Properties

Label 63.4.f.b.22.6
Level $63$
Weight $4$
Character 63.22
Analytic conductor $3.717$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 3 x^{15} + 58 x^{14} - 129 x^{13} + 2107 x^{12} - 4455 x^{11} + 42901 x^{10} - 76404 x^{9} + 599392 x^{8} - 1089732 x^{7} + 4808401 x^{6} - 7939134 x^{5} + 26225236 x^{4} - 39450864 x^{3} + 62254768 x^{2} - 39660672 x + 21307456\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 22.6
Root \(-1.46974 - 2.54566i\) of defining polynomial
Character \(\chi\) \(=\) 63.22
Dual form 63.4.f.b.43.6

$q$-expansion

\(f(q)\) \(=\) \(q+(1.46974 + 2.54566i) q^{2} +(3.48146 - 3.85739i) q^{3} +(-0.320267 + 0.554718i) q^{4} +(1.28443 - 2.22469i) q^{5} +(14.9364 + 3.19326i) q^{6} +(3.50000 + 6.06218i) q^{7} +21.6330 q^{8} +(-2.75892 - 26.8587i) q^{9} +O(q^{10})\) \(q+(1.46974 + 2.54566i) q^{2} +(3.48146 - 3.85739i) q^{3} +(-0.320267 + 0.554718i) q^{4} +(1.28443 - 2.22469i) q^{5} +(14.9364 + 3.19326i) q^{6} +(3.50000 + 6.06218i) q^{7} +21.6330 q^{8} +(-2.75892 - 26.8587i) q^{9} +7.55109 q^{10} +(0.257136 + 0.445373i) q^{11} +(1.02477 + 3.16662i) q^{12} +(-32.7217 + 56.6756i) q^{13} +(-10.2882 + 17.8196i) q^{14} +(-4.10983 - 12.6997i) q^{15} +(34.3570 + 59.5081i) q^{16} -3.37738 q^{17} +(64.3182 - 46.4985i) q^{18} -123.871 q^{19} +(0.822718 + 1.42499i) q^{20} +(35.5693 + 7.60435i) q^{21} +(-0.755846 + 1.30916i) q^{22} +(12.5592 - 21.7531i) q^{23} +(75.3143 - 83.4469i) q^{24} +(59.2005 + 102.538i) q^{25} -192.369 q^{26} +(-113.209 - 82.8651i) q^{27} -4.48373 q^{28} +(-118.731 - 205.649i) q^{29} +(26.2888 - 29.1275i) q^{30} +(44.9570 - 77.8677i) q^{31} +(-14.4597 + 25.0449i) q^{32} +(2.61319 + 0.558672i) q^{33} +(-4.96386 - 8.59766i) q^{34} +17.9820 q^{35} +(15.7826 + 7.07151i) q^{36} -67.4721 q^{37} +(-182.057 - 315.333i) q^{38} +(104.701 + 323.534i) q^{39} +(27.7860 - 48.1267i) q^{40} +(-143.658 + 248.823i) q^{41} +(32.9195 + 101.724i) q^{42} +(217.750 + 377.154i) q^{43} -0.329409 q^{44} +(-63.2959 - 28.3602i) q^{45} +73.8349 q^{46} +(-27.0274 - 46.8128i) q^{47} +(349.158 + 74.6464i) q^{48} +(-24.5000 + 42.4352i) q^{49} +(-174.019 + 301.409i) q^{50} +(-11.7582 + 13.0279i) q^{51} +(-20.9593 - 36.3026i) q^{52} +272.147 q^{53} +(44.5583 - 409.983i) q^{54} +1.32109 q^{55} +(75.7155 + 131.143i) q^{56} +(-431.250 + 477.817i) q^{57} +(349.008 - 604.500i) q^{58} +(258.248 - 447.299i) q^{59} +(8.36099 + 1.78749i) q^{60} +(-125.855 - 217.988i) q^{61} +264.300 q^{62} +(153.166 - 110.730i) q^{63} +464.704 q^{64} +(84.0572 + 145.591i) q^{65} +(2.41851 + 7.47339i) q^{66} +(-230.875 + 399.888i) q^{67} +(1.08166 - 1.87349i) q^{68} +(-40.1861 - 124.178i) q^{69} +(26.4288 + 45.7760i) q^{70} +532.933 q^{71} +(-59.6836 - 581.034i) q^{72} -360.888 q^{73} +(-99.1664 - 171.761i) q^{74} +(601.634 + 128.623i) q^{75} +(39.6716 - 68.7132i) q^{76} +(-1.79995 + 3.11761i) q^{77} +(-669.726 + 742.044i) q^{78} +(-381.337 - 660.495i) q^{79} +176.516 q^{80} +(-713.777 + 148.202i) q^{81} -844.559 q^{82} +(472.421 + 818.258i) q^{83} +(-15.6099 + 17.2955i) q^{84} +(-4.33799 + 7.51362i) q^{85} +(-640.071 + 1108.64i) q^{86} +(-1206.63 - 257.964i) q^{87} +(5.56263 + 9.63475i) q^{88} +1494.37 q^{89} +(-20.8328 - 202.812i) q^{90} -458.104 q^{91} +(8.04457 + 13.9336i) q^{92} +(-143.851 - 444.510i) q^{93} +(79.4464 - 137.605i) q^{94} +(-159.103 + 275.574i) q^{95} +(46.2671 + 142.969i) q^{96} +(-672.791 - 1165.31i) q^{97} -144.034 q^{98} +(11.2527 - 8.13509i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} + O(q^{10}) \) \( 16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} - 28q^{10} - 24q^{11} + 268q^{12} - 68q^{13} + 21q^{14} + 56q^{15} - 103q^{16} + 336q^{17} - 479q^{18} + 352q^{19} - 330q^{20} + 70q^{21} - 151q^{22} - 228q^{23} - 195q^{24} - 244q^{25} + 1590q^{26} + 272q^{27} - 602q^{28} - 618q^{29} + 1030q^{30} - 72q^{31} - 786q^{32} - 700q^{33} + 261q^{34} - 420q^{35} + 727q^{36} + 420q^{37} - 1032q^{38} - 22q^{39} + 375q^{40} - 420q^{41} - 175q^{42} + 2q^{43} + 774q^{44} + 1406q^{45} + 804q^{46} - 570q^{47} + 1864q^{48} - 392q^{49} - 1110q^{50} - 2940q^{51} + 431q^{52} + 1056q^{53} + 2269q^{54} - 1676q^{55} + 42q^{56} + 122q^{57} - 37q^{58} + 150q^{59} - 6350q^{60} - 578q^{61} + 2340q^{62} - 350q^{63} - 224q^{64} + 366q^{65} + 5812q^{66} + 898q^{67} - 2526q^{68} - 2166q^{69} - 98q^{70} + 1764q^{71} + 1350q^{72} + 1944q^{73} + 222q^{74} - 2096q^{75} - 1423q^{76} + 168q^{77} - 5558q^{78} + 158q^{79} + 4950q^{80} + 476q^{81} - 422q^{82} - 2958q^{83} + 1715q^{84} + 774q^{85} + 114q^{86} + 44q^{87} - 1317q^{88} + 8760q^{89} - 3659q^{90} - 952q^{91} - 4629q^{92} + 3954q^{93} + 3234q^{94} - 930q^{95} - 5923q^{96} + 60q^{97} + 294q^{98} + 1214q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.46974 + 2.54566i 0.519631 + 0.900028i 0.999740 + 0.0228186i \(0.00726401\pi\)
−0.480108 + 0.877209i \(0.659403\pi\)
\(3\) 3.48146 3.85739i 0.670007 0.742355i
\(4\) −0.320267 + 0.554718i −0.0400333 + 0.0693397i
\(5\) 1.28443 2.22469i 0.114883 0.198982i −0.802850 0.596181i \(-0.796684\pi\)
0.917733 + 0.397198i \(0.130017\pi\)
\(6\) 14.9364 + 3.19326i 1.01630 + 0.217274i
\(7\) 3.50000 + 6.06218i 0.188982 + 0.327327i
\(8\) 21.6330 0.956052
\(9\) −2.75892 26.8587i −0.102182 0.994766i
\(10\) 7.55109 0.238786
\(11\) 0.257136 + 0.445373i 0.00704814 + 0.0122077i 0.869528 0.493884i \(-0.164423\pi\)
−0.862480 + 0.506091i \(0.831090\pi\)
\(12\) 1.02477 + 3.16662i 0.0246521 + 0.0761770i
\(13\) −32.7217 + 56.6756i −0.698105 + 1.20915i 0.271018 + 0.962574i \(0.412640\pi\)
−0.969123 + 0.246579i \(0.920694\pi\)
\(14\) −10.2882 + 17.8196i −0.196402 + 0.340179i
\(15\) −4.10983 12.6997i −0.0707435 0.218603i
\(16\) 34.3570 + 59.5081i 0.536828 + 0.929813i
\(17\) −3.37738 −0.0481843 −0.0240922 0.999710i \(-0.507670\pi\)
−0.0240922 + 0.999710i \(0.507670\pi\)
\(18\) 64.3182 46.4985i 0.842220 0.608878i
\(19\) −123.871 −1.49568 −0.747838 0.663881i \(-0.768908\pi\)
−0.747838 + 0.663881i \(0.768908\pi\)
\(20\) 0.822718 + 1.42499i 0.00919826 + 0.0159319i
\(21\) 35.5693 + 7.60435i 0.369612 + 0.0790192i
