Properties

Label 63.4.f.b.22.4
Level $63$
Weight $4$
Character 63.22
Analytic conductor $3.717$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 3 x^{15} + 58 x^{14} - 129 x^{13} + 2107 x^{12} - 4455 x^{11} + 42901 x^{10} - 76404 x^{9} + 599392 x^{8} - 1089732 x^{7} + 4808401 x^{6} - 7939134 x^{5} + 26225236 x^{4} - 39450864 x^{3} + 62254768 x^{2} - 39660672 x + 21307456\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 22.4
Root \(0.797492 + 1.38130i\) of defining polynomial
Character \(\chi\) \(=\) 63.22
Dual form 63.4.f.b.43.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.797492 - 1.38130i) q^{2} +(5.17737 - 0.441383i) q^{3} +(2.72801 - 4.72505i) q^{4} +(1.27816 - 2.21384i) q^{5} +(-4.73860 - 6.79949i) q^{6} +(3.50000 + 6.06218i) q^{7} -21.4622 q^{8} +(26.6104 - 4.57041i) q^{9} +O(q^{10})\) \(q+(-0.797492 - 1.38130i) q^{2} +(5.17737 - 0.441383i) q^{3} +(2.72801 - 4.72505i) q^{4} +(1.27816 - 2.21384i) q^{5} +(-4.73860 - 6.79949i) q^{6} +(3.50000 + 6.06218i) q^{7} -21.4622 q^{8} +(26.6104 - 4.57041i) q^{9} -4.07730 q^{10} +(-4.04539 - 7.00681i) q^{11} +(12.0384 - 25.6675i) q^{12} +(13.1187 - 22.7222i) q^{13} +(5.58245 - 9.66908i) q^{14} +(5.64037 - 12.0260i) q^{15} +(-4.70819 - 8.15482i) q^{16} -69.7407 q^{17} +(-27.5347 - 33.1120i) q^{18} +105.751 q^{19} +(-6.97368 - 12.0788i) q^{20} +(20.7965 + 29.8413i) q^{21} +(-6.45233 + 11.1758i) q^{22} +(-77.1585 + 133.642i) q^{23} +(-111.118 + 9.47303i) q^{24} +(59.2326 + 102.594i) q^{25} -41.8481 q^{26} +(135.754 - 35.4080i) q^{27} +38.1922 q^{28} +(36.3274 + 62.9209i) q^{29} +(-21.1097 + 1.79965i) q^{30} +(-141.400 + 244.911i) q^{31} +(-93.3581 + 161.701i) q^{32} +(-24.0372 - 34.4913i) q^{33} +(55.6177 + 96.3327i) q^{34} +17.8943 q^{35} +(50.9980 - 138.204i) q^{36} +25.7974 q^{37} +(-84.3355 - 146.073i) q^{38} +(57.8910 - 123.432i) q^{39} +(-27.4321 + 47.5138i) q^{40} +(43.5544 - 75.4385i) q^{41} +(24.6346 - 52.5244i) q^{42} +(-44.5553 - 77.1721i) q^{43} -44.1434 q^{44} +(23.8942 - 64.7528i) q^{45} +246.133 q^{46} +(-157.309 - 272.467i) q^{47} +(-27.9754 - 40.1424i) q^{48} +(-24.5000 + 42.4352i) q^{49} +(94.4751 - 163.636i) q^{50} +(-361.074 + 30.7824i) q^{51} +(-71.5757 - 123.973i) q^{52} +356.536 q^{53} +(-157.172 - 159.280i) q^{54} -20.6826 q^{55} +(-75.1175 - 130.107i) q^{56} +(547.512 - 46.6766i) q^{57} +(57.9416 - 100.358i) q^{58} +(-206.245 + 357.226i) q^{59} +(-41.4367 - 59.4582i) q^{60} +(-73.3780 - 127.094i) q^{61} +451.060 q^{62} +(120.843 + 145.320i) q^{63} +222.479 q^{64} +(-33.5355 - 58.0852i) q^{65} +(-28.4733 + 60.7090i) q^{66} +(153.201 - 265.352i) q^{67} +(-190.254 + 329.529i) q^{68} +(-340.491 + 725.973i) q^{69} +(-14.2705 - 24.7173i) q^{70} +1038.77 