Properties

Label 63.4.f.b.22.5
Level $63$
Weight $4$
Character 63.22
Analytic conductor $3.717$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 3 x^{15} + 58 x^{14} - 129 x^{13} + 2107 x^{12} - 4455 x^{11} + 42901 x^{10} - 76404 x^{9} + 599392 x^{8} - 1089732 x^{7} + 4808401 x^{6} - 7939134 x^{5} + 26225236 x^{4} - 39450864 x^{3} + 62254768 x^{2} - 39660672 x + 21307456\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 22.5
Root \(0.403686 + 0.699204i\) of defining polynomial
Character \(\chi\) \(=\) 63.22
Dual form 63.4.f.b.43.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.403686 - 0.699204i) q^{2} +(-0.172376 + 5.19329i) q^{3} +(3.67408 - 6.36369i) q^{4} +(-9.11444 + 15.7867i) q^{5} +(3.70076 - 1.97593i) q^{6} +(3.50000 + 6.06218i) q^{7} -12.3917 q^{8} +(-26.9406 - 1.79040i) q^{9} +O(q^{10})\) \(q+(-0.403686 - 0.699204i) q^{2} +(-0.172376 + 5.19329i) q^{3} +(3.67408 - 6.36369i) q^{4} +(-9.11444 + 15.7867i) q^{5} +(3.70076 - 1.97593i) q^{6} +(3.50000 + 6.06218i) q^{7} -12.3917 q^{8} +(-26.9406 - 1.79040i) q^{9} +14.7175 q^{10} +(24.7147 + 42.8070i) q^{11} +(32.4152 + 20.1775i) q^{12} +(-22.2430 + 38.5260i) q^{13} +(2.82580 - 4.89443i) q^{14} +(-80.4137 - 50.0552i) q^{15} +(-24.3903 - 42.2452i) q^{16} +47.2301 q^{17} +(9.62367 + 19.5597i) q^{18} +56.7545 q^{19} +(66.9743 + 116.003i) q^{20} +(-32.0860 + 17.1315i) q^{21} +(19.9539 - 34.5612i) q^{22} +(27.7116 - 47.9979i) q^{23} +(2.13603 - 64.3535i) q^{24} +(-103.646 - 179.520i) q^{25} +35.9167 q^{26} +(13.9420 - 139.602i) q^{27} +51.4371 q^{28} +(-75.1405 - 130.147i) q^{29} +(-2.53694 + 76.4322i) q^{30} +(83.7746 - 145.102i) q^{31} +(-69.2587 + 119.960i) q^{32} +(-226.570 + 120.972i) q^{33} +(-19.0661 - 33.0235i) q^{34} -127.602 q^{35} +(-110.375 + 164.863i) q^{36} +331.480 q^{37} +(-22.9110 - 39.6830i) q^{38} +(-196.242 - 122.155i) q^{39} +(112.943 - 195.623i) q^{40} +(-147.716 + 255.852i) q^{41} +(24.9311 + 15.5189i) q^{42} +(158.894 + 275.213i) q^{43} +363.214 q^{44} +(273.813 - 408.983i) q^{45} -44.7471 q^{46} +(68.9395 + 119.407i) q^{47} +(223.596 - 119.384i) q^{48} +(-24.5000 + 42.4352i) q^{49} +(-83.6808 + 144.939i) q^{50} +(-8.14133 + 245.280i) q^{51} +(163.445 + 283.095i) q^{52} +411.775 q^{53} +(-103.238 + 46.6069i) q^{54} -901.041 q^{55} +(-43.3708 - 75.1205i) q^{56} +(-9.78311 + 294.743i) q^{57} +(-60.6663 + 105.077i) q^{58} +(-106.152 + 183.861i) q^{59} +(-613.981 + 327.821i) q^{60} +(26.1785 + 45.3424i) q^{61} -135.275 q^{62} +(-83.4383 - 169.585i) q^{63} -278.409 q^{64} +(-405.464 - 702.285i) q^{65} +(176.047 + 109.584i) q^{66} +(-353.386 + 612.082i) q^{67} +(173.527 - 300.557i) q^{68} +(244.490 + 152.188i) q^{69} +(51.5112 + 89.2200i) q^{70} -78.7569 q^{71} +(333.839 + 22.1860i) q^{72} +839.292 q^{73} +(-133.814 - 231.772i) q^{74} +(950.166 - 507.319i) q^{75} +(208.520 - 361.168i) q^{76} +(-173.003 + 299.649i) q^{77} +(-6.19118 + 186.526i) q^{78} +(-507.663 - 879.298i) q^{79} +889.214 q^{80} +(722.589 + 96.4687i) q^{81} +238.523 q^{82} +(-543.305 - 941.032i) q^{83} +(-8.86651 + 267.128i) q^{84} +(-430.476 + 745.606i) q^{85} +(128.287 - 222.199i) q^{86} +(688.845 - 367.792i) q^{87} +(-306.256 - 530.450i) q^{88} -762.726 q^{89} +(-396.497 - 26.3501i) q^{90} -311.402 q^{91} +(-203.629 - 352.696i) q^{92} +(739.116 + 460.078i) q^{93} +(55.6598 - 96.4056i) q^{94} +(-517.285 + 895.964i) q^{95} +(-611.046 - 380.359i) q^{96} +(671.315 + 1162.75i) q^{97} +39.5612 q^{98} +(-589.185 - 1197.50i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} + O(q^{10}) \) \( 16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} - 28q^{10} - 24q^{11} + 268q^{12} - 68q^{13} + 21q^{14} + 56q^{15} - 103q^{16} + 336q^{17} - 479q^{18} + 352q^{19} - 330q^{20} + 70q^{21} - 151q^{22} - 228q^{23} - 195q^{24} - 244q^{25} + 1590q^{26} + 272q^{27} - 602q^{28} - 618q^{29} + 1030q^{30} - 72q^{31} - 786q^{32} - 700q^{33} + 261q^{34} - 420q^{35} + 727q^{36} + 420q^{37} - 1032q^{38} - 22q^{39} + 375q^{40} - 420q^{41} - 175q^{42} + 2q^{43} + 774q^{44} + 1406q^{45} + 804q^{46} - 570q^{47} + 1864q^{48} - 392q^{49} - 1110q^{50} - 2940q^{51} + 431q^{52} + 1056q^{53} + 2269q^{54} - 1676q^{55} + 42q^{56} + 122q^{57} - 37q^{58} + 150q^{59} - 6350q^{60} - 578q^{61} + 2340q^{62} - 350q^{63} - 224q^{64} + 366q^{65} + 5812q^{66} + 898q^{67} - 2526q^{68} - 2166q^{69} - 98q^{70} + 1764q^{71} + 1350q^{72} + 1944q^{73} + 222q^{74} - 2096q^{75} - 1423q^{76} + 168q^{77} - 5558q^{78} + 158q^{79} + 4950q^{80} + 476q^{81} - 422q^{82} - 2958q^{83} + 1715q^{84} + 774q^{85} + 114q^{86} + 44q^{87} - 1317q^{88} + 8760q^{89} - 3659q^{90} - 952q^{91} - 4629q^{92} + 3954q^{93} + 3234q^{94} - 930q^{95} - 5923q^{96} + 60q^{97} + 294q^{98} + 1214q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.403686 0.699204i −0.142725 0.247206i 0.785797 0.618484i \(-0.212253\pi\)
−0.928522 + 0.371278i \(0.878920\pi\)
\(3\) −0.172376 + 5.19329i −0.0331738 + 0.999450i
\(4\) 3.67408 6.36369i 0.459259 0.795461i
\(5\) −9.11444 + 15.7867i −0.815220 + 1.41200i 0.0939497 + 0.995577i \(0.470051\pi\)
−0.909170 + 0.416426i \(0.863283\pi\)
\(6\) 3.70076 1.97593i 0.251805 0.134445i
\(7\) 3.50000 + 6.06218i 0.188982 + 0.327327i
\(8\) −12.3917 −0.547639
\(9\) −26.9406 1.79040i −0.997799 0.0663110i
\(10\) 14.7175 0.465408
\(11\) 24.7147 + 42.8070i 0.677432 + 1.17335i 0.975752 + 0.218880i \(0.0702404\pi\)
−0.298320 + 0.954466i \(0.596426\pi\)
\(12\) 32.4152 + 20.1775i 0.779787 + 0.485395i
\(13\) −22.2430 + 38.5260i −0.474546 + 0.821937i −0.999575 0.0291470i \(-0.990721\pi\)
0.525030 + 0.851084i \(0.324054\pi\)
\(14\) 2.82580 4.89443i 0.0539448 0.0934351i
\(15\) −80.4137 50.0552i −1.38418 0.861613i
\(16\) −24.3903 42.2452i −0.381098 0.660081i
\(17\) 47.2301 0.673822 0.336911 0.941536i \(-0.390618\pi\)
0.336911 + 0.941536i \(0.390618\pi\)
\(18\) 9.62367 + 19.5597i 0.126018 + 0.256126i
\(19\) 56.7545 0.685283 0.342641 0.939466i \(-0.388678\pi\)
0.342641 + 0.939466i \(0.388678\pi\)
\(20\) 66.9743 + 116.003i 0.748795 + 1.29695i