\(22\) −0.755846 + 1.30916i −0.00732486 + 0.0126870i
\(23\) 12.5592 21.7531i 0.113860 0.197211i −0.803464 0.595354i \(-0.797012\pi\)
0.917323 + 0.398143i \(0.130345\pi\)
\(24\) 75.3143 83.4469i 0.640561 0.709730i
\(25\) 59.2005 + 102.538i 0.473604 + 0.820306i
\(26\) −192.369 −1.45103
\(27\) −113.209 82.8651i −0.806932 0.590644i
\(28\) −4.48373 −0.0302623
\(29\) −118.731 205.649i −0.760272 1.31683i −0.942711 0.333612i \(-0.891733\pi\)
0.182439 0.983217i \(-0.441601\pi\)
\(30\) 26.2888 29.1275i 0.159988 0.177264i
\(31\) 44.9570 77.8677i 0.260468 0.451144i −0.705898 0.708313i \(-0.749456\pi\)
0.966366 + 0.257169i \(0.0827898\pi\)
\(32\) −14.4597 + 25.0449i −0.0798791 + 0.138355i
\(33\) 2.61319 + 0.558672i 0.0137848 + 0.00294704i
\(34\) −4.96386 8.59766i −0.0250381 0.0433673i
\(35\) 17.9820 0.0868431
\(36\) 15.7826 + 7.07151i 0.0730675 + 0.0327385i
\(37\) −67.4721 −0.299793 −0.149897 0.988702i \(-0.547894\pi\)
−0.149897 + 0.988702i \(0.547894\pi\)
\(38\) −182.057 315.333i −0.777200 1.34615i
\(39\) 104.701 + 323.534i 0.429886 + 1.32838i
\(40\) 27.7860 48.1267i 0.109834 0.190238i
\(41\) −143.658 + 248.823i −0.547210 + 0.947796i 0.451254 + 0.892396i \(0.350977\pi\)
−0.998464 + 0.0554003i \(0.982357\pi\)
\(42\) 32.9195 + 101.724i 0.120942 + 0.373722i
\(43\) 217.750 + 377.154i 0.772245 + 1.33757i 0.936330 + 0.351122i \(0.114200\pi\)
−0.164085 + 0.986446i \(0.552467\pi\)
\(44\) −0.329409 −0.00112864
\(45\) −63.2959 28.3602i −0.209680 0.0939488i
\(46\) 73.8349 0.236660
\(47\) −27.0274 46.8128i −0.0838797 0.145284i 0.821034 0.570880i \(-0.193398\pi\)
−0.904913 + 0.425596i \(0.860064\pi\)
\(48\) 349.158 + 74.6464i 1.04993 + 0.224464i
\(49\) −24.5000 + 42.4352i −0.0714286 + 0.123718i
\(50\) −174.019 + 301.409i −0.492199 + 0.852513i
\(51\) −11.7582 + 13.0279i −0.0322838 + 0.0357699i
\(52\) −20.9593 36.3026i −0.0558949 0.0968128i
\(53\) 272.147 0.705325 0.352662 0.935751i \(-0.385276\pi\)
0.352662 + 0.935751i \(0.385276\pi\)
\(54\) 44.5583 409.983i 0.112289 1.03318i
\(55\) 1.32109 0.00323883
\(56\) 75.7155 + 131.143i 0.180677 + 0.312942i
\(57\) −431.250 + 477.817i −1.00211 + 1.11032i
\(58\) 349.008 604.500i 0.790122 1.36853i
\(59\) 258.248 447.299i 0.569848 0.987005i −0.426733 0.904378i \(-0.640335\pi\)
0.996580 0.0826276i \(-0.0263312\pi\)
\(60\) 8.36099 + 1.78749i 0.0179900 + 0.00384607i
\(61\) −125.855 217.988i −0.264166 0.457549i 0.703179 0.711013i \(-0.251763\pi\)
−0.967345 + 0.253464i \(0.918430\pi\)
\(62\) 264.300 0.541389
\(63\) 153.166 110.730i 0.306303 0.221440i
\(64\) 464.704 0.907625
\(65\) 84.0572 + 145.591i 0.160400 + 0.277821i
\(66\) 2.41851 + 7.47339i 0.00451058 + 0.0139380i
\(67\) −230.875 + 399.888i −0.420984 + 0.729165i −0.996036 0.0889517i \(-0.971648\pi\)
0.575052 + 0.818117i \(0.304982\pi\)
\(68\) 1.08166 1.87349i 0.00192898 0.00334109i
\(69\) −40.1861 124.178i −0.0701136 0.216657i
\(70\) 26.4288 + 45.7760i 0.0451264 + 0.0781612i
\(71\) 532.933 0.890809 0.445405 0.895329i \(-0.353060\pi\)
0.445405 + 0.895329i \(0.353060\pi\)
\(72\) −59.6836 581.034i −0.0976914 0.951048i
\(73\) −360.888 −0.578613 −0.289306 0.957237i \(-0.593425\pi\)
−0.289306 + 0.957237i \(0.593425\pi\)
\(74\) −99.1664 171.761i −0.155782 0.269822i
\(75\) 601.634 + 128.623i 0.926276 + 0.198028i
\(76\) 39.6716 68.7132i 0.0598769 0.103710i
\(77\) −1.79995 + 3.11761i −0.00266395 + 0.00461409i
\(78\) −669.726 + 742.044i −0.972199 + 1.07718i
\(79\) −381.337 660.495i −0.543086 0.940652i −0.998725 0.0504873i \(-0.983923\pi\)
0.455639 0.890165i \(-0.349411\pi\)
\(80\) 176.516 0.246689
\(81\) −713.777 + 148.202i −0.979118 + 0.203294i
\(82\) −844.559 −1.13739
\(83\) 472.421 + 818.258i 0.624759 + 1.08211i 0.988587 + 0.150648i \(0.0481361\pi\)
−0.363829 + 0.931466i \(0.618531\pi\)
\(84\) −15.6099 + 17.2955i −0.0202760 + 0.0224654i
\(85\) −4.33799 + 7.51362i −0.00553554 + 0.00958784i
\(86\) −640.071 + 1108.64i −0.802566 + 1.39008i
\(87\) −1206.63 257.964i −1.48694 0.317893i
\(88\) 5.56263 + 9.63475i 0.00673839 + 0.0116712i
\(89\) 1494.37 1.77981 0.889906 0.456145i \(-0.150770\pi\)
0.889906 + 0.456145i \(0.150770\pi\)
\(90\) −20.8328 202.812i −0.0243997 0.237536i
\(91\) −458.104 −0.527718
\(92\) 8.04457 + 13.9336i 0.00911635 + 0.0157900i
\(93\) −143.851 444.510i −0.160394 0.495629i
\(94\) 79.4464 137.605i 0.0871731 0.150988i
\(95\) −159.103 + 275.574i −0.171827 + 0.297613i
\(96\) 46.2671 + 142.969i 0.0491887 + 0.151997i
\(97\) −672.791 1165.31i −0.704243 1.21978i −0.966964 0.254912i \(-0.917953\pi\)
0.262722 0.964872i \(-0.415380\pi\)
\(98\) −144.034 −0.148466
\(99\) 11.2527 8.13509i 0.0114236 0.00825866i
\(100\) −75.8398 −0.0758398
\(101\) −889.853 1541.27i −0.876670 1.51844i −0.854973 0.518672i \(-0.826427\pi\)
−0.0216967 0.999765i \(-0.506907\pi\)
\(102\) −50.4460 10.7848i −0.0489696 0.0104692i
\(103\) 18.6509 32.3042i 0.0178420 0.0309032i −0.856967 0.515372i \(-0.827654\pi\)
0.874809 + 0.484469i \(0.160987\pi\)
\(104\) −707.868 + 1226.06i −0.667425 + 1.15601i
\(105\) 62.6034 69.3635i 0.0581854 0.0644684i
\(106\) 399.985 + 692.794i 0.366509 + 0.634812i
\(107\) 389.494 0.351905 0.175953 0.984399i \(-0.443699\pi\)
0.175953 + 0.984399i \(0.443699\pi\)
\(108\) 82.2240 36.2604i 0.0732593 0.0323070i
\(109\) 115.830 0.101784 0.0508922 0.998704i \(-0.483794\pi\)
0.0508922 + 0.998704i \(0.483794\pi\)
\(110\) 1.94166 + 3.36305i 0.00168300 + 0.00291504i
\(111\) −234.901 + 260.266i −0.200863 + 0.222553i
\(112\) −240.499 + 416.556i −0.202902 + 0.351436i
\(113\) 960.089 1662.92i 0.799270 1.38438i −0.120821 0.992674i \(-0.538553\pi\)
0.920092 0.391703i \(-0.128114\pi\)
\(114\) −1850.19 395.551i −1.52005 0.324971i
\(115\) −32.2627 55.8806i −0.0261610 0.0453121i
\(116\) 152.103 0.121745
\(117\) 1612.51 + 722.498i 1.27416 + 0.570897i
\(118\) 1518.23 1.18444
\(119\) −11.8208 20.4743i −0.00910599 0.0157720i
\(120\) −88.9079 274.733i −0.0676345 0.208996i
\(121\) 665.368 1152.45i 0.499901 0.865853i
\(122\) 369.949 640.771i 0.274538 0.475513i
\(123\) 459.668 + 1420.41i 0.336967 + 1.04125i
