 0.157845i
\(742\) 892.909 + 1546.56i 0.0441775 + 0.0765177i
\(743\) 5004.66 + 8668.33i 0.247111 + 0.428008i 0.962723 0.270489i \(-0.0871855\pi\)
−0.715612 + 0.698498i \(0.753852\pi\)
\(744\) −2618.20 + 2370.30i −0.129016 + 0.116800i
\(745\) 27379.8 47423.2i 1.34647 2.33215i
\(746\) 21012.2 1.03125
\(747\) 1673.82 16799.1i 0.0819836 0.822819i
\(748\) −57097.0 −2.79101
\(749\) −1050.43 + 1819.40i −0.0512443 + 0.0887578i
\(750\) −85536.6 27536.9i −4.16447 1.34068i
\(751\) 14626.9 + 25334.5i 0.710708 + 1.23098i 0.964592 + 0.263747i \(0.0849585\pi\)
−0.253884 + 0.967235i \(0.581708\pi\)
\(752\) −230.737 399.649i −0.0111890 0.0193799i
\(753\) −7659.87 35563.5i −0.370705 1.72113i
\(754\) 4832.17 8369.56i 0.233391 0.404246i
\(755\) −15332.8 −0.739096
\(756\) 7486.38 + 10130.2i 0.360155 + 0.487344i
\(757\) −20805.2 −0.998912 −0.499456 0.866339i \(-0.666467\pi\)
−0.499456 + 0.866339i \(0.666467\pi\)
\(758\) −33495.5 + 58016.0i −1.60503 + 2.77999i
\(759\) 416.825 + 1935.25i 0.0199339 + 0.0925497i
\(760\) −7133.35 12355.3i −0.340466 0.589704i
\(761\) −5062.52 8768.54i −0.241151 0.417687i 0.719891 0.694087i \(-0.244192\pi\)
−0.961043 + 0.276400i \(0.910858\pi\)
\(762\) 53888.1 + 17348.3i 2.56189 + 0.824753i
\(763\) −3279.17 + 5679.69i −0.155588 + 0.269487i
\(764\) −49292.3 −2.33421
\(765\) −44706.0 32112.7i −2.11287 1.51770i
\(766\) 8322.81 0.392579
\(767\) 9592.04 16613.9i 0.451562 0.782129i
\(768\) −14932.2 + 13518.3i −0.701587 + 0.635157i
\(769\) 18632.4 + 32272.3i 0.873735 + 1.51335i 0.858104 + 0.513475i \(0.171642\pi\)
0.0156305 + 0.999878i \(0.495024\pi\)
\(770\) 15076.2 + 26112.7i 0.705593 + 1.22212i
\(771\) 22294.7 20183.7i 1.04140 0.942798i
\(772\) 22228.6 38501.0i 1.03630 1.79492i