\(21\) −32.0860 + 17.1315i −0.333416 + 0.178020i
\(22\) 19.9539 34.5612i 0.193372 0.334930i
\(23\) 27.7116 47.9979i 0.251229 0.435142i −0.712635 0.701535i \(-0.752499\pi\)
0.963864 + 0.266393i \(0.0858319\pi\)
\(24\) 2.13603 64.3535i 0.0181673 0.547338i
\(25\) −103.646 179.520i −0.829168 1.43616i
\(26\) 35.9167 0.270917
\(27\) 13.9420 139.602i 0.0993753 0.995050i
\(28\) 51.4371 0.347167
\(29\) −75.1405 130.147i −0.481146 0.833370i 0.518620 0.855005i \(-0.326446\pi\)
−0.999766 + 0.0216352i \(0.993113\pi\)
\(30\) −2.53694 + 76.4322i −0.0154393 + 0.465151i
\(31\) 83.7746 145.102i 0.485367 0.840680i −0.514492 0.857495i \(-0.672019\pi\)
0.999859 + 0.0168154i \(0.00535276\pi\)
\(32\) −69.2587 + 119.960i −0.382604 + 0.662689i
\(33\) −226.570 + 120.972i −1.19517 + 0.638135i
\(34\) −19.0661 33.0235i −0.0961710 0.166573i
\(35\) −127.602 −0.616248
\(36\) −110.375 + 164.863i −0.510996 + 0.763256i
\(37\) 331.480 1.47284 0.736419 0.676526i \(-0.236515\pi\)
0.736419 + 0.676526i \(0.236515\pi\)
\(38\) −22.9110 39.6830i −0.0978066 0.169406i
\(39\) −196.242 122.155i −0.805742 0.501551i
\(40\) 112.943 195.623i 0.446447 0.773268i
\(41\) −147.716 + 255.852i −0.562667 + 0.974568i 0.434595 + 0.900626i \(0.356891\pi\)
−0.997263 + 0.0739423i \(0.976442\pi\)
\(42\) 24.9311 + 15.5189i 0.0915941 + 0.0570147i
\(43\) 158.894 + 275.213i 0.563514 + 0.976036i 0.997186 + 0.0749648i \(0.0238844\pi\)
−0.433672 + 0.901071i \(0.642782\pi\)
\(44\) 363.214 1.24447
\(45\) 273.813 408.983i 0.907057 1.35484i
\(46\) −44.7471 −0.143426
\(47\) 68.9395 + 119.407i 0.213955 + 0.370580i 0.952949 0.303132i \(-0.0980322\pi\)
−0.738994 + 0.673712i \(0.764699\pi\)
\(48\) 223.596 119.384i 0.672360 0.358991i
\(49\) −24.5000 + 42.4352i −0.0714286 + 0.123718i
\(50\) −83.6808 + 144.939i −0.236685 + 0.409951i
\(51\) −8.14133 + 245.280i −0.0223532 + 0.673452i
\(52\) 163.445 + 283.095i 0.435879 + 0.754965i
\(53\) 411.775 1.06720 0.533600 0.845737i \(-0.320839\pi\)
0.533600 + 0.845737i \(0.320839\pi\)
\(54\) −103.238 + 46.6069i −0.260166 + 0.117452i
\(55\) −901.041 −2.20902
\(56\) −43.3708 75.1205i −0.103494 0.179257i
\(57\) −9.78311 + 294.743i −0.0227334 + 0.684905i
\(58\) −60.6663 + 105.077i −0.137343 + 0.237885i
\(59\) −106.152 + 183.861i −0.234235 + 0.405707i −0.959050 0.283236i \(-0.908592\pi\)
0.724815 + 0.688944i \(0.241925\pi\)
\(60\) −613.981 + 327.821i −1.32108 + 0.705358i
\(61\) 26.1785 + 45.3424i 0.0549477 + 0.0951722i 0.892191 0.451659i \(-0.149167\pi\)
−0.837243 + 0.546831i \(0.815834\pi\)
\(62\) −135.275 −0.277095
\(63\) −83.4383 169.585i −0.166861 0.339138i
\(64\) −278.409 −0.543768
\(65\) −405.464 702.285i −0.773718 1.34012i
\(66\) 176.047 + 109.584i 0.328331 + 0.204377i
\(67\) −353.386 + 612.082i −0.644372 + 1.11609i 0.340074 + 0.940399i \(0.389548\pi\)
−0.984446 + 0.175687i \(0.943785\pi\)
\(68\) 173.527 300.557i 0.309459 0.535999i
\(69\) 244.490 + 152.188i 0.426568 + 0.265526i
\(70\) 51.5112 + 89.2200i 0.0879538 + 0.152340i
\(71\) −78.7569 −0.131644 −0.0658220 0.997831i \(-0.520967\pi\)
−0.0658220 + 0.997831i \(0.520967\pi\)
\(72\) 333.839 + 22.1860i 0.546434 + 0.0363145i
\(73\) 839.292 1.34564 0.672820 0.739806i \(-0.265083\pi\)
0.672820 + 0.739806i \(0.265083\pi\)
\(74\) −133.814 231.772i −0.210210 0.364094i
\(75\) 950.166 507.319i 1.46288 0.781068i
\(76\) 208.520 361.168i 0.314722 0.545115i
\(77\) −173.003 + 299.649i −0.256045 + 0.443483i
\(78\) −6.19118 + 186.526i −0.00898734 + 0.270768i
\(79\) −507.663 879.298i −0.722994 1.25226i −0.959794 0.280705i \(-0.909432\pi\)
0.236800 0.971558i \(-0.423901\pi\)
\(80\) 889.214 1.24271
\(81\) 722.589 + 96.4687i 0.991206 + 0.132330i
\(82\) 238.523 0.321226
\(83\) −543.305 941.032i −0.718500 1.24448i −0.961594 0.274475i \(-0.911496\pi\)
0.243094 0.970003i \(-0.421837\pi\)
\(84\) −8.86651 + 267.128i −0.0115169 + 0.346976i
\(85\) −430.476 + 745.606i −0.549314 + 0.951439i
\(86\) 128.287 222.199i 0.160855 0.278608i
\(87\) 688.845 367.792i 0.848873 0.453235i
\(88\) −306.256 530.450i −0.370988 0.642570i
\(89\) −762.726 −0.908414 −0.454207 0.890896i \(-0.650077\pi\)
−0.454207 + 0.890896i \(0.650077\pi\)
\(90\) −396.497 26.3501i −0.464383 0.0308617i
\(91\) −311.402 −0.358723
\(92\) −203.629 352.696i −0.230759 0.399686i
\(93\) 739.116 + 460.078i 0.824116 + 0.512988i
\(94\) 55.6598 96.4056i 0.0610731 0.105782i
\(95\) −517.285 + 895.964i −0.558656 + 0.967621i
\(96\) −611.046 380.359i −0.649632 0.404377i
\(97\) 671.315 + 1162.75i 0.702698 + 1.21711i 0.967516 + 0.252810i \(0.0813548\pi\)
−0.264818 + 0.964298i \(0.585312\pi\)
\(98\) 39.5612 0.0407784
\(99\) −589.185 1197.50i −0.598135 1.21568i
\(100\) −1523.21 −1.52321
\(101\) −353.491 612.265i −0.348254 0.603194i 0.637685 0.770297i \(-0.279892\pi\)
−0.985939 + 0.167103i \(0.946559\pi\)
\(102\) 174.787 93.3235i 0.169672 0.0905922i
\(103\) −257.488 + 445.983i −0.246321 + 0.426640i −0.962502 0.271274i \(-0.912555\pi\)
0.716181 + 0.697914i \(0.245888\pi\)
\(104\) 275.627 477.401i 0.259880 0.450125i
\(105\) 21.9955 662.675i 0.0204433 0.615909i
\(106\) −166.228 287.915i −0.152316 0.263818i
\(107\) 1186.50 1.07199 0.535997 0.844220i \(-0.319936\pi\)
0.535997 + 0.844220i \(0.319936\pi\)
\(108\) −837.157 601.629i −0.745884 0.536035i
\(109\) 1909.52 1.67797 0.838987 0.544151i \(-0.183148\pi\)
0.838987 + 0.544151i \(0.183148\pi\)
\(110\) 363.737 + 630.012i 0.315282 + 0.546084i
\(111\) −57.1392 + 1721.47i −0.0488596 + 1.47203i
\(112\) 170.732 295.716i 0.144041 0.249487i
\(113\) 470.970 815.743i 0.392080 0.679103i −0.600643 0.799517i \(-0.705089\pi\)
0.992724 + 0.120414i \(0.0384222\pi\)
\(114\) 210.035 112.143i 0.172557 0.0921329i
\(115\) 505.151 + 874.948i 0.409614 + 0.709472i
\(116\) −1104.29 −0.883884
\(117\) 668.215 998.088i 0.528005 0.788660i
\(118\) 171.409 0.133724
\(119\) 165.305 + 286.317i 0.127340 + 0.220560i
\(120\) 996.459 + 620.267i 0.758032 + 0.471853i
\(121\) −556.128 + 963.242i −0.417827 + 0.723698i
\(122\) 21.1358 36.6082i 0.0156848 0.0271668i