\(124\) 28.7964 + 49.8769i 0.0208548 + 0.0361216i
\(125\) 625.261 0.447401
\(126\) 506.996 + 227.164i 0.358467 + 0.160614i
\(127\) 2674.36 1.86859 0.934295 0.356502i \(-0.116031\pi\)
0.934295 + 0.356502i \(0.116031\pi\)
\(128\) 798.671 + 1383.34i 0.551510 + 0.955243i
\(129\) 2212.92 + 473.099i 1.51036 + 0.322899i
\(130\) −247.084 + 427.962i −0.166698 + 0.288729i
\(131\) −618.749 + 1071.70i −0.412674 + 0.714773i −0.995181 0.0980531i \(-0.968738\pi\)
0.582507 + 0.812826i \(0.302072\pi\)
\(132\) −1.14682 + 1.27066i −0.000756197 + 0.000837852i
\(133\) −433.547 750.925i −0.282656 0.489575i
\(134\) −1357.31 −0.875025
\(135\) −329.758 + 145.422i −0.210230 + 0.0927106i
\(136\) −73.0627 −0.0460668
\(137\) −1189.17 2059.69i −0.741586 1.28446i −0.951773 0.306803i \(-0.900741\pi\)
0.210187 0.977661i \(-0.432593\pi\)
\(138\) 257.053 284.810i 0.158564 0.175686i
\(139\) −582.235 + 1008.46i −0.355284 + 0.615371i −0.987167 0.159694i \(-0.948949\pi\)
0.631882 + 0.775064i \(0.282283\pi\)
\(140\) −5.75902 + 9.97492i −0.00347662 + 0.00602168i
\(141\) −274.670 58.7216i −0.164052 0.0350727i
\(142\) 783.272 + 1356.67i 0.462892 + 0.801753i
\(143\) −33.6557 −0.0196814
\(144\) 1503.52 1086.96i 0.870092 0.629028i
\(145\) −610.007 −0.349368
\(146\) −530.411 918.699i −0.300665 0.520768i
\(147\) 78.3936 + 242.243i 0.0439850 + 0.135917i
\(148\) 21.6091 37.4280i 0.0120017 0.0207876i
\(149\) −839.695 + 1454.39i −0.461681 + 0.799655i −0.999045 0.0436954i \(-0.986087\pi\)
0.537364 + 0.843351i \(0.319420\pi\)
\(150\) 556.814 + 1720.60i 0.303091 + 0.936576i
\(151\) −432.249 748.678i −0.232953 0.403487i 0.725723 0.687988i \(-0.241506\pi\)
−0.958676 + 0.284500i \(0.908172\pi\)
\(152\) −2679.69 −1.42995
\(153\) 9.31790 + 90.7118i 0.00492358 + 0.0479321i
\(154\) −10.5819 −0.00553708
\(155\) −115.488 200.031i −0.0598465 0.103657i
\(156\) −213.002 45.5377i −0.109319 0.0233714i
\(157\) −861.709 + 1492.52i −0.438037 + 0.758703i −0.997538 0.0701271i \(-0.977659\pi\)
0.559501 + 0.828830i \(0.310993\pi\)
\(158\) 1120.93 1941.51i 0.564409 0.977584i
\(159\) 947.467 1049.78i 0.472572 0.523602i
\(160\) 37.1447 + 64.3366i 0.0183534 + 0.0317891i
\(161\) 175.828 0.0860697
\(162\) −1426.34 1599.22i −0.691751 0.775595i
\(163\) 2035.48 0.978105 0.489052 0.872254i \(-0.337343\pi\)
0.489052 + 0.872254i \(0.337343\pi\)
\(164\) −92.0177 159.379i −0.0438133 0.0758868i
\(165\) 4.59932 5.09596i 0.00217004 0.00240436i
\(166\) −1388.67 + 2405.25i −0.649288 + 1.12460i
\(167\) −805.356 + 1394.92i −0.373175 + 0.646359i −0.990052 0.140701i \(-0.955064\pi\)
0.616877 + 0.787060i \(0.288398\pi\)
\(168\) 769.470 + 164.505i 0.353368 + 0.0755465i
\(169\) −1042.92 1806.39i −0.474701 0.822206i
\(170\) −25.5029 −0.0115058
\(171\) 341.749 + 3327.00i 0.152831 + 1.48785i
\(172\) −278.952 −0.123662
\(173\) −1005.85 1742.19i −0.442045 0.765644i 0.555797 0.831318i \(-0.312413\pi\)
−0.997841 + 0.0656748i \(0.979080\pi\)
\(174\) −1116.74 3450.80i −0.486549 1.50348i
\(175\) −414.403 + 717.768i −0.179005 + 0.310047i
\(176\) −17.6689 + 30.6034i −0.00756727 + 0.0131069i
\(177\) −826.326 2553.41i −0.350907 1.08433i
\(178\) 2196.34 + 3804.17i 0.924846 + 1.60188i
\(179\) −1778.67 −0.742704 −0.371352 0.928492i \(-0.621106\pi\)
−0.371352 + 0.928492i \(0.621106\pi\)
\(180\) 36.0035 26.0285i 0.0149086 0.0107781i
\(181\) −608.294 −0.249802 −0.124901 0.992169i \(-0.539861\pi\)
−0.124901 + 0.992169i \(0.539861\pi\)
\(182\) −673.293 1166.18i −0.274219 0.474961i
\(183\) −1279.02 273.442i −0.516657 0.110456i
\(184\) 271.693 470.585i 0.108856 0.188544i
\(185\) −86.6630 + 150.105i −0.0344410 + 0.0596536i
\(186\) 920.149 1019.51i 0.362734 0.401903i
\(187\) −0.868446 1.50419i −0.000339610 0.000588222i
\(188\) 34.6239 0.0134319
\(189\) 106.110 976.324i 0.0408379 0.375752i
\(190\) −935.357 −0.357147
\(191\) 2197.42 + 3806.04i 0.832459 + 1.44186i 0.896082 + 0.443888i \(0.146401\pi\)
−0.0636229 + 0.997974i \(0.520265\pi\)
\(192\) 1617.85 1792.55i 0.608115 0.673780i
\(193\) −593.459 + 1027.90i −0.221337 + 0.383367i −0.955214 0.295915i \(-0.904376\pi\)
0.733877 + 0.679282i \(0.237709\pi\)
\(194\) 1977.65 3425.40i 0.731893 1.26768i
\(195\) 854.244 + 182.629i 0.313711 + 0.0670682i
\(196\) −15.6931 27.1812i −0.00571905 0.00990568i
\(197\) −816.364 −0.295246 −0.147623 0.989044i \(-0.547162\pi\)
−0.147623 + 0.989044i \(0.547162\pi\)
\(198\) 37.2477 + 16.6892i 0.0133691 + 0.00599014i
\(199\) −5392.46 −1.92091 −0.960455 0.278434i \(-0.910185\pi\)
−0.960455 + 0.278434i \(0.910185\pi\)
\(200\) 1280.68 + 2218.21i 0.452790 + 0.784256i
\(201\) 738.740 + 2282.77i 0.259237 + 0.801065i
\(202\) 2615.70 4530.53i 0.911090 1.57805i
\(203\) 831.120 1439.54i 0.287356 0.497715i
\(204\) −3.46103 10.6949i −0.00118785 0.00367054i
\(205\) 369.036 + 639.190i 0.125730 + 0.217770i
\(206\) 109.648 0.0370850
\(207\) −618.910 277.308i −0.207813 0.0931122i
\(208\) −4496.87 −1.49905
\(209\) −31.8516 55.1686i −0.0105417 0.0182588i
\(210\) 268.587 + 57.4211i 0.0882583 + 0.0188687i
\(211\) −1308.19 + 2265.85i −0.426822 + 0.739277i −0.996589 0.0825297i \(-0.973700\pi\)
0.569767 + 0.821806i \(0.307033\pi\)
\(212\) −87.1595 + 150.965i −0.0282365 + 0.0489070i
\(213\) 1855.38 2055.73i 0.596848 0.661297i
\(214\) 572.455 + 991.522i 0.182861 + 0.316724i
\(215\) 1118.73 0.354870
\(216\) −2449.06 1792.62i −0.771469 0.564687i
\(217\) 629.397 0.196895
\(218\) 170.240 + 294.864i 0.0528903 + 0.0916087i
\(219\) −1256.42 + 1392.09i −0.387674 + 0.429536i
\(220\) −0.423101 + 0.732832i −0.000129661 + 0.000224580i
\(221\) 110.513 191.415i 0.0336377 0.0582622i
\(222\) −1007.79 215.456i −0.304679 0.0651372i
\(223\) 421.949 + 730.837i 0.126708 + 0.219464i 0.922399 0.386238i \(-0.126226\pi\)
−0.795692 + 0.605702i \(0.792892\pi\)
\(224\) −202.435 −0.0603829
\(225\) 2590.71 1872.94i 0.767619 0.554946i
\(226\) 5644.32 1.66130
\(227\) 1674.64 + 2900.56i 0.489646 + 0.848092i 0.999929 0.0119145i \(-0.00379261\pi\)
−0.510283 + 0.860007i \(0.670459\pi\)
\(228\) −126.939 392.251i −0.0368716 0.113936i