q^{71} +(-571.116 + 98.0908i) q^{72} -1157.10 q^{73} +(-20.5732 - 35.6339i) q^{74} +(351.952 + 505.022i) q^{75} +(288.490 - 499.679i) q^{76} +(28.3177 - 49.0477i) q^{77} +(-216.663 + 18.4710i) q^{78} +(-373.147 - 646.309i) q^{79} -24.0713 q^{80} +(687.223 - 243.240i) q^{81} -138.937 q^{82} +(-262.712 - 455.031i) q^{83} +(197.735 - 16.8574i) q^{84} +(-89.1399 + 154.395i) q^{85} +(-71.0651 + 123.088i) q^{86} +(215.852 + 309.730i) q^{87} +(86.8227 + 150.381i) q^{88} -643.894 q^{89} +(-108.498 + 18.6349i) q^{90} +183.661 q^{91} +(420.978 + 729.156i) q^{92} +(-623.979 + 1330.41i) q^{93} +(-250.905 + 434.580i) q^{94} +(135.167 - 234.116i) q^{95} +(-411.978 + 878.393i) q^{96} +(-154.581 - 267.742i) q^{97} +78.1543 q^{98} +(-139.673 - 167.965i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} + O(q^{10}) \) \( 16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} - 28q^{10} - 24q^{11} + 268q^{12} - 68q^{13} + 21q^{14} + 56q^{15} - 103q^{16} + 336q^{17} - 479q^{18} + 352q^{19} - 330q^{20} + 70q^{21} - 151q^{22} - 228q^{23} - 195q^{24} - 244q^{25} + 1590q^{26} + 272q^{27} - 602q^{28} - 618q^{29} + 1030q^{30} - 72q^{31} - 786q^{32} - 700q^{33} + 261q^{34} - 420q^{35} + 727q^{36} + 420q^{37} - 1032q^{38} - 22q^{39} + 375q^{40} - 420q^{41} - 175q^{42} + 2q^{43} + 774q^{44} + 1406q^{45} + 804q^{46} - 570q^{47} + 1864q^{48} - 392q^{49} - 1110q^{50} - 2940q^{51} + 431q^{52} + 1056q^{53} + 2269q^{54} - 1676q^{55} + 42q^{56} + 122q^{57} - 37q^{58} + 150q^{59} - 6350q^{60} - 578q^{61} + 2340q^{62} - 350q^{63} - 224q^{64} + 366q^{65} + 5812q^{66} + 898q^{67} - 2526q^{68} - 2166q^{69} - 98q^{70} + 1764q^{71} + 1350q^{72} + 1944q^{73} + 222q^{74} - 2096q^{75} - 1423q^{76} + 168q^{77} - 5558q^{78} + 158q^{79} + 4950q^{80} + 476q^{81} - 422q^{82} - 2958q^{83} + 1715q^{84} + 774q^{85} + 114q^{86} + 44q^{87} - 1317q^{88} + 8760q^{89} - 3659q^{90} - 952q^{91} - 4629q^{92} + 3954q^{93} + 3234q^{94} - 930q^{95} - 5923q^{96} + 60q^{97} + 294q^{98} + 1214q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.797492 1.38130i −0.281956 0.488362i 0.689910 0.723895i \(-0.257650\pi\)
−0.971866 + 0.235532i \(0.924317\pi\)
\(3\) 5.17737 0.441383i 0.996386 0.0849442i
\(4\) 2.72801 4.72505i 0.341001 0.590632i
\(5\) 1.27816 2.21384i 0.114322 0.198012i −0.803186 0.595728i \(-0.796864\pi\)
0.917509 + 0.397716i \(0.130197\pi\)
\(6\) −4.73860 6.79949i −0.322421 0.462647i
\(7\) 3.50000 + 6.06218i 0.188982 + 0.327327i
\(8\) −21.4622 −0.948502
\(9\) 26.6104 4.57041i 0.985569 0.169274i
\(10\) −4.07730 −0.128935
\(11\) −4.04539 7.00681i −0.110885 0.192058i 0.805243 0.592945i \(-0.202035\pi\)
−0.916127 + 0.400888i \(0.868702\pi\)
\(12\) 12.0384 25.6675i 0.289598 0.617463i