\(123\) −1303.25 811.235i −0.955366 0.594688i
\(124\) −615.589 1066.23i −0.445818 0.772180i
\(125\) 1500.09 1.07338
\(126\) −84.8917 + 126.799i −0.0600218 + 0.0896523i
\(127\) −1584.85 −1.10734 −0.553672 0.832735i \(-0.686774\pi\)
−0.553672 + 0.832735i \(0.686774\pi\)
\(128\) 666.459 + 1154.34i 0.460213 + 0.797112i
\(129\) −1456.65 + 777.743i −0.994192 + 0.530826i
\(130\) −327.361 + 567.005i −0.220857 + 0.382536i
\(131\) −1086.93 + 1882.61i −0.724926 + 1.25561i 0.234079 + 0.972218i \(0.424793\pi\)
−0.959005 + 0.283391i \(0.908541\pi\)
\(132\) −62.6094 + 1886.28i −0.0412837 + 1.24378i
\(133\) 198.641 + 344.056i 0.129506 + 0.224311i
\(134\) 570.628 0.367871
\(135\) 2076.77 + 1492.49i 1.32400 + 0.951503i
\(136\) −585.259 −0.369012
\(137\) −1047.25 1813.90i −0.653087 1.13118i −0.982370 0.186948i \(-0.940140\pi\)
0.329283 0.944231i \(-0.393193\pi\)
\(138\) 7.71333 232.385i 0.00475799 0.143347i
\(139\) 656.661 1137.37i 0.400700 0.694033i −0.593111 0.805121i \(-0.702100\pi\)
0.993811 + 0.111088i \(0.0354337\pi\)
\(140\) −468.820 + 812.020i −0.283018 + 0.490201i
\(141\) −631.998 + 337.440i −0.377474 + 0.201543i
\(142\) 31.7930 + 55.0671i 0.0187888 + 0.0325432i
\(143\) −2198.91 −1.28589
\(144\) 581.452 + 1181.78i 0.336488 + 0.683899i
\(145\) 2739.45 1.56896
\(146\) −338.810 586.837i −0.192056 0.332650i
\(147\) −216.155 134.550i −0.121280 0.0754934i
\(148\) 1217.88 2109.43i 0.676414 1.17158i
\(149\) 743.727 1288.17i 0.408916 0.708264i −0.585852 0.810418i \(-0.699240\pi\)
0.994769 + 0.102154i \(0.0325735\pi\)
\(150\) −738.288 459.563i −0.401873 0.250154i
\(151\) 1101.85 + 1908.45i 0.593821 + 1.02853i 0.993712 + 0.111965i \(0.0357145\pi\)
−0.399891 + 0.916562i \(0.630952\pi\)
\(152\) −703.282 −0.375288
\(153\) −1272.41 84.5607i −0.672339 0.0446819i
\(154\) 279.355 0.146176
\(155\) 1527.12 + 2645.04i 0.791361 + 1.37068i
\(156\) −1498.37 + 800.018i −0.769009 + 0.410594i
\(157\) 1722.67 2983.76i 0.875696 1.51675i 0.0196759 0.999806i \(-0.493737\pi\)
0.856020 0.516943i \(-0.172930\pi\)
\(158\) −409.873 + 709.921i −0.206378 + 0.357457i
\(159\) −70.9801 + 2138.47i −0.0354031 + 1.06661i
\(160\) −1262.51 2186.73i −0.623812 1.08047i
\(161\) 387.963 0.189911
\(162\) −224.248 544.180i −0.108757 0.263919i
\(163\) −2723.83 −1.30888 −0.654439 0.756115i \(-0.727095\pi\)
−0.654439 + 0.756115i \(0.727095\pi\)
\(164\) 1085.44 + 1880.04i 0.516820 + 0.895159i
\(165\) 155.318 4679.37i 0.0732817 2.20781i
\(166\) −438.649 + 759.763i −0.205095 + 0.355235i
\(167\) 506.393 877.098i 0.234646 0.406419i −0.724524 0.689250i \(-0.757940\pi\)
0.959170 + 0.282831i \(0.0912736\pi\)
\(168\) 397.599 212.288i 0.182592 0.0974905i
\(169\) 109.000 + 188.793i 0.0496131 + 0.0859323i
\(170\) 695.108 0.313602
\(171\) −1529.00 101.613i −0.683774 0.0454418i
\(172\) 2335.16 1.03520
\(173\) 747.910 + 1295.42i 0.328685 + 0.569300i 0.982251 0.187570i \(-0.0600611\pi\)
−0.653566 + 0.756870i \(0.726728\pi\)
\(174\) −535.239 333.171i −0.233197 0.145159i
\(175\) 725.522 1256.64i 0.313396 0.542818i
\(176\) 1205.59 2088.15i 0.516336 0.894319i
\(177\) −936.548 582.974i −0.397713 0.247565i
\(178\) 307.902 + 533.301i 0.129653 + 0.224565i
\(179\) 1989.77 0.830851 0.415425 0.909627i \(-0.363633\pi\)
0.415425 + 0.909627i \(0.363633\pi\)
\(180\) −1596.63 3245.09i −0.661145 1.34375i
\(181\) −2790.78 −1.14606 −0.573031 0.819534i \(-0.694232\pi\)
−0.573031 + 0.819534i \(0.694232\pi\)
\(182\) 125.708 + 217.733i 0.0511985 + 0.0886784i
\(183\) −239.989 + 128.136i −0.0969426 + 0.0517602i
\(184\) −343.393 + 594.774i −0.137583 + 0.238301i
\(185\) −3021.25 + 5232.97i −1.20069 + 2.07965i
\(186\) 23.3181 702.520i 0.00919228 0.276942i
\(187\) 1167.28 + 2021.78i 0.456469 + 0.790627i
\(188\) 1013.16 0.393043
\(189\) 895.087 404.087i 0.344487 0.155519i
\(190\) 835.283 0.318936
\(191\) −2167.85 3754.82i −0.821256 1.42246i −0.904747 0.425949i \(-0.859940\pi\)
0.0834912 0.996509i \(-0.473393\pi\)
\(192\) 47.9911 1445.86i 0.0180388 0.543469i
\(193\) 1214.95 2104.36i 0.453130 0.784844i −0.545449 0.838144i \(-0.683641\pi\)
0.998579 + 0.0533002i \(0.0169740\pi\)
\(194\) 542.001 938.773i 0.200584 0.347422i
\(195\) 3717.06 1984.64i 1.36505 0.728835i
\(196\) 180.030 + 311.821i 0.0656085 + 0.113637i
\(197\) 273.113 0.0987742 0.0493871 0.998780i \(-0.484273\pi\)
0.0493871 + 0.998780i \(0.484273\pi\)
\(198\) −599.448 + 895.373i −0.215156 + 0.321371i
\(199\) 648.752 0.231100 0.115550 0.993302i \(-0.463137\pi\)
0.115550 + 0.993302i \(0.463137\pi\)
\(200\) 1284.35 + 2224.55i 0.454085 + 0.786498i
\(201\) −3117.81 1940.74i −1.09410 0.681043i
\(202\) −285.399 + 494.325i −0.0994088 + 0.172181i
\(203\) 525.984 911.030i 0.181856 0.314984i
\(204\) 1530.97 + 952.985i 0.525438 + 0.327070i
\(205\) −2692.70 4663.89i −0.917395 1.58897i
\(206\) 415.777 0.140624
\(207\) −832.502 + 1243.48i −0.279531 + 0.417525i
\(208\) 2170.05 0.723393
\(209\) 1402.67 + 2429.49i 0.464232 + 0.804074i
\(210\) −472.225 + 252.133i −0.155174 + 0.0828516i
\(211\) −121.543 + 210.518i −0.0396557 + 0.0686857i −0.885172 0.465264i \(-0.845959\pi\)
0.845516 + 0.533950i \(0.179293\pi\)
\(212\) 1512.89 2620.40i 0.490122 0.848916i
\(213\) 13.5758 409.007i 0.00436713 0.131571i
\(214\) −478.973 829.606i −0.153000 0.265003i
\(215\) −5792.92 −1.83755
\(216\) −172.764 + 1729.90i −0.0544218 + 0.544929i
\(217\) 1172.84 0.366903
\(218\) −770.848 1335.15i −0.239488 0.414806i
\(219\) −144.674 + 4358.69i −0.0446399 + 1.34490i
\(220\) −3310.49 + 5733.94i −1.01451 + 1.75719i
\(221\) −1050.54 + 1819.59i −0.319759 + 0.553840i
\(222\) 1226.73 654.982i 0.370867 0.198016i
\(223\) −910.318 1576.72i −0.273361 0.473474i 0.696360 0.717693i \(-0.254802\pi\)
−0.969720 + 0.244219i \(0.921469\pi\)
\(224\) −969.621 −0.289221
\(225\) 2470.87 + 5021.94i 0.732109 + 1.48798i
\(226\) −760.495 −0.223838
\(227\) −850.099 1472.41i −0.248560 0.430518i 0.714567 0.699567i \(-0.246624\pi\)
−0.963126 + 0.269049i \(0.913291\pi\)
\(228\) 1839.70 + 1145.16i 0.534375 + 0.332633i