\(229\) 345.311 598.097i 0.0996455 0.172591i −0.811892 0.583807i \(-0.801562\pi\)
0.911538 + 0.411216i \(0.134896\pi\)
\(230\) 94.8354 164.260i 0.0271881 0.0470912i
\(231\) 5.75938 + 17.7970i 0.00164043 + 0.00506906i
\(232\) −2568.52 4448.80i −0.726859 1.25896i
\(233\) −4203.93 −1.18201 −0.591005 0.806668i \(-0.701269\pi\)
−0.591005 + 0.806668i \(0.701269\pi\)
\(234\) 530.731 + 5166.79i 0.148269 + 1.44343i
\(235\) −138.859 −0.0385453
\(236\) 165.416 + 286.510i 0.0456258 + 0.0790262i
\(237\) −3875.40 828.519i −1.06217 0.227081i
\(238\) 34.7470 60.1836i 0.00946351 0.0163913i
\(239\) −2153.66 + 3730.24i −0.582881 + 1.00958i 0.412255 + 0.911068i \(0.364741\pi\)
−0.995136 + 0.0985105i \(0.968592\pi\)
\(240\) 614.533 680.891i 0.165283 0.183131i
\(241\) 2669.25 + 4623.27i 0.713450 + 1.23573i 0.963554 + 0.267512i \(0.0862016\pi\)
−0.250105 + 0.968219i \(0.580465\pi\)
\(242\) 3911.67 1.03906
\(243\) −1913.31 + 3269.27i −0.505099 + 0.863062i
\(244\) 161.229 0.0423018
\(245\) 62.9369 + 109.010i 0.0164118 + 0.0284261i
\(246\) −2940.30 + 3257.80i −0.762059 + 0.844347i
\(247\) 4053.25 7020.44i 1.04414 1.80850i
\(248\) 972.554 1684.51i 0.249021 0.431317i
\(249\) 4801.05 + 1026.42i 1.22191 + 0.261231i
\(250\) 918.971 + 1591.70i 0.232483 + 0.402673i
\(251\) 2972.68 0.747546 0.373773 0.927520i \(-0.378064\pi\)
0.373773 + 0.927520i \(0.378064\pi\)
\(252\) 12.3702 + 120.427i 0.00309227 + 0.0301039i
\(253\) 12.9177 0.00320999
\(254\) 3930.61 + 6808.01i 0.970977 + 1.68178i
\(255\) 13.8804 + 42.8917i 0.00340873 + 0.0105333i
\(256\) −488.860 + 846.730i −0.119351 + 0.206721i
\(257\) 2557.91 4430.43i 0.620848 1.07534i −0.368480 0.929636i \(-0.620122\pi\)
0.989328 0.145705i \(-0.0465449\pi\)
\(258\) 2048.06 + 6328.67i 0.494212 + 1.52715i
\(259\) −236.152 409.028i −0.0566556 0.0981304i
\(260\) −107.683 −0.0256854
\(261\) −5195.89 + 3756.34i −1.23225 + 0.890848i
\(262\) −3637.60 −0.857753
\(263\) −3635.02 6296.03i −0.852261 1.47616i −0.879163 0.476522i \(-0.841897\pi\)
0.0269012 0.999638i \(-0.491436\pi\)
\(264\) 56.5310 + 12.0858i 0.0131790 + 0.00281753i
\(265\) 349.552 605.442i 0.0810295 0.140347i
\(266\) 1274.40 2207.33i 0.293754 0.508797i
\(267\) 5202.59 5764.38i 1.19249 1.32125i
\(268\) −147.883 256.141i −0.0337067 0.0583818i
\(269\) 793.367 0.179823 0.0899116 0.995950i \(-0.471342\pi\)
0.0899116 + 0.995950i \(0.471342\pi\)
\(270\) −854.854 625.722i −0.192684 0.141038i
\(271\) 7063.92 1.58340 0.791702 0.610907i \(-0.209195\pi\)
0.791702 + 0.610907i \(0.209195\pi\)
\(272\) −116.036 200.981i −0.0258667 0.0448025i
\(273\) −1594.87 + 1767.08i −0.353574 + 0.391754i
\(274\) 3495.53 6054.43i 0.770702 1.33490i
\(275\) −30.4452 + 52.7326i −0.00667605 + 0.0115633i
\(276\) 81.7542 + 17.4782i 0.0178298 + 0.00381182i
\(277\) −3579.28 6199.49i −0.776383 1.34473i −0.934014 0.357237i \(-0.883719\pi\)
0.157631 0.987498i \(-0.449614\pi\)
\(278\) −3422.94 −0.738468
\(279\) −2215.46 992.654i −0.475398 0.213006i
\(280\) 389.004 0.0830265
\(281\) 3779.92 + 6547.02i 0.802461 + 1.38990i 0.917992 + 0.396599i \(0.129810\pi\)
−0.115532 + 0.993304i \(0.536857\pi\)
\(282\) −254.208 785.522i −0.0536803 0.165876i
\(283\) 1898.23 3287.84i 0.398722 0.690606i −0.594847 0.803839i \(-0.702787\pi\)
0.993568 + 0.113233i \(0.0361206\pi\)
\(284\) −170.680 + 295.627i −0.0356621 + 0.0617685i
\(285\) 509.087 + 1573.12i 0.105809 + 0.326960i
\(286\) −49.4651 85.6761i −0.0102270 0.0177138i
\(287\) −2011.21 −0.413652
\(288\) 712.565 + 319.271i 0.145793 + 0.0653236i
\(289\) −4901.59 −0.997678
\(290\) −896.551 1552.87i −0.181542 0.314441i
\(291\) −6837.34 1461.75i −1.37736 0.294465i
\(292\) 115.580 200.191i 0.0231638 0.0401209i
\(293\) −301.402 + 522.043i −0.0600958 + 0.104089i −0.894508 0.447052i \(-0.852474\pi\)
0.834412 + 0.551141i \(0.185807\pi\)
\(294\) −501.450 + 555.597i −0.0994733 + 0.110215i
\(295\) −663.401 1149.04i −0.130931 0.226779i
\(296\) −1459.62 −0.286618
\(297\) 7.79563 71.7280i 0.00152306 0.0140137i
\(298\) −4936.53 −0.959616
\(299\) 821.915 + 1423.60i 0.158972 + 0.275347i
\(300\) −264.033 + 292.544i −0.0508131 + 0.0563000i
\(301\) −1524.25 + 2640.08i −0.291881 + 0.505553i
\(302\) 1270.59 2200.72i 0.242100 0.419329i
\(303\) −9043.26 1933.36i −1.71459 0.366562i
\(304\) −4255.82 7371.30i −0.802921 1.39070i
\(305\) −646.608 −0.121392
\(306\) −217.227 + 157.043i −0.0405818 + 0.0293384i
\(307\) 9215.96 1.71330 0.856649 0.515900i \(-0.172542\pi\)
0.856649 + 0.515900i \(0.172542\pi\)
\(308\) −1.15293 1.99693i −0.000213293 0.000369435i
\(309\) −59.6779 184.409i −0.0109869 0.0339504i
\(310\) 339.474 587.986i 0.0621962 0.107727i
\(311\) −1096.79 + 1899.69i −0.199977 + 0.346371i −0.948521 0.316715i \(-0.897420\pi\)
0.748543 + 0.663086i \(0.230754\pi\)
\(312\) 2264.99 + 6999.01i 0.410993 + 1.27000i
\(313\) 3104.10 + 5376.46i 0.560556 + 0.970912i 0.997448 + 0.0713977i \(0.0227459\pi\)
−0.436892 + 0.899514i \(0.643921\pi\)
\(314\) −5065.95 −0.910471
\(315\) −49.6107 482.972i −0.00887381 0.0863885i
\(316\) 488.518 0.0869661
\(317\) −3378.09 5851.03i −0.598526 1.03668i −0.993039 0.117787i \(-0.962420\pi\)
0.394513 0.918890i \(-0.370913\pi\)
\(318\) 4064.90 + 869.035i 0.716819 + 0.153249i
\(319\) 61.0603 105.760i 0.0107170 0.0185624i
\(320\) 596.878 1033.82i 0.104270 0.180602i
\(321\) 1356.01 1502.43i 0.235779 0.261239i
\(322\) 258.422 + 447.600i 0.0447245 + 0.0774651i
\(323\) 418.357 0.0720682
\(324\) 146.389 443.409i 0.0251009 0.0760303i
\(325\) −7748.56 −1.32250
\(326\) 2991.62 + 5181.64i 0.508254 + 0.880321i
\(327\) 403.257 446.801i 0.0681962 0.0755601i
\(328\) −3107.75 + 5382.79i −0.523162 + 0.906142i
\(329\) 189.192 327.689i 0.0317036 0.0549122i
\(330\) 19.7324 + 4.21858i 0.00329161 + 0.000703713i
\(331\) 2846.09 + 4929.58i 0.472615 + 0.818592i 0.999509 0.0313384i \(-0.00997695\pi\)
−0.526894 + 0.849931i \(0.676644\pi\)
\(332\) −605.203 −0.100045
\(333\) 186.150 + 1812.21i 0.0306335 + 0.298224i
\(334\) −4734.65 −0.775655
\(335\) 593.084 + 1027.25i 0.0967273 + 0.167537i
\(336\) 769.534 + 2377.92i 0.124945 + 0.386090i