\(13\) 13.1187 22.7222i 0.279882 0.484769i −0.691473 0.722402i \(-0.743038\pi\)
0.971355 + 0.237633i \(0.0763714\pi\)
\(14\) 5.58245 9.66908i 0.106569 0.184584i
\(15\) 5.64037 12.0260i 0.0970891 0.207007i
\(16\) −4.70819 8.15482i −0.0735654 0.127419i
\(17\) −69.7407 −0.994977 −0.497489 0.867471i \(-0.665744\pi\)
−0.497489 + 0.867471i \(0.665744\pi\)
\(18\) −27.5347 33.1120i −0.360554 0.433587i
\(19\) 105.751 1.27689 0.638445 0.769667i \(-0.279578\pi\)
0.638445 + 0.769667i \(0.279578\pi\)
\(20\) −6.97368 12.0788i −0.0779681 0.135045i
\(21\) 20.7965 + 29.8413i 0.216104 + 0.310091i
\(22\) −6.45233 + 11.1758i −0.0625291 + 0.108304i
\(23\) −77.1585 + 133.642i −0.699507 + 1.21158i 0.269131 + 0.963104i \(0.413263\pi\)
−0.968638 + 0.248477i \(0.920070\pi\)
\(24\) −111.118 + 9.47303i −0.945074 + 0.0805697i
\(25\) 59.2326 + 102.594i 0.473861 + 0.820751i
\(26\) −41.8481 −0.315657
\(27\) 135.754 35.4080i 0.967628 0.252381i
\(28\) 38.1922 0.257773
\(29\) 36.3274 + 62.9209i 0.232615 + 0.402900i 0.958577 0.284834i \(-0.0919386\pi\)
−0.725962 + 0.687735i \(0.758605\pi\)
\(30\) −21.1097 + 1.79965i −0.128469 + 0.0109523i
\(31\) −141.400 + 244.911i −0.819230 + 1.41895i 0.0870211 + 0.996206i \(0.472265\pi\)
−0.906251 + 0.422741i \(0.861068\pi\)
\(32\) −93.3581 + 161.701i −0.515736 + 0.893280i
\(33\) −24.0372 34.4913i −0.126798 0.181944i
\(34\) 55.6177 + 96.3327i 0.280540 + 0.485909i
\(35\) 17.8943 0.0864195
\(36\) 50.9980 138.204i 0.236102 0.639831i
\(37\) 25.7974 0.114623 0.0573117 0.998356i \(-0.481747\pi\)
0.0573117 + 0.998356i \(0.481747\pi\)
\(38\) −84.3355 146.073i −0.360027 0.623585i
\(39\) 57.8910 123.432i 0.237692 0.506791i
\(40\) −27.4321 + 47.5138i −0.108435 + 0.187815i
\(41\) 43.5544 75.4385i 0.165904 0.287354i −0.771072 0.636748i \(-0.780279\pi\)
0.936976 + 0.349394i \(0.113613\pi\)
\(42\) 24.6346 52.5244i 0.0905049 0.192969i
\(43\) −44.5553 77.1721i −0.158014 0.273689i 0.776138 0.630563i \(-0.217176\pi\)
−0.934153 + 0.356874i \(0.883843\pi\)
\(44\) −44.1434 −0.151247
\(45\) 23.8942 64.7528i 0.0791541 0.214506i
\(46\) 246.133 0.788921
\(47\) −157.309 272.467i −0.488209 0.845603i 0.511699 0.859165i \(-0.329016\pi\)
−0.999908 + 0.0135621i \(0.995683\pi\)
\(48\) −27.9754 40.1424i −0.0841231 0.120710i
\(49\) −24.5000 + 42.4352i −0.0714286 + 0.123718i
\(50\) 94.4751 163.636i 0.267216 0.462832i
\(51\) −361.074 + 30.7824i −0.991381 + 0.0845175i
\(52\) −71.5757 123.973i −0.190880 0.330614i
\(53\) 356.536 0.924038 0.462019 0.886870i \(-0.347125\pi\)
0.462019 + 0.886870i \(0.347125\pi\)
\(54\) −157.172 159.280i −0.396082 0.401393i
\(55\) −20.6826 −0.0507063
\(56\) −75.1175 130.107i −0.179250 0.310470i
\(57\) 547.512 46.6766i 1.27228 0.108464i