\(229\) −94.4886 + 163.659i −0.0272663 + 0.0472266i −0.879337 0.476201i \(-0.842014\pi\)
0.852070 + 0.523427i \(0.175347\pi\)
\(230\) 407.845 706.408i 0.116924 0.202518i
\(231\) −1526.34 950.105i −0.434745 0.270616i
\(232\) 931.116 + 1612.74i 0.263495 + 0.456386i
\(233\) −647.185 −0.181968 −0.0909840 0.995852i \(-0.529001\pi\)
−0.0909840 + 0.995852i \(0.529001\pi\)
\(234\) −967.617 64.3052i −0.270321 0.0179648i
\(235\) −2513.38 −0.697680
\(236\) 780.024 + 1351.04i 0.215149 + 0.372650i
\(237\) 4653.96 2484.87i 1.27556 0.681054i
\(238\) 133.463 231.164i 0.0363492 0.0629587i
\(239\) 1760.61 3049.46i 0.476503 0.825328i −0.523134 0.852250i \(-0.675237\pi\)
0.999638 + 0.0269226i \(0.00857078\pi\)
\(240\) −153.279 + 4617.95i −0.0412255 + 1.24203i
\(241\) −162.250 281.026i −0.0433671 0.0751140i 0.843527 0.537087i \(-0.180475\pi\)
−0.886894 + 0.461973i \(0.847142\pi\)
\(242\) 898.004 0.238537
\(243\) −625.547 + 3735.99i −0.165139 + 0.986270i
\(244\) 384.727 0.100941
\(245\) −446.607 773.547i −0.116460 0.201715i
\(246\) −41.1157 + 1238.72i −0.0106563 + 0.321049i
\(247\) −1262.39 + 2186.52i −0.325198 + 0.563259i
\(248\) −1038.11 + 1798.05i −0.265806 + 0.460389i
\(249\) 4980.71 2659.33i 1.26763 0.676820i
\(250\) −605.565 1048.87i −0.153197 0.265345i
\(251\) 3501.08 0.880424 0.440212 0.897894i \(-0.354903\pi\)
0.440212 + 0.897894i \(0.354903\pi\)
\(252\) −1385.74 92.0928i −0.346403 0.0230210i
\(253\) 2739.53 0.680762
\(254\) 639.782 + 1108.13i 0.158045 + 0.273742i
\(255\) −3797.95 2364.11i −0.932692 0.580574i
\(256\) −575.557 + 996.893i −0.140517 + 0.243382i
\(257\) 919.514 1592.64i 0.223182 0.386562i −0.732591 0.680669i \(-0.761689\pi\)
0.955772 + 0.294107i \(0.0950223\pi\)
\(258\) 1131.83 + 704.532i 0.273119 + 0.170009i
\(259\) 1160.18 + 2009.49i 0.278340 + 0.482099i
\(260\) −5958.83 −1.42135
\(261\) 1791.31 + 3640.77i 0.424826 + 0.863441i
\(262\) 1755.11 0.413859
\(263\) −55.6729 96.4283i −0.0130530 0.0226085i 0.859425 0.511262i \(-0.170822\pi\)
−0.872478 + 0.488653i \(0.837488\pi\)
\(264\) 2807.58 1499.04i 0.654524 0.349468i
\(265\) −3753.10 + 6500.55i −0.870003 + 1.50689i
\(266\) 160.377 277.781i 0.0369674 0.0640295i
\(267\) 131.476 3961.06i 0.0301355 0.907914i
\(268\) 2596.73 + 4497.67i 0.591868 + 1.02515i
\(269\) −2355.30 −0.533848 −0.266924 0.963718i \(-0.586007\pi\)
−0.266924 + 0.963718i \(0.586007\pi\)
\(270\) 205.191 2054.58i 0.0462500 0.463104i
\(271\) −3281.29 −0.735514 −0.367757 0.929922i \(-0.619874\pi\)
−0.367757 + 0.929922i \(0.619874\pi\)
\(272\) −1151.95 1995.24i −0.256792 0.444777i
\(273\) 53.6782 1617.20i 0.0119002 0.358525i
\(274\) −845.522 + 1464.49i −0.186423 + 0.322894i
\(275\) 5123.15 8873.55i 1.12341 1.94580i
\(276\) 1866.75 996.709i 0.407121 0.217373i
\(277\) −1110.42 1923.30i −0.240861 0.417183i 0.720099 0.693871i \(-0.244096\pi\)
−0.960960 + 0.276688i \(0.910763\pi\)
\(278\) −1060.34 −0.228759
\(279\) −2516.73 + 3759.14i −0.540045 + 0.806644i
\(280\) 1581.20 0.337482
\(281\) 594.751 + 1030.14i 0.126263 + 0.218694i 0.922226 0.386652i \(-0.126368\pi\)
−0.795963 + 0.605345i \(0.793035\pi\)
\(282\) 491.068 + 305.676i 0.103697 + 0.0645487i
\(283\) −579.806 + 1004.25i −0.121788 + 0.210942i −0.920473 0.390807i \(-0.872196\pi\)
0.798685 + 0.601749i \(0.205529\pi\)
\(284\) −289.359 + 501.184i −0.0604587 + 0.104718i
\(285\) −4563.84 2840.86i −0.948555 0.590448i
\(286\) 887.669 + 1537.49i 0.183528 + 0.317880i
\(287\) −2068.02 −0.425336
\(288\) 2080.64 3107.78i 0.425705 0.635860i
\(289\) −2682.32 −0.545963
\(290\) −1105.88 1915.44i −0.223929 0.387857i
\(291\) −6154.23 + 3285.90i −1.23975 + 0.661935i
\(292\) 3083.62 5340.99i 0.617998 1.07040i
\(293\) −268.645 + 465.307i −0.0535645 + 0.0927765i −0.891564 0.452894i \(-0.850392\pi\)
0.838000 + 0.545670i \(0.183725\pi\)
\(294\) −6.81940 + 205.453i −0.00135277 + 0.0407560i
\(295\) −1935.04 3351.59i −0.381906 0.661481i
\(296\) −4107.59 −0.806584
\(297\) 6320.50 2853.39i 1.23486 0.557477i
\(298\) −1200.93 −0.233450
\(299\) 1232.78 + 2135.23i 0.238439 + 0.412989i
\(300\) 262.565 7910.49i 0.0505307 1.52237i
\(301\) −1112.26 + 1926.49i −0.212988 + 0.368907i
\(302\) 889.599 1540.83i 0.169506 0.293592i
\(303\) 3240.60 1730.24i 0.614415 0.328052i
\(304\) −1384.26 2397.60i −0.261160 0.452342i
\(305\) −954.408 −0.179178
\(306\) 454.527 + 923.808i 0.0849137 + 0.172584i
\(307\) −1740.18 −0.323510 −0.161755 0.986831i \(-0.551715\pi\)
−0.161755 + 0.986831i \(0.551715\pi\)
\(308\) 1271.25 + 2201.87i 0.235182 + 0.407348i
\(309\) −2271.73 1414.09i −0.418234 0.260339i
\(310\) 1232.95 2135.53i 0.225893 0.391259i
\(311\) 1958.95 3393.00i 0.357177 0.618648i −0.630311 0.776343i \(-0.717073\pi\)
0.987488 + 0.157694i \(0.0504061\pi\)
\(312\) 2431.77 + 1513.71i 0.441256 + 0.274669i
\(313\) 4742.77 + 8214.72i 0.856477 + 1.48346i 0.875268 + 0.483639i \(0.160685\pi\)
−0.0187903 + 0.999823i \(0.505981\pi\)
\(314\) −2781.67 −0.499933
\(315\) 3437.67 + 228.459i 0.614892 + 0.0408641i
\(316\) −7460.77 −1.32817
\(317\) 2837.18 + 4914.15i 0.502688 + 0.870681i 0.999995 + 0.00310684i \(0.000988941\pi\)
−0.497307 + 0.867575i \(0.665678\pi\)
\(318\) 1523.88 813.639i 0.268726 0.143480i
\(319\) 3714.14 6433.09i 0.651888 1.12910i
\(320\) 2537.54 4395.15i 0.443291 0.767802i
\(321\) −204.524 + 6161.84i −0.0355621 + 1.07140i
\(322\) −156.615 271.265i −0.0271050 0.0469472i
\(323\) 2680.52 0.461759
\(324\) 3268.74 4243.90i 0.560484 0.727691i
\(325\) 9221.58 1.57391
\(326\) 1099.57 + 1904.52i 0.186809 + 0.323563i
\(327\) −329.156 + 9916.72i −0.0556648 + 1.67705i
\(328\) 1830.45 3170.43i 0.308139 0.533712i
\(329\) −482.577 + 835.847i −0.0808672 + 0.140066i
\(330\) −3334.53 + 1780.40i −0.556243 + 0.296993i
\(331\) −2366.29 4098.54i −0.392940 0.680593i 0.599896 0.800078i \(-0.295209\pi\)
−0.992836 + 0.119486i \(0.961875\pi\)
\(332\) −7984.57 −1.31991
\(333\) −8930.26 593.481i −1.46960 0.0976654i
\(334\) −817.695 −0.133959
\(335\) −6441.83 11157.6i −1.05061 1.81971i
\(336\) 1506.31 + 937.635i 0.244571 + 0.152239i