\(337\) −4764.00 + 8251.49i −0.770064 + 1.33379i 0.167463 + 0.985878i \(0.446442\pi\)
−0.937527 + 0.347912i \(0.886891\pi\)
\(338\) 3065.63 5309.83i 0.493339 0.854487i
\(339\) −3072.03 9492.83i −0.492183 1.52088i
\(340\) −2.77863 4.81272i −0.000443212 0.000767666i
\(341\) 46.2403 0.00734326
\(342\) −7967.14 + 5759.80i −1.25969 + 0.910685i
\(343\) −343.000 −0.0539949
\(344\) 4710.58 + 8158.97i 0.738307 + 1.27878i
\(345\) −327.874 70.0961i −0.0511657 0.0109387i
\(346\) 2956.69 5121.13i 0.459400 0.795705i
\(347\) −3361.54 + 5822.36i −0.520049 + 0.900751i 0.479679 + 0.877444i \(0.340753\pi\)
−0.999728 + 0.0233073i \(0.992580\pi\)
\(348\) 529.539 586.720i 0.0815698 0.0903778i
\(349\) 1612.48 + 2792.90i 0.247319 + 0.428368i 0.962781 0.270283i \(-0.0871173\pi\)
−0.715462 + 0.698651i \(0.753784\pi\)
\(350\) −2436.26 −0.372067
\(351\) 8400.83 3704.73i 1.27750 0.563373i
\(352\) −14.8724 −0.00225199
\(353\) −3600.05 6235.47i −0.542809 0.940172i −0.998741 0.0501580i \(-0.984028\pi\)
0.455933 0.890014i \(-0.349306\pi\)
\(354\) 5285.65 5856.40i 0.793585 0.879277i
\(355\) 684.513 1185.61i 0.102338 0.177255i
\(356\) −478.598 + 828.955i −0.0712518 + 0.123412i
\(357\) −120.131 25.6827i −0.0178095 0.00380749i
\(358\) −2614.18 4527.89i −0.385932 0.668454i
\(359\) 3642.82 0.535545 0.267772 0.963482i \(-0.413712\pi\)
0.267772 + 0.963482i \(0.413712\pi\)
\(360\) −1369.28 613.517i −0.200465 0.0898200i
\(361\) 8484.92 1.23705
\(362\) −894.033 1548.51i −0.129805 0.224829i
\(363\) −2129.00 6578.79i −0.307834 0.951231i
\(364\) 146.715 254.118i 0.0211263 0.0365918i
\(365\) −463.534 + 802.864i −0.0664725 + 0.115134i
\(366\) −1183.74 3657.85i −0.169058 0.522402i
\(367\) 1416.38 + 2453.25i 0.201457 + 0.348933i 0.948998 0.315282i \(-0.102099\pi\)
−0.747541 + 0.664215i \(0.768766\pi\)
\(368\) 1725.98 0.244492
\(369\) 7079.40 + 3171.98i 0.998750 + 0.447498i
\(370\) −509.488 −0.0715865
\(371\) 952.513 + 1649.80i 0.133294 + 0.230872i
\(372\) 292.648 + 62.5651i 0.0407879 + 0.00872003i
\(373\) −2583.17 + 4474.18i −0.358583 + 0.621084i −0.987724 0.156207i \(-0.950073\pi\)
0.629141 + 0.777291i \(0.283407\pi\)
\(374\) 2.55278 4.42154i 0.000352944 0.000611317i
\(375\) 2176.82 2411.88i 0.299761 0.332130i
\(376\) −584.683 1012.70i −0.0801934 0.138899i
\(377\) 15540.4 2.12300
\(378\) 2641.34 1164.82i 0.359408 0.158497i
\(379\) 56.3096 0.00763174 0.00381587 0.999993i \(-0.498785\pi\)
0.00381587 + 0.999993i \(0.498785\pi\)
\(380\) −101.910 176.514i −0.0137576 0.0238289i
\(381\) 9310.66 10316.0i 1.25197 1.38716i
\(382\) −6459.27 + 11187.8i −0.865144 + 1.49847i
\(383\) 2527.70 4378.10i 0.337230 0.584100i −0.646680 0.762761i \(-0.723843\pi\)
0.983911 + 0.178661i \(0.0571765\pi\)
\(384\) 8116.62 + 1735.25i 1.07864 + 0.230603i
\(385\) 4.62382 + 8.00868i 0.000612082 + 0.00106016i
\(386\) −3488.92 −0.460055
\(387\) 9529.10 6889.01i 1.25166 0.904879i
\(388\) 861.889 0.112773
\(389\) −1267.99 2196.23i −0.165269 0.286255i 0.771482 0.636252i \(-0.219516\pi\)
−0.936751 + 0.349997i \(0.886183\pi\)
\(390\) 790.605 + 2443.03i 0.102651 + 0.317199i
\(391\) −42.4171 + 73.4685i −0.00548625 + 0.00950246i
\(392\) −530.008 + 918.001i −0.0682894 + 0.118281i
\(393\) 1979.83 + 6117.85i 0.254121 + 0.785253i
\(394\) −1199.84 2078.19i −0.153419 0.265730i
\(395\) −1959.20 −0.249564
\(396\) 0.908811 + 8.84748i 0.000115327 + 0.00112273i
\(397\) 3204.52 0.405114 0.202557 0.979270i \(-0.435075\pi\)
0.202557 + 0.979270i \(0.435075\pi\)
\(398\) −7925.51 13727.4i −0.998165 1.72887i
\(399\) −4405.99 941.955i −0.552820 0.118187i
\(400\) −4067.90 + 7045.81i −0.508488 + 0.880727i
\(401\) −775.959 + 1344.00i −0.0966323 + 0.167372i −0.910289 0.413974i \(-0.864140\pi\)
0.813656 + 0.581346i \(0.197474\pi\)
\(402\) −4725.40 + 5235.66i −0.586272 + 0.649579i
\(403\) 2942.13 + 5095.93i 0.363668 + 0.629891i
\(404\) 1139.96 0.140384
\(405\) −587.091 + 1778.29i −0.0720315 + 0.218182i
\(406\) 4886.12 0.597276
\(407\) −17.3495 30.0503i −0.00211298 0.00365980i
\(408\) −254.365 + 281.832i −0.0308650 + 0.0341979i
\(409\) −283.105 + 490.353i −0.0342265 + 0.0592821i −0.882631 0.470066i \(-0.844230\pi\)
0.848405 + 0.529348i \(0.177563\pi\)
\(410\) −1084.77 + 1878.88i −0.130666 + 0.226321i
\(411\) −12085.1 2583.66i −1.45040 0.310080i
\(412\) 11.9465 + 20.6919i 0.00142855 + 0.00247432i
\(413\) 3615.47 0.430764
\(414\) −203.704 1983.11i −0.0241824 0.235421i
\(415\) 2427.16 0.287096
\(416\) −946.289 1639.02i −0.111528 0.193172i
\(417\) 1863.00 + 5756.82i 0.218781 + 0.676050i
\(418\) 93.6271 162.167i 0.0109556 0.0189757i
\(419\) −5322.92 + 9219.56i −0.620624 + 1.07495i 0.368746 + 0.929530i \(0.379787\pi\)
−0.989370 + 0.145422i \(0.953546\pi\)
\(420\) 18.4274 + 56.9420i 0.00214087 + 0.00661545i
\(421\) 4641.80 + 8039.83i 0.537357 + 0.930730i 0.999045 + 0.0436879i \(0.0139107\pi\)
−0.461688 + 0.887042i \(0.652756\pi\)
\(422\) −7690.78 −0.887159
\(423\) −1182.76 + 855.072i −0.135952 + 0.0982861i
\(424\) 5887.35 0.674328
\(425\) −199.942 346.310i −0.0228203 0.0395259i
\(426\) 7960.12 + 1701.79i 0.905326 + 0.193549i
\(427\) 880.987 1525.91i 0.0998454 0.172937i
\(428\) −124.742 + 216.060i −0.0140879 + 0.0244010i
\(429\) −117.171 + 129.823i −0.0131866 + 0.0146105i
\(430\) 1644.25 + 2847.92i 0.184402 + 0.319393i
\(431\) −7494.55 −0.837587 −0.418793 0.908082i \(-0.637547\pi\)
−0.418793 + 0.908082i \(0.637547\pi\)
\(432\) 1041.61 9583.87i 0.116005 1.06737i
\(433\) −1564.51 −0.173639 −0.0868195 0.996224i \(-0.527670\pi\)
−0.0868195 + 0.996224i \(0.527670\pi\)
\(434\) 925.050 + 1602.23i 0.102313 + 0.177211i
\(435\) −2123.71 + 2353.04i −0.234079 + 0.259355i
\(436\) −37.0964 + 64.2529i −0.00407476 + 0.00705770i
\(437\) −1555.71 + 2694.57i −0.170297 + 0.294963i
\(438\) −5390.38 1152.41i −0.588042 0.125717i
\(439\) −5698.55 9870.17i −0.619537 1.07307i −0.989570 0.144051i \(-0.953987\pi\)
0.370033 0.929019i \(-0.379346\pi\)
\(440\) 28.5791 0.00309649
\(441\) 1207.35 + 540.962i 0.130369 + 0.0584129i
\(442\) 649.704 0.0699169
\(443\) −2167.76 3754.67i −0.232491 0.402686i 0.726050 0.687642i \(-0.241354\pi\)