\(58\) 57.9416 100.358i 0.131174 0.227200i
\(59\) −206.245 + 357.226i −0.455098 + 0.788252i −0.998694 0.0510946i \(-0.983729\pi\)
0.543596 + 0.839347i \(0.317062\pi\)
\(60\) −41.4367 59.4582i −0.0891576 0.127934i
\(61\) −73.3780 127.094i −0.154018 0.266767i 0.778683 0.627417i \(-0.215888\pi\)
−0.932701 + 0.360651i \(0.882555\pi\)
\(62\) 451.060 0.923947
\(63\) 120.843 + 145.320i 0.241663 + 0.290613i
\(64\) 222.479 0.434528
\(65\) −33.5355 58.0852i −0.0639934 0.110840i
\(66\) −28.4733 + 60.7090i −0.0531034 + 0.113224i
\(67\) 153.201 265.352i 0.279350 0.483849i −0.691873 0.722019i \(-0.743214\pi\)
0.971223 + 0.238170i \(0.0765476\pi\)
\(68\) −190.254 + 329.529i −0.339289 + 0.587665i
\(69\) −340.491 + 725.973i −0.594062 + 1.26662i
\(70\) −14.2705 24.7173i −0.0243665 0.0422040i
\(71\) 1038.77 1.73632 0.868160 0.496284i \(-0.165302\pi\)
0.868160 + 0.496284i \(0.165302\pi\)
\(72\) −571.116 + 98.0908i −0.934814 + 0.160557i
\(73\) −1157.10 −1.85518 −0.927590 0.373600i \(-0.878123\pi\)
−0.927590 + 0.373600i \(0.878123\pi\)
\(74\) −20.5732 35.6339i −0.0323188 0.0559777i
\(75\) 351.952 + 505.022i 0.541866 + 0.777533i
\(76\) 288.490 499.679i 0.435421 0.754172i
\(77\) 28.3177 49.0477i 0.0419104 0.0725910i
\(78\) −216.663 + 18.4710i −0.314516 + 0.0268133i
\(79\) −373.147 646.309i −0.531421 0.920449i −0.999327 0.0366706i \(-0.988325\pi\)
0.467906 0.883778i \(-0.345009\pi\)
\(80\) −24.0713 −0.0336407
\(81\) 687.223 243.240i 0.942692 0.333663i
\(82\) −138.937 −0.187111
\(83\) −262.712 455.031i −0.347427 0.601761i 0.638365 0.769734i \(-0.279611\pi\)
−0.985792 + 0.167973i \(0.946278\pi\)
\(84\) 197.735 16.8574i 0.256841 0.0218963i
\(85\) −89.1399 + 154.395i −0.113748 + 0.197017i
\(86\) −71.0651 + 123.088i −0.0891063 + 0.154337i
\(87\) 215.852 + 309.730i 0.265998 + 0.381685i
\(88\) 86.8227 + 150.381i 0.105174 + 0.182167i
\(89\) −643.894 −0.766883 −0.383441 0.923565i \(-0.625261\pi\)
−0.383441 + 0.923565i \(0.625261\pi\)
\(90\) −108.498 + 18.6349i −0.127075 + 0.0218255i
\(91\) 183.661 0.211571
\(92\) 420.978 + 729.156i 0.477066 + 0.826302i
\(93\) −623.979 + 1330.41i −0.695737 + 1.48341i
\(94\) −250.905 + 434.580i −0.275307 + 0.476846i
\(95\) 135.167 234.116i 0.145977 0.252839i
\(96\) −411.978 + 878.393i −0.437993 + 0.933860i
\(97\) −154.581 267.742i −0.161808 0.280259i 0.773709 0.633541i \(-0.218399\pi\)
−0.935517 + 0.353282i \(0.885066\pi\)
\(98\) 78.1543 0.0805589
\(99\) −139.673 167.965i −0.141795 0.170516i
\(100\) 646.349 0.646349
\(101\) −560.283 970.439i −0.551983 0.956062i −0.998131 0.0611033i \(-0.980538\pi\)
0.446149 0.894959i \(-0.352795\pi\)
\(102\) 330.473 + 474.201i 0.320801 + 0.460323i