\(337\) 2021.65 3501.59i 0.326783 0.566006i −0.655088 0.755552i \(-0.727369\pi\)
0.981872 + 0.189547i \(0.0607019\pi\)
\(338\) 88.0034 152.426i 0.0141620 0.0245293i
\(339\) 4155.21 + 2586.50i 0.665723 + 0.414393i
\(340\) 3163.20 + 5478.82i 0.504555 + 0.873915i
\(341\) 8281.84 1.31521
\(342\) 546.187 + 1110.10i 0.0863579 + 0.175519i
\(343\) −343.000 −0.0539949
\(344\) −1968.96 3410.34i −0.308603 0.534516i
\(345\) −4630.94 + 2472.58i −0.722670 + 0.385853i
\(346\) 603.841 1045.88i 0.0938229 0.162506i
\(347\) 1946.93 3372.19i 0.301201 0.521696i −0.675207 0.737628i \(-0.735946\pi\)
0.976408 + 0.215933i \(0.0692791\pi\)
\(348\) 190.353 5734.89i 0.0293218 0.883397i
\(349\) 472.304 + 818.054i 0.0724408 + 0.125471i 0.899971 0.435951i \(-0.143588\pi\)
−0.827530 + 0.561422i \(0.810254\pi\)
\(350\) −1171.53 −0.178917
\(351\) 5068.18 + 3642.28i 0.770710 + 0.553877i
\(352\) −6846.82 −1.03675
\(353\) 4699.26 + 8139.35i 0.708545 + 1.22724i 0.965397 + 0.260785i \(0.0839813\pi\)
−0.256852 + 0.966451i \(0.582685\pi\)
\(354\) −29.5468 + 890.177i −0.00443614 + 0.133651i
\(355\) 717.825 1243.31i 0.107319 0.185882i
\(356\) −2802.31 + 4853.75i −0.417198 + 0.722607i
\(357\) −1515.42 + 809.125i −0.224663 + 0.119954i
\(358\) −803.241 1391.25i −0.118583 0.205391i
\(359\) 6522.25 0.958861 0.479430 0.877580i \(-0.340843\pi\)
0.479430 + 0.877580i \(0.340843\pi\)
\(360\) −3392.99 + 5067.99i −0.496740 + 0.741962i
\(361\) −3637.93 −0.530388
\(362\) 1126.60 + 1951.33i 0.163571 + 0.283313i
\(363\) −4906.54 3054.18i −0.709439 0.441605i
\(364\) −1144.11 + 1981.66i −0.164747 + 0.285350i
\(365\) −7649.67 + 13249.6i −1.09699 + 1.90005i
\(366\) 186.474 + 116.075i 0.0266315 + 0.0165774i
\(367\) −2368.17 4101.80i −0.336833 0.583412i 0.647002 0.762488i \(-0.276022\pi\)
−0.983835 + 0.179076i \(0.942689\pi\)
\(368\) −2703.57 −0.382972
\(369\) 4437.63 6628.32i 0.626053 0.935112i
\(370\) 4878.55 0.685470
\(371\) 1441.21 + 2496.25i 0.201682 + 0.349323i
\(372\) 5643.36 3013.14i 0.786545 0.419957i
\(373\) −2863.01 + 4958.87i −0.397429 + 0.688366i −0.993408 0.114633i \(-0.963431\pi\)
0.595979 + 0.803000i \(0.296764\pi\)
\(374\) 942.425 1632.33i 0.130299 0.225684i
\(375\) −258.579 + 7790.40i −0.0356079 + 1.07279i
\(376\) −854.275 1479.65i −0.117170 0.202944i
\(377\) 6685.39 0.913303
\(378\) −643.873 462.725i −0.0876118 0.0629629i
\(379\) −2131.56 −0.288894 −0.144447 0.989513i \(-0.546140\pi\)
−0.144447 + 0.989513i \(0.546140\pi\)
\(380\) 3801.09 + 6583.68i 0.513136 + 0.888778i
\(381\) 273.190 8230.59i 0.0367348 1.10673i
\(382\) −1750.26 + 3031.54i −0.234427 + 0.406039i
\(383\) −5095.30 + 8825.32i −0.679785 + 1.17742i 0.295260 + 0.955417i \(0.404594\pi\)
−0.975045 + 0.222005i \(0.928740\pi\)
\(384\) −6109.71 + 3262.14i −0.811940 + 0.433516i
\(385\) −3153.64 5462.27i −0.417466 0.723073i
\(386\) −1961.83 −0.258691
\(387\) −3787.96 7698.87i −0.497552 1.01125i
\(388\) 9865.85 1.29088
\(389\) −2374.73 4113.15i −0.309521 0.536106i 0.668737 0.743499i \(-0.266835\pi\)
−0.978258 + 0.207393i \(0.933502\pi\)
\(390\) −2888.19 1797.82i −0.374998 0.233426i
\(391\) 1308.82 2266.95i 0.169284 0.293208i
\(392\) 303.596 525.843i 0.0391171 0.0677528i
\(393\) −9589.60 5969.25i −1.23087 0.766180i
\(394\) −110.252 190.962i −0.0140975 0.0244176i
\(395\) 18508.3 2.35760
\(396\) −9785.19 650.298i −1.24173 0.0825219i
\(397\) −4178.89 −0.528294 −0.264147 0.964482i \(-0.585090\pi\)
−0.264147 + 0.964482i \(0.585090\pi\)
\(398\) −261.892 453.611i −0.0329836 0.0571293i
\(399\) −1821.02 + 972.292i −0.228484 + 0.121994i
\(400\) −5055.90 + 8757.08i −0.631988 + 1.09464i
\(401\) −1769.54 + 3064.94i −0.220366 + 0.381685i −0.954919 0.296866i \(-0.904058\pi\)
0.734553 + 0.678551i \(0.237392\pi\)
\(402\) −98.3625 + 2963.44i −0.0122037 + 0.367668i
\(403\) 3726.79 + 6455.00i 0.460657 + 0.797882i
\(404\) −5195.01 −0.639756
\(405\) −8108.91 + 10528.0i −0.994901 + 1.29171i
\(406\) −849.329 −0.103821
\(407\) 8192.41 + 14189.7i 0.997747 + 1.72815i
\(408\) 100.885 3039.42i 0.0122415 0.368809i
\(409\) 2984.72 5169.68i 0.360843 0.624998i −0.627257 0.778812i \(-0.715822\pi\)
0.988100 + 0.153814i \(0.0491557\pi\)
\(410\) −2174.01 + 3765.49i −0.261870 + 0.453571i
\(411\) 9600.61 5126.02i 1.15222 0.615202i
\(412\) 1892.06 + 3277.15i 0.226250 + 0.391877i
\(413\) −1486.13 −0.177065
\(414\) 1205.51 + 80.1152i 0.143111 + 0.00951074i
\(415\) 19807.7 2.34294
\(416\) −3081.04 5336.51i −0.363126 0.628952i
\(417\) 5793.51 + 3606.29i 0.680358 + 0.423503i
\(418\) 1132.47 1961.50i 0.132515 0.229522i
\(419\) −5774.52 + 10001.8i −0.673279 + 1.16615i 0.303690 + 0.952771i \(0.401781\pi\)
−0.976969 + 0.213382i \(0.931552\pi\)
\(420\) −4136.24 2574.69i −0.480543 0.299124i
\(421\) −1347.49 2333.92i −0.155992 0.270187i 0.777428 0.628972i \(-0.216524\pi\)
−0.933420 + 0.358786i \(0.883191\pi\)
\(422\) 196.260 0.0226394
\(423\) −1643.48 3340.32i −0.188910 0.383952i
\(424\) −5102.57 −0.584441
\(425\) −4895.21 8478.75i −0.558712 0.967717i
\(426\) −291.460 + 155.618i −0.0331486 + 0.0176989i
\(427\) −183.249 + 317.397i −0.0207683 + 0.0359717i
\(428\) 4359.29 7550.51i 0.492323 0.852729i
\(429\) 379.039 11419.6i 0.0426578 1.28518i
\(430\) 2338.52 + 4050.44i 0.262264 + 0.454254i
\(431\) 2267.88 0.253457 0.126729 0.991937i \(-0.459552\pi\)
0.126729 + 0.991937i \(0.459552\pi\)
\(432\) −6237.54 + 2815.94i −0.694685 + 0.313616i
\(433\) 11979.8 1.32958 0.664792 0.747028i \(-0.268520\pi\)
0.664792 + 0.747028i \(0.268520\pi\)
\(434\) −473.461 820.058i −0.0523660 0.0907006i
\(435\) −472.216 + 14226.8i −0.0520483 + 1.56810i
\(436\) 7015.74 12151.6i 0.770626 1.33476i
\(437\) 1572.76 2724.10i 0.172163 0.298195i
\(438\) 3106.02 1658.38i 0.338838 0.180915i
\(439\) −5450.29 9440.17i −0.592547 1.02632i −0.993888 0.110392i \(-0.964789\pi\)
0.401341 0.915928i \(-0.368544\pi\)
\(440\) 11165.4 1.20975
\(441\) 736.020 1099.37i 0.0794752 0.118709i
\(442\) 1696.35 0.182550
\(443\) 184.244 + 319.121i 0.0197601 + 0.0342255i 0.875736 0.482790i \(-0.160376\pi\)