−0.958541 + 0.284956i \(0.908021\pi\)
\(444\) −69.1434 213.659i −0.00739054 0.0228374i
\(445\) 1919.41 3324.52i 0.204469 0.354151i
\(446\) −1240.31 + 2148.28i −0.131682 + 0.228081i
\(447\) 2686.80 + 8302.44i 0.284299 + 0.878506i
\(448\) 1626.46 + 2817.12i 0.171525 + 0.297090i
\(449\) −14016.9 −1.47327 −0.736634 0.676291i \(-0.763586\pi\)
−0.736634 + 0.676291i \(0.763586\pi\)
\(450\) 8575.55 + 3842.35i 0.898345 + 0.402511i
\(451\) −147.759 −0.0154272
\(452\) 614.969 + 1065.16i 0.0639949 + 0.110842i
\(453\) −4392.80 939.136i −0.455611 0.0974049i
\(454\) −4922.56 + 8526.13i −0.508871 + 0.881390i
\(455\) −588.400 + 1019.14i −0.0606256 + 0.105007i
\(456\) −9329.23 + 10336.6i −0.958073 + 1.06153i
\(457\) −1253.03 2170.31i −0.128259 0.222151i 0.794743 0.606946i \(-0.207606\pi\)
−0.923002 + 0.384795i \(0.874272\pi\)
\(458\) 2030.07 0.207116
\(459\) 382.351 + 279.867i 0.0388815 + 0.0284598i
\(460\) 41.3306 0.00418924
\(461\) −6832.01 11833.4i −0.690235 1.19552i −0.971761 0.235968i \(-0.924174\pi\)
0.281526 0.959554i \(-0.409160\pi\)
\(462\) −36.8403 + 40.8183i −0.00370988 + 0.00411048i
\(463\) −795.181 + 1377.29i −0.0798168 + 0.138247i −0.903171 0.429281i \(-0.858767\pi\)
0.823354 + 0.567528i \(0.192100\pi\)
\(464\) 8158.51 14131.0i 0.816270 1.41382i
\(465\) −1173.66 250.917i −0.117048 0.0250236i
\(466\) −6178.68 10701.8i −0.614210 1.06384i
\(467\) −8980.42 −0.889859 −0.444930 0.895566i \(-0.646771\pi\)
−0.444930 + 0.895566i \(0.646771\pi\)
\(468\) −917.215 + 663.095i −0.0905946 + 0.0654949i
\(469\) −3232.25 −0.318234
\(470\) −204.086 353.487i −0.0200293 0.0346918i
\(471\) 2757.24 + 8520.10i 0.269739 + 0.833515i
\(472\) 5586.68 9676.41i 0.544804 0.943629i
\(473\) −111.983 + 193.960i −0.0108858 + 0.0188547i
\(474\) −3586.69 11083.2i −0.347557 1.07398i
\(475\) −7333.20 12701.5i −0.708358 1.22691i
\(476\) 15.1432 0.00145817
\(477\) −750.830 7309.50i −0.0720716 0.701633i
\(478\) −12661.3 −1.21153
\(479\) −2195.90 3803.40i −0.209464 0.362801i 0.742082 0.670309i \(-0.233838\pi\)
−0.951546 + 0.307508i \(0.900505\pi\)
\(480\) 377.489 + 80.7032i 0.0358957 + 0.00767413i
\(481\) 2207.80 3824.03i 0.209287 0.362496i
\(482\) −7846.20 + 13590.0i −0.741461 + 1.28425i
\(483\) 612.139 678.239i 0.0576673 0.0638943i
\(484\) 426.190 + 738.183i 0.0400254 + 0.0693260i
\(485\) −3456.60 −0.323621
\(486\) −11134.5 65.6670i −1.03924 0.00612904i
\(487\) 9440.93 0.878458 0.439229 0.898375i \(-0.355252\pi\)
0.439229 + 0.898375i \(0.355252\pi\)
\(488\) −2722.63 4715.73i −0.252556 0.437441i
\(489\) 7086.43 7851.64i 0.655337 0.726101i
\(490\) −185.002 + 320.432i −0.0170562 + 0.0295421i
\(491\) 3654.61 6329.98i 0.335907 0.581808i −0.647751 0.761852i \(-0.724290\pi\)
0.983659 + 0.180043i \(0.0576238\pi\)
\(492\) −935.144 199.924i −0.0856902 0.0183197i
\(493\) 401.001 + 694.554i 0.0366332 + 0.0634505i
\(494\) 23828.9 2.17027
\(495\) −3.64478 35.4827i −0.000330951 0.00322188i
\(496\) 6178.34 0.559306
\(497\) 1865.26 + 3230.73i 0.168347 + 0.291586i
\(498\) 4443.39 + 13730.4i 0.399825 + 1.23549i
\(499\) 4297.36 7443.25i 0.385524 0.667746i −0.606318 0.795222i \(-0.707354\pi\)
0.991842 + 0.127476i \(0.0406875\pi\)
\(500\) −200.250 + 346.844i −0.0179109 + 0.0310226i
\(501\) 2576.93 + 7962.91i 0.229798 + 0.710093i
\(502\) 4369.07 + 7567.45i 0.388448 + 0.672812i
\(503\) 13124.1 1.16337 0.581684 0.813415i \(-0.302394\pi\)
0.581684 + 0.813415i \(0.302394\pi\)
\(504\) 3313.44 2395.43i 0.292842 0.211708i
\(505\) −4571.80 −0.402856
\(506\) 18.9856 + 32.8841i 0.00166801 + 0.00288908i
\(507\) −10598.8 2265.92i −0.928421 0.198487i
\(508\) −856.507 + 1483.51i −0.0748058 + 0.129568i
\(509\) −10630.6 + 18412.8i −0.925725 + 1.60340i −0.135333 + 0.990800i \(0.543211\pi\)
−0.790391 + 0.612602i \(0.790123\pi\)
\(510\) −88.7871 + 98.3745i −0.00770894 + 0.00854136i
\(511\) −1263.11 2187.77i −0.109348 0.189395i
\(512\) 9904.75 0.854946
\(513\) 14023.3 + 10264.5i 1.20691 + 0.883413i
\(514\) 15037.8 1.29045
\(515\) −47.9113 82.9848i −0.00409946 0.00710048i
\(516\) −971.159 + 1076.03i −0.0828545 + 0.0918012i
\(517\) 13.8994 24.0745i 0.00118239 0.00204796i
\(518\) 694.165 1202.33i 0.0588800 0.101983i
\(519\) −10222.2 2185.39i −0.864552 0.184832i
\(520\) 1818.41 + 3149.58i 0.153351 + 0.265612i
\(521\) 18918.3 1.59084 0.795419 0.606059i \(-0.207251\pi\)
0.795419 + 0.606059i \(0.207251\pi\)
\(522\) −17199.0 7706.14i −1.44210 0.646147i
\(523\) −3728.42 −0.311725 −0.155863 0.987779i \(-0.549816\pi\)
−0.155863 + 0.987779i \(0.549816\pi\)
\(524\) −396.329 686.462i −0.0330414 0.0572294i
\(525\) 1325.98 + 4097.39i 0.110230 + 0.340619i
\(526\) 10685.1 18507.1i 0.885723 1.53412i
\(527\) −151.837 + 262.989i −0.0125505 + 0.0217381i
\(528\) 56.5357 + 174.700i 0.00465985 + 0.0143993i
\(529\) 5768.03 + 9990.53i 0.474072 + 0.821117i
\(530\) 2055.00 0.168422
\(531\) −12726.3 5702.14i −1.04007 0.466011i
\(532\) 555.402 0.0452627
\(533\) −9401.47 16283.8i −0.764020 1.32332i
\(534\) 22320.6 + 4771.92i 1.80882 + 0.386706i
\(535\) 500.277 866.505i 0.0404278 0.0700229i
\(536\) −4994.52 + 8650.77i −0.402482 + 0.697120i
\(537\) −6192.36 + 6861.02i −0.497616 + 0.551350i
\(538\) 1166.04 + 2019.65i 0.0934418 + 0.161846i
\(539\) −25.1994 −0.00201375
\(540\) 24.9424 229.497i 0.00198769 0.0182888i
\(541\) −20984.0 −1.66761 −0.833803 0.552062i \(-0.813841\pi\)
−0.833803 + 0.552062i \(0.813841\pi\)
\(542\) 10382.1 + 17982.4i 0.822786 + 1.42511i
\(543\) −2117.75 + 2346.43i −0.167369 + 0.185442i
\(544\) 48.8357 84.5859i 0.00384892 0.00666653i
\(545\) 148.775 257.686i 0.0116932 0.0202533i
\(546\) −6842.44 1462.84i −0.536318 0.114659i
\(547\) 1420.25 + 2459.94i 0.111015 + 0.192284i 0.916180 0.400767i \(-0.131256\pi\)
−0.805165 + 0.593051i \(0.797923\pi\)
\(548\) 1523.40 0.118753
\(549\) −5507.64 + 3981.72i −0.428161 + 0.309537i
\(550\) −178.986 −0.0138763
\(551\) 14707.3 + 25473.8i 1.13712 + 1.96955i
\(552\) −869.345 2686.35i −0.0670322 0.207135i
\(553\) 2669.36 4623.47i 0.205267 0.355533i
\(554\) 10521.2 18223.3i 0.806866 1.39753i
\(555\) 277.299 + 856.876i 0.0212084 + 0.0655358i