\(103\) −282.613 + 489.500i −0.270356 + 0.468271i −0.968953 0.247245i \(-0.920475\pi\)
0.698597 + 0.715516i \(0.253808\pi\)
\(104\) −281.555 + 487.667i −0.265468 + 0.459805i
\(105\) 92.6452 7.89822i 0.0861071 0.00734083i
\(106\) −284.335 492.483i −0.260538 0.451266i
\(107\) 1593.24 1.43948 0.719738 0.694246i \(-0.244262\pi\)
0.719738 + 0.694246i \(0.244262\pi\)
\(108\) 203.035 738.041i 0.180898 0.657574i
\(109\) −1498.64 −1.31691 −0.658457 0.752619i \(-0.728790\pi\)
−0.658457 + 0.752619i \(0.728790\pi\)
\(110\) 16.4942 + 28.5689i 0.0142969 + 0.0247630i
\(111\) 133.563 11.3865i 0.114209 0.00973658i
\(112\) 32.9573 57.0838i 0.0278051 0.0481599i
\(113\) −347.639 + 602.129i −0.289408 + 0.501270i −0.973669 0.227968i \(-0.926792\pi\)
0.684260 + 0.729238i \(0.260125\pi\)
\(114\) −501.111 719.052i −0.411696 0.590749i
\(115\) 197.242 + 341.633i 0.159938 + 0.277021i
\(116\) 396.406 0.317288
\(117\) 245.243 664.603i 0.193784 0.525150i
\(118\) 657.914 0.513270
\(119\) −244.093 422.781i −0.188033 0.325683i
\(120\) −121.054 + 258.105i −0.0920892 + 0.196347i
\(121\) 632.770 1095.99i 0.475409 0.823433i
\(122\) −117.037 + 202.714i −0.0868526 + 0.150433i
\(123\) 192.200 409.797i 0.140895 0.300408i
\(124\) 771.479 + 1336.24i 0.558717 + 0.967726i
\(125\) 622.376 0.445336
\(126\) 104.359 282.812i 0.0737862 0.199959i
\(127\) −1377.51 −0.962475 −0.481237 0.876590i \(-0.659812\pi\)
−0.481237 + 0.876590i \(0.659812\pi\)
\(128\) 569.440 + 986.299i 0.393218 + 0.681073i
\(129\) −264.742 379.883i −0.180692 0.259278i
\(130\) −53.4887 + 92.6451i −0.0360867 + 0.0625039i
\(131\) 1361.14 2357.56i 0.907809 1.57237i 0.0907071 0.995878i \(-0.471087\pi\)
0.817102 0.576493i \(-0.195579\pi\)
\(132\) −228.547 + 19.4842i −0.150700 + 0.0128476i
\(133\) 370.128 + 641.081i 0.241310 + 0.417960i
\(134\) −488.706 −0.315058
\(135\) 95.1283 345.796i 0.0606470 0.220455i
\(136\) 1496.79 0.943738
\(137\) −1176.31 2037.43i −0.733570 1.27058i −0.955348 0.295484i \(-0.904519\pi\)
0.221777 0.975097i \(-0.428814\pi\)
\(138\) 1274.32 108.639i 0.786069 0.0670142i
\(139\) 1024.35 1774.22i 0.625065 1.08264i −0.363464 0.931608i \(-0.618406\pi\)
0.988528 0.151036i \(-0.0482608\pi\)
\(140\) 48.8157 84.5514i 0.0294692 0.0510421i
\(141\) −934.707 1341.23i −0.558273 0.801076i
\(142\) −828.408 1434.84i −0.489566 0.847954i
\(143\) −212.280 −0.124138
\(144\) −162.557 195.484i −0.0940726 0.113128i
\(145\) 185.729 0.106372
\(146\) 922.777 + 1598.30i 0.523079 + 0.906000i
\(147\) −108.115 + 230.517i −0.0606613 + 0.129338i
\(148\) 70.3756 121.894i 0.0390867 0.0677002i
\(149\) −646.993 + 1120.63i −0.355730 + 0.616142i −0.987243 0.159223i \(-0.949101\pi\)
0.631513 + 0.775366i \(0.282434\pi\)
\(150\) 416.907 888.903i 0.226935 0.483857i