−0.855976 + 0.517015i \(0.827043\pi\)
\(444\) 10745.0 + 6688.44i 1.14850 + 0.714908i
\(445\) 6951.82 12040.9i 0.740557 1.28268i
\(446\) −734.965 + 1273.00i −0.0780305 + 0.135153i
\(447\) 6561.66 + 4084.44i 0.694309 + 0.432187i
\(448\) −974.432 1687.77i −0.102763 0.177990i
\(449\) −10077.9 −1.05925 −0.529625 0.848232i \(-0.677667\pi\)
−0.529625 + 0.848232i \(0.677667\pi\)
\(450\) 2513.91 3754.93i 0.263348 0.393353i
\(451\) −14603.0 −1.52467
\(452\) −3460.76 5994.20i −0.360133 0.623769i
\(453\) −10101.1 + 5393.23i −1.04766 + 0.559374i
\(454\) −686.346 + 1188.79i −0.0709511 + 0.122891i
\(455\) 2838.25 4916.00i 0.292438 0.506517i
\(456\) 121.229 3652.35i 0.0124497 0.375081i
\(457\) 1092.37 + 1892.03i 0.111813 + 0.193666i 0.916501 0.400031i \(-0.131001\pi\)
−0.804688 + 0.593698i \(0.797667\pi\)
\(458\) 152.575 0.0155663
\(459\) 658.480 6593.40i 0.0669613 0.670487i
\(460\) 7423.86 0.752476
\(461\) −8301.22 14378.1i −0.838669 1.45262i −0.891008 0.453988i \(-0.850001\pi\)
0.0523384 0.998629i \(-0.483333\pi\)
\(462\) −48.1541 + 1450.77i −0.00484920 + 0.146095i
\(463\) 1918.36 3322.69i 0.192557 0.333518i −0.753540 0.657402i \(-0.771655\pi\)
0.946097 + 0.323884i \(0.104989\pi\)
\(464\) −3665.39 + 6348.65i −0.366728 + 0.635191i
\(465\) −13999.7 + 7474.82i −1.39618 + 0.745455i
\(466\) 261.260 + 452.515i 0.0259713 + 0.0449836i
\(467\) 9751.89 0.966304 0.483152 0.875537i \(-0.339492\pi\)
0.483152 + 0.875537i \(0.339492\pi\)
\(468\) −3896.44 7919.36i −0.384857 0.782207i
\(469\) −4947.40 −0.487100
\(470\) 1014.62 + 1757.37i 0.0995761 + 0.172471i
\(471\) 15198.6 + 9460.67i 1.48686 + 0.925530i
\(472\) 1315.41 2278.35i 0.128276 0.222181i
\(473\) −7854.03 + 13603.6i −0.763485 + 1.32240i
\(474\) −3616.17 2250.96i −0.350414 0.218123i
\(475\) −5882.37 10188.6i −0.568214 0.984176i
\(476\) 2429.38 0.233929
\(477\) −11093.4 737.241i −1.06485 0.0707671i
\(478\) −2842.93 −0.272035
\(479\) −3519.95 6096.73i −0.335763 0.581558i 0.647868 0.761752i \(-0.275661\pi\)
−0.983631 + 0.180194i \(0.942327\pi\)
\(480\) 11573.9 6179.63i 1.10057 0.587626i
\(481\) −7373.10 + 12770.6i −0.698928 + 1.21058i
\(482\) −130.996 + 226.892i −0.0123791 + 0.0214412i
\(483\) −66.8754 + 2014.80i −0.00630008 + 0.189807i
\(484\) 4086.51 + 7078.05i 0.383782 + 0.664730i
\(485\) −24474.6 −2.29141
\(486\) 2864.74 1070.78i 0.267381 0.0999415i
\(487\) −8005.18 −0.744865 −0.372433 0.928059i \(-0.621476\pi\)
−0.372433 + 0.928059i \(0.621476\pi\)
\(488\) −324.395 561.868i −0.0300915 0.0521200i
\(489\) 469.523 14145.7i 0.0434204 1.30816i
\(490\) −360.578 + 624.540i −0.0332434 + 0.0575793i
\(491\) 3946.98 6836.37i 0.362779 0.628352i −0.625638 0.780114i \(-0.715161\pi\)
0.988417 + 0.151761i \(0.0484945\pi\)
\(492\) −9950.68 + 5312.93i −0.911811 + 0.486840i
\(493\) −3548.89 6146.86i −0.324207 0.561543i
\(494\) 2038.43 0.185655
\(495\) 24274.6 + 1613.22i 2.20416 + 0.146483i
\(496\) −8173.14 −0.739889
\(497\) −275.649 477.438i −0.0248784 0.0430906i
\(498\) −3870.06 2409.00i −0.348236 0.216767i
\(499\) −1370.23 + 2373.31i −0.122926 + 0.212914i −0.920920 0.389751i \(-0.872561\pi\)
0.797994 + 0.602665i \(0.205894\pi\)
\(500\) 5511.44 9546.09i 0.492958 0.853828i
\(501\) 4467.74 + 2781.04i 0.398411 + 0.247999i
\(502\) −1413.34 2447.97i −0.125658 0.217646i
\(503\) 5275.06 0.467601 0.233801 0.972285i \(-0.424884\pi\)
0.233801 + 0.972285i \(0.424884\pi\)
\(504\) 1033.94 + 2101.44i 0.0913796 + 0.185725i
\(505\) 12887.5 1.13562
\(506\) −1105.91 1915.49i −0.0971615 0.168289i
\(507\) −999.248 + 533.525i −0.0875309 + 0.0467351i
\(508\) −5822.86 + 10085.5i −0.508558 + 0.880849i
\(509\) 7851.04 13598.4i 0.683676 1.18416i −0.290175 0.956974i \(-0.593714\pi\)
0.973851 0.227188i \(-0.0729531\pi\)
\(510\) −119.820 + 3609.90i −0.0104034 + 0.313429i
\(511\) 2937.52 + 5087.94i 0.254302 + 0.440464i
\(512\) 11592.7 1.00065
\(513\) 791.269 7923.02i 0.0681002 0.681890i
\(514\) −1484.78 −0.127414
\(515\) −4693.72 8129.76i −0.401612 0.695612i
\(516\) −402.525 + 12127.1i −0.0343414 + 1.03463i
\(517\) −3407.63 + 5902.19i −0.289879 + 0.502085i
\(518\) 936.697 1622.41i 0.0794519 0.137615i
\(519\) −6856.41 + 3660.82i −0.579890 + 0.309619i
\(520\) 5024.38 + 8702.48i 0.423718 + 0.733902i
\(521\) 17171.3 1.44393 0.721966 0.691928i \(-0.243238\pi\)
0.721966 + 0.691928i \(0.243238\pi\)
\(522\) 1822.52 2722.22i 0.152815 0.228254i
\(523\) −8658.40 −0.723911 −0.361955 0.932195i \(-0.617891\pi\)
−0.361955 + 0.932195i \(0.617891\pi\)
\(524\) 7986.91 + 13833.7i 0.665858 + 1.15330i
\(525\) 6401.04 + 3984.46i 0.532122 + 0.331231i
\(526\) −44.9487 + 77.8535i −0.00372597 + 0.00645356i
\(527\) 3956.68 6853.18i 0.327051 0.566469i
\(528\) 10636.6 + 6620.95i 0.876698 + 0.545719i
\(529\) 4547.63 + 7876.73i 0.373768 + 0.647385i
\(530\) 6060.29 0.496683
\(531\) 3188.99 4763.28i 0.260622 0.389282i
\(532\) 2919.28 0.237908
\(533\) −6571.28 11381.8i −0.534022 0.924954i
\(534\) −2822.67 + 1507.10i −0.228743 + 0.122132i
\(535\) −10814.3 + 18730.9i −0.873911 + 1.51366i
\(536\) 4379.04 7584.72i 0.352884 0.611212i
\(537\) −342.988 + 10333.4i −0.0275624 + 0.830393i
\(538\) 950.801 + 1646.84i 0.0761932 + 0.131970i
\(539\) −2422.04 −0.193552
\(540\) 17127.9 7732.41i 1.36494 0.616204i
\(541\) 11733.7 0.932480 0.466240 0.884658i \(-0.345608\pi\)
0.466240 + 0.884658i \(0.345608\pi\)
\(542\) 1324.61 + 2294.29i 0.104976 + 0.181824i
\(543\) 481.064 14493.3i 0.0380192 1.14543i
\(544\) −3271.09 + 5665.70i −0.257807 + 0.446535i
\(545\) −17404.2 + 30145.0i −1.36792 + 2.36930i
\(546\) −1152.42 + 615.309i −0.0903281 + 0.0482285i
\(547\) −1267.05 2194.60i −0.0990408 0.171544i 0.812247 0.583314i \(-0.198244\pi\)
−0.911288 + 0.411770i \(0.864911\pi\)
\(548\) −15390.7 −1.19974
\(549\) −624.082 1268.42i −0.0485158 0.0986064i
\(550\) −8272.57 −0.641352
\(551\) −4264.56 7386.43i −0.329721 0.571094i
\(552\) −3029.64 1885.86i −0.233605 0.145413i
\(553\) 3553.64 6155.09i 0.273266 0.473311i
\(554\) −896.519 + 1552.82i −0.0687535 + 0.119085i
\(555\) −26655.5 16592.3i −2.03867 1.26902i