\(556\) −372.941 645.953i −0.0284464 0.0492707i
\(557\) 5824.36 0.443063 0.221532 0.975153i \(-0.428894\pi\)
0.221532 + 0.975153i \(0.428894\pi\)
\(558\) −729.182 7098.75i −0.0553203 0.538555i
\(559\) −28500.6 −2.15643
\(560\) 617.806 + 1070.07i 0.0466198 + 0.0807478i
\(561\) −8.82571 1.88685i −0.000664210 0.000142001i
\(562\) −11111.0 + 19244.8i −0.833967 + 1.44447i
\(563\) −3690.44 + 6392.02i −0.276258 + 0.478493i −0.970452 0.241295i \(-0.922428\pi\)
0.694194 + 0.719788i \(0.255761\pi\)
\(564\) 120.541 133.558i 0.00899949 0.00997127i
\(565\) −2466.33 4271.80i −0.183645 0.318082i
\(566\) 11159.6 0.828753
\(567\) −3396.64 3808.34i −0.251580 0.282072i
\(568\) 11528.9 0.851660
\(569\) 6025.58 + 10436.6i 0.443946 + 0.768937i 0.997978 0.0635582i \(-0.0202448\pi\)
−0.554032 + 0.832495i \(0.686912\pi\)
\(570\) −3256.41 + 3608.04i −0.239291 + 0.265130i
\(571\) 9135.44 15823.0i 0.669538 1.15967i −0.308495 0.951226i \(-0.599825\pi\)
0.978033 0.208448i \(-0.0668412\pi\)
\(572\) 10.7788 18.6694i 0.000787910 0.00136470i
\(573\) 22331.6 + 4774.27i 1.62813 + 0.348077i
\(574\) −2955.96 5119.87i −0.214947 0.372298i
\(575\) 2974.04 0.215697
\(576\) −1282.08 12481.3i −0.0927430 0.902875i
\(577\) 10165.1 0.733413 0.366707 0.930337i \(-0.380485\pi\)
0.366707 + 0.930337i \(0.380485\pi\)
\(578\) −7204.06 12477.8i −0.518425 0.897938i
\(579\) 1898.91 + 5867.79i 0.136297 + 0.421170i
\(580\) 195.365 338.382i 0.0139864 0.0242251i
\(581\) −3306.95 + 5727.81i −0.236137 + 0.409001i
\(582\) −6327.97 19554.0i −0.450692 1.39268i
\(583\) 69.9788 + 121.207i 0.00497123 + 0.00861042i
\(584\) −7807.08 −0.553184
\(585\) 3678.48 2659.34i 0.259977 0.187949i
\(586\) −1771.93 −0.124911
\(587\) 2317.67 + 4014.32i 0.162965 + 0.282264i 0.935931 0.352184i \(-0.114561\pi\)
−0.772966 + 0.634448i \(0.781228\pi\)
\(588\) −159.483 34.0958i −0.0111853 0.00239131i
\(589\) −5568.84 + 9645.52i −0.389576 + 0.674765i
\(590\) 1950.05 3377.59i 0.136072 0.235683i
\(591\) −2842.13 + 3149.03i −0.197817 + 0.219177i
\(592\) −2318.14 4015.14i −0.160937 0.278752i
\(593\) 16282.3 1.12755 0.563773 0.825930i \(-0.309349\pi\)
0.563773 + 0.825930i \(0.309349\pi\)
\(594\) 194.053 85.5765i 0.0134042 0.00591119i
\(595\) −60.7319 −0.00418448
\(596\) −537.852 931.588i −0.0369653 0.0640257i
\(597\) −18773.6 + 20800.8i −1.28702 + 1.42600i
\(598\) −2416.00 + 4184.64i −0.165213 + 0.286158i
\(599\) −4879.82 + 8452.09i −0.332861 + 0.576532i −0.983072 0.183222i \(-0.941347\pi\)
0.650210 + 0.759754i \(0.274681\pi\)
\(600\) 13015.1 + 2782.50i 0.885569 + 0.189325i
\(601\) −5922.17 10257.5i −0.401947 0.696193i 0.592014 0.805928i \(-0.298333\pi\)
−0.993961 + 0.109735i \(0.965000\pi\)
\(602\) −8960.99 −0.606683
\(603\) 11377.4 + 5097.75i 0.768365 + 0.344272i
\(604\) 553.740 0.0373036
\(605\) −1709.23 2960.48i −0.114860 0.198943i
\(606\) −8369.57 25862.6i −0.561040 1.73366i
\(607\) 11103.1 19231.1i 0.742438 1.28594i −0.208944 0.977928i \(-0.567003\pi\)
0.951382 0.308013i \(-0.0996639\pi\)
\(608\) 1791.13 3102.32i 0.119473 0.206934i
\(609\) −2659.37 8217.66i −0.176951 0.546792i
\(610\) −950.345 1646.04i −0.0630792 0.109256i
\(611\) 3537.52 0.234227
\(612\) −53.3037 23.8832i −0.00352071 0.00157748i
\(613\) −19461.8 −1.28231 −0.641154 0.767412i \(-0.721544\pi\)
−0.641154 + 0.767412i \(0.721544\pi\)
\(614\) 13545.1 + 23460.7i 0.890283 + 1.54202i
\(615\) 3750.39 + 801.794i 0.245903 + 0.0525715i
\(616\) −38.9384 + 67.4433i −0.00254687 + 0.00441131i
\(617\) 7910.09 13700.7i 0.516124 0.893952i −0.483701 0.875233i \(-0.660708\pi\)
0.999825 0.0187190i \(-0.00595881\pi\)
\(618\) 381.733 422.953i 0.0248472 0.0275302i
\(619\) 7699.02 + 13335.1i 0.499919 + 0.865885i 1.00000 9.34445e-5i \(-2.97443e-5\pi\)
−0.500081 + 0.865979i \(0.666696\pi\)
\(620\) 147.948 0.00958341
\(621\) −3224.39 + 1421.94i −0.208358 + 0.0918850i
\(622\) −6447.95 −0.415658
\(623\) 5230.30 + 9059.15i 0.336353 + 0.582580i
\(624\) −15655.7 + 17346.2i −1.00437 + 1.11283i
\(625\) −6596.96 + 11426.3i −0.422205 + 0.731281i
\(626\) −9124.43 + 15804.0i −0.582565 + 1.00903i
\(627\) −323.697 69.2030i −0.0206176 0.00440782i
\(628\) −551.953 956.010i −0.0350722 0.0607468i
\(629\) 227.879 0.0144453
\(630\) 1156.57 836.135i 0.0731409 0.0528768i
\(631\) 15072.8 0.950930 0.475465 0.879735i \(-0.342280\pi\)
0.475465 + 0.879735i \(0.342280\pi\)
\(632\) −8249.46 14288.5i −0.519218 0.899312i
\(633\) 4185.86 + 12934.6i 0.262832 + 0.812173i
\(634\) 9929.84 17199.0i 0.622025 1.07738i
\(635\) 3435.01 5949.62i 0.214668 0.371817i
\(636\) 278.888 + 861.785i 0.0173878 + 0.0537296i
\(637\) −1603.36 2777.11i −0.0997293 0.172736i
\(638\) 358.971 0.0222755
\(639\) −1470.32 14313.9i −0.0910248 0.886147i
\(640\) 4103.34 0.253435
\(641\) −10224.1 17708.7i −0.629996 1.09119i −0.987552 0.157293i \(-0.949723\pi\)
0.357556 0.933892i \(-0.383610\pi\)
\(642\) 5817.66 + 1243.76i 0.357640 + 0.0764597i
\(643\) −4171.56 + 7225.36i −0.255848 + 0.443142i −0.965126 0.261787i \(-0.915688\pi\)
0.709277 + 0.704929i \(0.249021\pi\)
\(644\) −56.3120 + 97.5352i −0.00344566 + 0.00596805i
\(645\) 3894.83 4315.40i 0.237765 0.263440i
\(646\) 614.876 + 1065.00i 0.0374489 + 0.0648634i
\(647\) −2134.15 −0.129679 −0.0648394 0.997896i \(-0.520653\pi\)
−0.0648394 + 0.997896i \(0.520653\pi\)
\(648\) −15441.1 + 3206.05i −0.936088 + 0.194360i
\(649\) 265.620 0.0160655
\(650\) −11388.4 19725.2i −0.687213 1.19029i
\(651\) 2191.22 2427.83i 0.131921 0.146166i
\(652\) −651.896 + 1129.12i −0.0391568 + 0.0678215i
\(653\) 12547.6 21733.2i 0.751956 1.30243i −0.194917 0.980820i \(-0.562444\pi\)
0.946873 0.321607i \(-0.104223\pi\)
\(654\) 1730.09 + 369.875i 0.103443 + 0.0221151i
\(655\) 1589.47 + 2753.05i 0.0948181 + 0.164230i
\(656\) −19742.6 −1.17503
\(657\) 995.659 + 9692.97i 0.0591239 + 0.575584i
\(658\) 1112.25 0.0658966
\(659\) −10513.7 18210.3i −0.621481 1.07644i −0.989210 0.146504i \(-0.953198\pi\)
0.367729 0.929933i \(-0.380136\pi\)
\(660\) 1.35381 + 4.18339i 7.98441e−5 + 0.000246725i
\(661\) 1328.17 2300.46i 0.0781541 0.135367i −0.824299 0.566154i \(-0.808431\pi\)