\(151\) 1070.84 + 1854.76i 0.577113 + 0.999589i 0.995809 + 0.0914626i \(0.0291542\pi\)
−0.418695 + 0.908127i \(0.637512\pi\)
\(152\) −2269.64 −1.21113
\(153\) −1855.83 + 318.743i −0.980619 + 0.168424i
\(154\) −90.3326 −0.0472676
\(155\) 361.463 + 626.072i 0.187312 + 0.324434i
\(156\) −425.293 610.261i −0.218274 0.313205i
\(157\) −1294.10 + 2241.44i −0.657835 + 1.13940i 0.323340 + 0.946283i \(0.395194\pi\)
−0.981175 + 0.193121i \(0.938139\pi\)
\(158\) −595.163 + 1030.85i −0.299675 + 0.519052i
\(159\) 1845.92 157.369i 0.920699 0.0784917i
\(160\) 238.653 + 413.360i 0.117920 + 0.204244i
\(161\) −1080.22 −0.528777
\(162\) −884.042 755.277i −0.428746 0.366297i
\(163\) 842.940 0.405056 0.202528 0.979276i \(-0.435084\pi\)
0.202528 + 0.979276i \(0.435084\pi\)
\(164\) −237.634 411.594i −0.113147 0.195976i
\(165\) −107.082 + 9.12895i −0.0505230 + 0.00430720i
\(166\) −419.022 + 725.767i −0.195918 + 0.339340i
\(167\) −828.694 + 1435.34i −0.383990 + 0.665089i −0.991628 0.129124i \(-0.958783\pi\)
0.607639 + 0.794213i \(0.292117\pi\)
\(168\) −446.339 640.459i −0.204975 0.294122i
\(169\) 754.302 + 1306.49i 0.343333 + 0.594669i
\(170\) 284.354 0.128288
\(171\) 2814.07 483.324i 1.25846 0.216145i
\(172\) −486.190 −0.215533
\(173\) −973.548 1686.23i −0.427847 0.741052i 0.568835 0.822452i \(-0.307394\pi\)
−0.996682 + 0.0813995i \(0.974061\pi\)
\(174\) 255.689 545.164i 0.111401 0.237522i
\(175\) −414.628 + 718.157i −0.179103 + 0.310215i
\(176\) −38.0929 + 65.9788i −0.0163145 + 0.0282576i
\(177\) −910.132 + 1940.53i −0.386495 + 0.824061i
\(178\) 513.500 + 889.409i 0.216227 + 0.374517i
\(179\) −841.904 −0.351547 −0.175773 0.984431i \(-0.556243\pi\)
−0.175773 + 0.984431i \(0.556243\pi\)
\(180\) −240.777 289.548i −0.0997025 0.119898i
\(181\) 158.260 0.0649912 0.0324956 0.999472i \(-0.489655\pi\)
0.0324956 + 0.999472i \(0.489655\pi\)
\(182\) −146.468 253.691i −0.0596536 0.103323i
\(183\) −436.003 625.628i −0.176122 0.252720i
\(184\) 1655.99 2868.25i 0.663483 1.14919i
\(185\) 32.9732 57.1113i 0.0131040 0.0226968i
\(186\) 2335.31 199.090i 0.920608 0.0784839i
\(187\) 282.128 + 488.660i 0.110328 + 0.191093i
\(188\) −1716.56 −0.665920
\(189\) 689.790 + 699.039i 0.265476 + 0.269035i
\(190\) −431.178 −0.164636
\(191\) 2309.48 + 4000.14i 0.874912 + 1.51539i 0.856857 + 0.515555i \(0.172414\pi\)
0.0180552 + 0.999837i \(0.494253\pi\)
\(192\) 1151.85 98.1982i 0.432958 0.0369106i
\(193\) −2295.48 + 3975.89i −0.856126 + 1.48285i 0.0194700 + 0.999810i \(0.493802\pi\)
−0.875596 + 0.483044i \(0.839531\pi\)
\(194\) −246.555 + 427.045i −0.0912453 + 0.158041i
\(195\) −199.264 285.927i −0.0731773 0.105003i
\(196\) 133.673 + 231.528i 0.0487145 + 0.0843760i