\(556\) −4825.25 8357.57i −0.368050 0.637482i
\(557\) 2697.62 0.205210 0.102605 0.994722i \(-0.467282\pi\)
0.102605 + 0.994722i \(0.467282\pi\)
\(558\) 3644.37 + 242.195i 0.276485 + 0.0183744i
\(559\) −14137.1 −1.06965
\(560\) 3112.25 + 5390.57i 0.234851 + 0.406774i
\(561\) −10700.9 + 5713.50i −0.805334 + 0.429989i
\(562\) 480.185 831.705i 0.0360416 0.0624259i
\(563\) −8699.80 + 15068.5i −0.651249 + 1.12800i 0.331571 + 0.943430i \(0.392421\pi\)
−0.982820 + 0.184566i \(0.940912\pi\)
\(564\) −174.644 + 5261.62i −0.0130387 + 0.392826i
\(565\) 8585.24 + 14870.1i 0.639264 + 1.10724i
\(566\) 936.238 0.0695283
\(567\) 1944.25 + 4718.10i 0.144005 + 0.349456i
\(568\) 975.929 0.0720934
\(569\) 5178.36 + 8969.18i 0.381526 + 0.660822i 0.991281 0.131768i \(-0.0420654\pi\)
−0.609755 + 0.792590i \(0.708732\pi\)
\(570\) −143.983 + 4337.87i −0.0105803 + 0.318760i
\(571\) −7692.04 + 13323.0i −0.563751 + 0.976446i 0.433414 + 0.901195i \(0.357309\pi\)
−0.997165 + 0.0752505i \(0.976024\pi\)
\(572\) −8078.96 + 13993.2i −0.590557 + 1.02287i
\(573\) 19873.6 10611.0i 1.44892 0.773616i
\(574\) 834.832 + 1445.97i 0.0607059 + 0.105146i
\(575\) −11488.8 −0.833244
\(576\) 7500.50 + 498.463i 0.542571 + 0.0360578i
\(577\) −25346.5 −1.82875 −0.914375 0.404868i \(-0.867318\pi\)
−0.914375 + 0.404868i \(0.867318\pi\)
\(578\) 1082.81 + 1875.49i 0.0779224 + 0.134965i
\(579\) 10719.1 + 6672.34i 0.769380 + 0.478917i
\(580\) 10065.0 17433.0i 0.720560 1.24805i
\(581\) 3803.13 6587.22i 0.271567 0.470368i
\(582\) 4781.89 + 2976.59i 0.340577 + 0.211999i
\(583\) 10176.9 + 17626.9i 0.722955 + 1.25220i
\(584\) −10400.2 −0.736925
\(585\) 9666.08 + 19645.9i 0.683150 + 1.38848i
\(586\) 433.793 0.0305799
\(587\) −3879.66 6719.77i −0.272795 0.472495i 0.696781 0.717284i \(-0.254615\pi\)
−0.969576 + 0.244789i \(0.921281\pi\)
\(588\) −1650.41 + 881.196i −0.115751 + 0.0618026i
\(589\) 4754.58 8235.18i 0.332613 0.576103i
\(590\) −1562.30 + 2705.98i −0.109015 + 0.188819i
\(591\) −47.0782 + 1418.36i −0.00327671 + 0.0987198i
\(592\) −8084.88 14003.4i −0.561295 0.972192i
\(593\) −16418.8 −1.13700 −0.568500 0.822684i \(-0.692476\pi\)
−0.568500 + 0.822684i \(0.692476\pi\)
\(594\) −4546.60 3267.45i −0.314056 0.225699i
\(595\) −6026.66 −0.415242
\(596\) −5465.02 9465.70i −0.375597 0.650554i
\(597\) −111.829 + 3369.16i −0.00766645 + 0.230972i
\(598\) 995.310 1723.93i 0.0680623 0.117887i
\(599\) 12824.4 22212.6i 0.874779 1.51516i 0.0177803 0.999842i \(-0.494340\pi\)
0.856998 0.515319i \(-0.172327\pi\)
\(600\) −11774.1 + 6286.52i −0.801129 + 0.427744i
\(601\) 3109.62 + 5386.01i 0.211055 + 0.365558i 0.952045 0.305958i \(-0.0989768\pi\)
−0.740990 + 0.671516i \(0.765643\pi\)
\(602\) 1796.01 0.121595
\(603\) 10616.3 15857.1i 0.716963 1.07090i
\(604\) 16193.1 1.09087
\(605\) −10137.6 17558.8i −0.681243 1.17995i
\(606\) −2517.98 1567.37i −0.168789 0.105066i
\(607\) 4779.12 8277.67i 0.319569 0.553510i −0.660829 0.750536i \(-0.729795\pi\)
0.980398 + 0.197027i \(0.0631286\pi\)
\(608\) −3930.74 + 6808.24i −0.262192 + 0.454129i
\(609\) 4640.58 + 2888.63i 0.308778 + 0.192205i
\(610\) 385.281 + 667.326i 0.0255731 + 0.0442939i
\(611\) −6133.68 −0.406125
\(612\) −5213.03 + 7786.51i −0.344321 + 0.514299i
\(613\) 23697.2 1.56137 0.780685 0.624925i \(-0.214870\pi\)
0.780685 + 0.624925i \(0.214870\pi\)
\(614\) 702.487 + 1216.74i 0.0461728 + 0.0799736i
\(615\) 24685.1 13180.0i 1.61853 0.864178i
\(616\) 2143.79 3713.15i 0.140220 0.242869i
\(617\) 5182.35 8976.10i 0.338142 0.585679i −0.645941 0.763387i \(-0.723535\pi\)
0.984083 + 0.177708i \(0.0568682\pi\)
\(618\) −71.6700 + 2159.25i −0.00466503 + 0.140547i
\(619\) 5909.25 + 10235.1i 0.383704 + 0.664595i 0.991588 0.129431i \(-0.0413150\pi\)
−0.607884 + 0.794025i \(0.707982\pi\)
\(620\) 22443.0 1.45376
\(621\) −6314.23 4537.77i −0.408022 0.293228i
\(622\) −3163.20 −0.203911
\(623\) −2669.54 4623.78i −0.171674 0.297348i
\(624\) −374.064 + 11269.7i −0.0239977 + 0.722995i
\(625\) −716.721 + 1241.40i −0.0458701 + 0.0794494i
\(626\) 3829.18 6632.34i 0.244481 0.423453i
\(627\) −12858.8 + 6865.67i −0.819031 + 0.437302i
\(628\) −12658.5 21925.1i −0.804343 1.39316i
\(629\) 15655.8 0.992431
\(630\) −1228.00 2495.86i −0.0776583 0.157837i
\(631\) 16150.5 1.01892 0.509462 0.860493i \(-0.329845\pi\)
0.509462 + 0.860493i \(0.329845\pi\)
\(632\) 6290.79 + 10896.0i 0.395940 + 0.685789i
\(633\) −1072.33 667.496i −0.0673324 0.0419124i
\(634\) 2290.66 3967.54i 0.143492 0.248535i
\(635\) 14445.0 25019.5i 0.902729 1.56357i
\(636\) 13347.7 + 8308.58i 0.832189 + 0.518014i
\(637\) −1089.91 1887.77i −0.0677922 0.117420i
\(638\) −5997.39 −0.372161
\(639\) 2121.76 + 141.006i 0.131354 + 0.00872945i
\(640\) −24297.6 −1.50070
\(641\) 5905.98 + 10229.4i 0.363919 + 0.630326i 0.988602 0.150552i \(-0.0481052\pi\)
−0.624683 + 0.780878i \(0.714772\pi\)
\(642\) 4390.95 2344.44i 0.269933 0.144124i
\(643\) −3098.97 + 5367.57i −0.190064 + 0.329201i −0.945271 0.326285i \(-0.894203\pi\)
0.755207 + 0.655486i \(0.227536\pi\)
\(644\) 1425.40 2468.87i 0.0872186 0.151067i
\(645\) 998.561 30084.3i 0.0609586 1.83654i
\(646\) −1082.09 1874.23i −0.0659043 0.114150i
\(647\) −4568.63 −0.277606 −0.138803 0.990320i \(-0.544326\pi\)
−0.138803 + 0.990320i \(0.544326\pi\)
\(648\) −8954.08 1195.41i −0.542823 0.0724692i
\(649\) −10494.1 −0.634713
\(650\) −3722.62 6447.77i −0.224636 0.389080i
\(651\) −202.170 + 6090.93i −0.0121715 + 0.366701i
\(652\) −10007.6 + 17333.6i −0.601114 + 1.04116i
\(653\) −13537.8 + 23448.1i −0.811294 + 1.40520i 0.100665 + 0.994920i \(0.467903\pi\)
−0.911959 + 0.410281i \(0.865430\pi\)
\(654\) 7066.69 3773.09i 0.422522 0.225596i
\(655\) −19813.5 34317.9i −1.18195 2.04719i
\(656\) 14411.3 0.857725
\(657\) −22611.0 1502.67i −1.34268 0.0892308i
\(658\) 779.238 0.0461669
\(659\) 9021.56 + 15625.8i 0.533278 + 0.923664i 0.999245 + 0.0388620i \(0.0123733\pi\)
−0.465967 + 0.884802i \(0.654293\pi\)
\(660\) −29207.4 18180.7i −1.72257 1.07225i