0.902454 + 0.430787i \(0.141764\pi\)
\(662\) −8366.03 + 14490.4i −0.491171 + 0.850732i
\(663\) −353.614 1092.70i −0.0207138 0.0640072i
\(664\) 10219.9 + 17701.4i 0.597302 + 1.03456i
\(665\) −2227.44 −0.129889
\(666\) −4339.69 + 3137.35i −0.252492 + 0.182538i
\(667\) −5964.68 −0.346257
\(668\) −515.857 893.491i −0.0298789 0.0517518i
\(669\) 4288.12 + 916.756i 0.247815 + 0.0529803i
\(670\) −1743.36 + 3019.59i −0.100525 + 0.174115i
\(671\) 64.7239 112.105i 0.00372376 0.00644973i
\(672\) −704.769 + 780.872i −0.0404570 + 0.0448256i
\(673\) 7895.64 + 13675.6i 0.452235 + 0.783295i 0.998525 0.0543020i \(-0.0172934\pi\)
−0.546289 + 0.837597i \(0.683960\pi\)
\(674\) −28007.3 −1.60060
\(675\) 1794.79 16514.0i 0.102343 0.941663i
\(676\) 1336.05 0.0760154
\(677\) −2006.04 3474.56i −0.113882 0.197250i 0.803450 0.595372i \(-0.202995\pi\)
−0.917332 + 0.398122i \(0.869662\pi\)
\(678\) 19650.5 21772.3i 1.11308 1.23328i
\(679\) 4709.53 8157.15i 0.266179 0.461035i
\(680\) −93.8437 + 162.542i −0.00529227 + 0.00916648i
\(681\) 17018.8 + 3638.44i 0.957652 + 0.204736i
\(682\) 67.9611 + 117.712i 0.00381579 + 0.00660913i
\(683\) −7438.45 −0.416727 −0.208363 0.978051i \(-0.566814\pi\)
−0.208363 + 0.978051i \(0.566814\pi\)
\(684\) −1955.00 875.952i −0.109285 0.0489662i
\(685\) −6109.58 −0.340781
\(686\) −504.121 873.162i −0.0280575 0.0485969i
\(687\) −1104.91 3414.25i −0.0613607 0.189609i
\(688\) −14962.5 + 25915.7i −0.829126 + 1.43609i
\(689\) −8905.10 + 15424.1i −0.492391 + 0.852846i
\(690\) −303.449 937.681i −0.0167422 0.0517346i
\(691\) −8035.53 13918.0i −0.442382 0.766228i 0.555484 0.831527i \(-0.312533\pi\)
−0.997866 + 0.0652991i \(0.979200\pi\)
\(692\) 1288.57 0.0707860
\(693\) 88.7008 + 39.7431i 0.00486214 + 0.00217852i
\(694\) −19762.4 −1.08093
\(695\) 1495.68 + 2590.59i 0.0816320 + 0.141391i
\(696\) −26102.9 5580.54i −1.42159 0.303922i
\(697\) 485.187 840.369i 0.0263670 0.0456689i
\(698\) −4739.86 + 8209.67i −0.257029 + 0.445187i
\(699\) −14635.8 + 16216.2i −0.791955 + 0.877472i
\(700\) −265.439 459.754i −0.0143324 0.0248244i
\(701\) −27269.4 −1.46926 −0.734630 0.678467i \(-0.762644\pi\)
−0.734630 + 0.678467i \(0.762644\pi\)
\(702\) 21778.0 + 15940.7i 1.17088 + 0.857042i
\(703\) 8357.81 0.448394
\(704\) 119.492 + 206.967i 0.00639707 + 0.0110800i
\(705\) −483.430 + 535.632i −0.0258256 + 0.0286143i
\(706\) 10582.3 18329.0i 0.564121 0.977086i
\(707\) 6228.97 10788.9i 0.331350 0.573915i
\(708\) 1681.07 + 359.395i 0.0892351 + 0.0190775i
\(709\) −6412.84 11107.4i −0.339689 0.588358i 0.644686 0.764448i \(-0.276988\pi\)
−0.984374 + 0.176090i \(0.943655\pi\)
\(710\) 4024.22 0.212713
\(711\) −16687.9 + 12064.5i −0.880235 + 0.636361i
\(712\) 32327.8 1.70159
\(713\) −1129.24 1955.91i −0.0593135 0.102734i
\(714\) −111.181 343.560i −0.00582754 0.0180076i
\(715\) −43.2283 + 74.8736i −0.00226104 + 0.00391624i
\(716\) 569.648 986.659i 0.0297329 0.0514989i
\(717\) 6891.14 + 21294.2i 0.358932 + 1.10913i
\(718\) 5353.99 + 9273.39i 0.278286 + 0.482005i
\(719\) −9140.58 −0.474111 −0.237056 0.971496i \(-0.576182\pi\)
−0.237056 + 0.971496i \(0.576182\pi\)
\(720\) −486.993 4740.99i −0.0252072 0.245397i
\(721\) 261.112 0.0134873
\(722\) 12470.6 + 21599.7i 0.642809 + 1.11338i
\(723\) 27126.6 + 5799.39i 1.39537 + 0.298315i
\(724\) 194.816 337.432i 0.0100004 0.0173212i
\(725\) 14057.9 24349.0i 0.720135 1.24731i
\(726\) 13618.3 15088.8i 0.696174 0.771349i
\(727\) 5825.85 + 10090.7i 0.297206 + 0.514776i 0.975496 0.220019i \(-0.0706119\pi\)
−0.678290 + 0.734795i \(0.737279\pi\)
\(728\) −9910.15 −0.504526
\(729\) 5949.75 + 18762.2i 0.302279 + 0.953220i
\(730\) −2725.10 −0.138165
\(731\) −735.423 1273.79i −0.0372101 0.0644498i
\(732\) 561.312 621.923i 0.0283425 0.0314029i
\(733\) −9415.51 + 16308.1i −0.474447 + 0.821766i −0.999572 0.0292588i \(-0.990685\pi\)
0.525125 + 0.851025i \(0.324019\pi\)
\(734\) −4163.43 + 7211.27i −0.209366 + 0.362633i
\(735\) 639.606 + 136.741i 0.0320982 + 0.00686227i
\(736\) 363.203 + 629.086i 0.0181900 + 0.0315060i
\(737\) −237.466 −0.0118686
\(738\) 2330.07 + 22683.7i 0.116221 + 1.13144i
\(739\) 7467.51 0.371714 0.185857 0.982577i \(-0.440494\pi\)
0.185857 + 0.982577i \(0.440494\pi\)
\(740\) −55.5105 96.1470i −0.00275758 0.00477626i
\(741\) −12969.4 40076.3i −0.642970 1.98683i
\(742\) −2799.89 + 4849.56i −0.138527 + 0.239936i
\(743\) 6233.54 10796.8i 0.307788 0.533104i −0.670090 0.742280i \(-0.733745\pi\)
0.977878 + 0.209175i \(0.0670779\pi\)
\(744\) −3111.92 9616.07i −0.153345 0.473847i
\(745\) 2157.05 + 3736.12i 0.106078 + 0.183733i
\(746\) −15186.3 −0.745324
\(747\) 20674.0 14946.1i 1.01261 0.732061i
\(748\) 1.11254 5.43828e−5
\(749\) 1363.23 + 2361.18i 0.0665038 + 0.115188i
\(750\) 9339.18 + 1996.62i 0.454692 + 0.0972084i
\(751\) 1228.34 2127.55i 0.0596842 0.103376i −0.834639 0.550797i \(-0.814324\pi\)
0.894324 + 0.447421i \(0.147657\pi\)
\(752\) 1857.16 3216.69i 0.0900580 0.155985i
\(753\) 10349.3 11466.8i 0.500861 0.554945i
\(754\) 22840.3 + 39560.5i 1.10318 + 1.91076i
\(755\) −2220.77 −0.107049
\(756\) 507.601 + 371.545i 0.0244197 + 0.0178743i
\(757\) −7246.72 −0.347935 −0.173967 0.984751i \(-0.555659\pi\)
−0.173967 + 0.984751i \(0.555659\pi\)
\(758\) 82.7604 + 143.345i 0.00396569 + 0.00686878i
\(759\) 44.9723 49.8285i 0.00215071 0.00238295i
\(760\) −3441.87 + 5961.49i −0.164276 + 0.284534i
\(761\) 6341.49 10983.8i 0.302075 0.523209i −0.674531 0.738246i \(-0.735654\pi\)
0.976606 + 0.215038i \(0.0689875\pi\)
\(762\) 39945.4 + 8539.91i 1.89904 + 0.405995i
\(763\) 405.405 + 702.181i 0.0192354 + 0.0333167i
\(764\) −2815.04 −0.133304
\(765\) 213.774 + 95.7832i 0.0101033 + 0.00452686i
\(766\) 14860.2 0.700942
\(767\) 16900.6 + 29272.7i 0.795627 + 1.37807i
\(768\) 1564.22 + 4833.58i 0.0734949 + 0.227105i
\(769\) 7148.72 12381.9i 0.335227 0.580630i −0.648302 0.761384i \(-0.724520\pi\)
0.983528 + 0.180754i \(0.0578537\pi\)
\(770\) −13.5916 + 23.5414i −0.000636114 + 0.00110178i
\(771\) −8184.64 25291.2i −0.382312 1.18137i
\(772\) −380.130