\(661\) 4091.02 7085.86i 0.240730 0.416956i −0.720193 0.693774i \(-0.755947\pi\)
0.960922 + 0.276818i \(0.0892799\pi\)
\(662\) −1910.48 + 3309.05i −0.112164 + 0.194275i
\(663\) −9268.55 5769.40i −0.542927 0.337956i
\(664\) 6732.45 + 11660.9i 0.393479 + 0.681525i
\(665\) −7241.99 −0.422304
\(666\) 3190.06 + 6483.66i 0.185604 + 0.377232i
\(667\) −8329.06 −0.483512
\(668\) −3721.05 6445.05i −0.215527 0.373303i
\(669\) 8345.27 4455.76i 0.482282 0.257503i
\(670\) −5200.95 + 9008.31i −0.299896 + 0.519435i
\(671\) −1293.98 + 2241.25i −0.0744466 + 0.128945i
\(672\) 167.139 5035.53i 0.00959456 0.289062i
\(673\) 9551.45 + 16543.6i 0.547075 + 0.947561i 0.998473 + 0.0552387i \(0.0175920\pi\)
−0.451398 + 0.892322i \(0.649075\pi\)
\(674\) −3264.44 −0.186560
\(675\) −26506.3 + 11966.3i −1.51145 + 0.682344i
\(676\) 1601.90 0.0911411
\(677\) −4081.39 7069.17i −0.231699 0.401315i 0.726609 0.687051i \(-0.241095\pi\)
−0.958308 + 0.285736i \(0.907762\pi\)
\(678\) 131.091 3949.47i 0.00742555 0.223715i
\(679\) −4699.20 + 8139.26i −0.265595 + 0.460024i
\(680\) 5334.31 9239.30i 0.300826 0.521045i
\(681\) 7793.21 4161.00i 0.438527 0.234141i
\(682\) −3343.26 5790.70i −0.187713 0.325128i
\(683\) 15581.2 0.872909 0.436454 0.899726i \(-0.356234\pi\)
0.436454 + 0.899726i \(0.356234\pi\)
\(684\) −6264.29 + 9356.73i −0.350177 + 0.523046i
\(685\) 38180.5 2.12964
\(686\) 138.464 + 239.827i 0.00770640 + 0.0133479i
\(687\) −833.642 518.918i −0.0462961 0.0288180i
\(688\) 7750.94 13425.0i 0.429508 0.743930i
\(689\) −9159.10 + 15864.0i −0.506435 + 0.877171i
\(690\) 3598.28 + 2239.83i 0.198528 + 0.123578i
\(691\) −11866.9 20554.0i −0.653310 1.13157i −0.982315 0.187238i \(-0.940046\pi\)
0.329005 0.944328i \(-0.393287\pi\)
\(692\) 10991.5 0.603807
\(693\) 5197.28 7762.98i 0.284889 0.425528i
\(694\) −3143.80 −0.171955
\(695\) 11970.2 + 20733.0i 0.653317 + 1.13158i
\(696\) −8535.93 + 4557.56i −0.464876 + 0.248210i
\(697\) −6976.64 + 12083.9i −0.379138 + 0.656686i
\(698\) 381.325 660.474i 0.0206782 0.0358156i
\(699\) 111.559 3361.02i 0.00603656 0.181868i
\(700\) −5331.24 9233.98i −0.287860 0.498588i
\(701\) 32518.0 1.75205 0.876025 0.482266i \(-0.160186\pi\)
0.876025 + 0.482266i \(0.160186\pi\)
\(702\) 500.750 5014.03i 0.0269225 0.269576i
\(703\) 18813.0 1.00931
\(704\) −6880.79 11917.9i −0.368366 0.638028i
\(705\) 433.246 13052.7i 0.0231447 0.697296i
\(706\) 3794.05 6571.49i 0.202253 0.350313i
\(707\) 2474.44 4285.85i 0.131628 0.227986i
\(708\) −7150.81 + 3818.01i −0.379582 + 0.202669i
\(709\) −6957.97 12051.6i −0.368564 0.638372i 0.620777 0.783987i \(-0.286817\pi\)
−0.989341 + 0.145615i \(0.953484\pi\)
\(710\) −1159.10 −0.0612681
\(711\) 12102.4 + 24597.7i 0.638364 + 1.29745i
\(712\) 9451.45 0.497483
\(713\) −4643.06 8042.02i −0.243877 0.422407i
\(714\) 1177.50 + 732.959i 0.0617182 + 0.0384178i
\(715\) 20041.8 34713.5i 1.04828 1.81568i
\(716\) 7310.56 12662.3i 0.381576 0.660909i
\(717\) 15533.3 + 9669.00i 0.809066 + 0.503620i
\(718\) −2632.94 4560.38i −0.136853 0.237036i
\(719\) −20884.8 −1.08327 −0.541635 0.840614i \(-0.682194\pi\)
−0.541635 + 0.840614i \(0.682194\pi\)
\(720\) −23955.9 1592.05i −1.23998 0.0824057i
\(721\) −3604.83 −0.186201
\(722\) 1468.58 + 2543.66i 0.0756993 + 0.131115i
\(723\) 1487.42 794.171i 0.0765113 0.0408514i
\(724\) −10253.5 + 17759.6i −0.526339 + 0.911647i
\(725\) −15576.0 + 26978.5i −0.797902 + 1.38201i
\(726\) −154.794 + 4663.60i −0.00791317 + 0.238406i
\(727\) 10445.4 + 18092.0i 0.532875 + 0.922967i 0.999263 + 0.0383863i \(0.0122218\pi\)
−0.466388 + 0.884580i \(0.654445\pi\)
\(728\) 3858.78 0.196451
\(729\) −19294.2 3892.64i −0.980249 0.197767i
\(730\) 12352.3 0.626271
\(731\) 7504.58 + 12998.3i 0.379709 + 0.657675i
\(732\) −66.3176 + 1998.00i −0.00334859 + 0.100885i
\(733\) 4126.43 7147.19i 0.207931 0.360147i −0.743132 0.669145i \(-0.766660\pi\)
0.951063 + 0.308998i \(0.0999938\pi\)
\(734\) −1912.00 + 3311.67i −0.0961486 + 0.166534i
\(735\) 4094.24 2186.02i 0.205467 0.109704i
\(736\) 3838.54 + 6648.54i 0.192242 + 0.332974i
\(737\) −34935.2 −1.74607
\(738\) −6425.96 427.052i −0.320519 0.0213008i
\(739\) 29252.3 1.45611 0.728054 0.685520i \(-0.240425\pi\)
0.728054 + 0.685520i \(0.240425\pi\)
\(740\) 22200.6 + 38452.6i 1.10285 + 1.91020i
\(741\) −11137.6 6932.86i −0.552161 0.343704i
\(742\) 1163.59 2015.40i 0.0575699 0.0997140i
\(743\) −13701.6 + 23731.9i −0.676532 + 1.17179i 0.299486 + 0.954101i \(0.403185\pi\)
−0.976018 + 0.217688i \(0.930149\pi\)
\(744\) −9158.88 5701.13i −0.451318 0.280932i
\(745\) 13557.3 + 23482.0i 0.666714 + 1.15478i
\(746\) 4623.02 0.226891
\(747\) 12952.1 + 26324.7i 0.634396 + 1.28938i
\(748\) 17154.6 0.838550
\(749\) 4152.75 + 7192.78i 0.202588 + 0.350892i
\(750\) 5551.47 2964.07i 0.270281 0.144310i
\(751\) −9515.80 + 16481.9i −0.462366 + 0.800841i −0.999078 0.0429244i \(-0.986333\pi\)
0.536713 + 0.843765i \(0.319666\pi\)
\(752\) 3362.91 5824.72i 0.163075 0.282455i
\(753\) −603.503 + 18182.2i −0.0292070 + 0.879940i
\(754\) −2698.80 4674.46i −0.130351 0.225774i
\(755\) −40170.8 −1.93638
\(756\) 717.134 7180.70i 0.0344999 0.345449i
\(757\) −15036.1 −0.721926 −0.360963 0.932580i \(-0.617552\pi\)
−0.360963 + 0.932580i \(0.617552\pi\)
\(758\) 860.481 + 1490.40i 0.0412323 + 0.0714164i
\(759\) −472.229 + 14227.2i −0.0225835 + 0.680388i
\(760\) 6410.02 11102.5i 0.305942 0.529907i
\(761\) 10108.5 17508.4i 0.481513 0.834004i −0.518262 0.855222i \(-0.673421\pi\)
0.999775 + 0.0212174i \(0.00675422\pi\)
\(762\) −5865.15 + 3131.56i −0.278835 + 0.148877i
\(763\) 6683.33 + 11575.9i 0.317107 + 0.549246i
\(764\) −31859.3 −1.50868
\(765\) 12932.2 19316.3i 0.611195 0.912919i
\(766\) 8227.60 0.388088
\(767\) −4722.29 8179.25i −0.222310 0.385053i
\(768\) −5077.95 3160.87i −0.238587 0.148513i
\(769\) 6078.16 10527.7i 0.285025 0.493677i −0.687590 0.726099i \(-0.741332\pi\)
0.972615 + 0.232421i \(0.0746649\pi\)
\(770\) −2546.16 + 4410.08i −0.119165 + 0.206400i
\(771\) 8112.57 + 5049.84i 0.378946 + 0.235883i
\(772\) −8927.64 15463.1i −0.416208