\(197\) −2646.03 −0.956965 −0.478482 0.878097i \(-0.658813\pi\)
−0.478482 + 0.878097i \(0.658813\pi\)
\(198\) −120.621 + 326.881i −0.0432938 + 0.117325i
\(199\) 4741.58 1.68905 0.844527 0.535513i \(-0.179882\pi\)
0.844527 + 0.535513i \(0.179882\pi\)
\(200\) −1271.26 2201.89i −0.449458 0.778484i
\(201\) 676.056 1441.45i 0.237241 0.505829i
\(202\) −893.643 + 1547.84i −0.311270 + 0.539135i
\(203\) −254.292 + 440.446i −0.0879201 + 0.152282i
\(204\) −839.565 + 1790.07i −0.288144 + 0.614362i
\(205\) −111.339 192.845i −0.0379330 0.0657019i
\(206\) 901.527 0.304915
\(207\) −1442.41 + 3908.92i −0.484322 + 1.31251i
\(208\) −247.060 −0.0823585
\(209\) −427.803 740.977i −0.141587 0.245236i
\(210\) −84.7937 121.672i −0.0278634 0.0399817i
\(211\) 2290.39 3967.08i 0.747285 1.29434i −0.201834 0.979420i \(-0.564690\pi\)
0.949119 0.314916i \(-0.101977\pi\)
\(212\) 972.635 1684.65i 0.315098 0.545766i
\(213\) 5378.07 458.493i 1.73005 0.147490i
\(214\) −1270.59 2200.73i −0.405869 0.702986i
\(215\) −227.796 −0.0722583
\(216\) −2913.58 + 759.933i −0.917797 + 0.239384i
\(217\) −1979.59 −0.619279
\(218\) 1195.15 + 2070.07i 0.371312 + 0.643131i
\(219\) −5990.73 + 510.723i −1.84847 + 0.157587i
\(220\) −56.4224 + 97.7265i −0.0172909 + 0.0299487i
\(221\) −914.905 + 1584.66i −0.278476 + 0.482334i
\(222\) −122.243 175.409i −0.0369569 0.0530301i
\(223\) −2238.14 3876.57i −0.672093 1.16410i −0.977309 0.211817i \(-0.932062\pi\)
0.305216 0.952283i \(-0.401271\pi\)
\(224\) −1307.01 −0.389859
\(225\) 2045.10 + 2459.34i 0.605955 + 0.728694i
\(226\) 1108.96 0.326402
\(227\) −787.439 1363.88i −0.230239 0.398785i 0.727640 0.685960i \(-0.240617\pi\)
−0.957878 + 0.287175i \(0.907284\pi\)
\(228\) 1273.07 2714.36i 0.369785 0.788433i
\(229\) −223.577 + 387.247i −0.0645170 + 0.111747i −0.896480 0.443085i \(-0.853884\pi\)
0.831963 + 0.554832i \(0.187217\pi\)
\(230\) 314.598 544.900i 0.0901912 0.156216i
\(231\) 124.962 266.437i 0.0355928 0.0758886i
\(232\) −779.664 1350.42i −0.220635 0.382152i
\(233\) 3933.72 1.10604 0.553018 0.833169i \(-0.313476\pi\)
0.553018 + 0.833169i \(0.313476\pi\)
\(234\) −1113.59 + 191.263i −0.311102 + 0.0534327i
\(235\) −804.263 −0.223253
\(236\) 1125.28 + 1949.03i 0.310378 + 0.537590i
\(237\) −2217.19 3181.48i −0.607687 0.871981i
\(238\) −389.324 + 674.329i −0.106034 + 0.183656i
\(239\) 1839.53 3186.15i 0.497862 0.862322i −0.502135 0.864789i \(-0.667452\pi\)
0.999997 + 0.00246688i \(0.000785234\pi\)
\(240\) −124.626 + 10.6247i −0.0335191 + 0.00285758i
\(241\) −416.504 721.407i −0.111325 0.192821i 0.804980 0.593303i \(-0.202176\pi\)
−0.916305 + 0.400481i \(0.868843\pi\)
\(242\) −2018.52 −0.536178
\(243\) 3450.65 1562.67i 0.910943 0.412533i
\(244\) −800.705 −0.210081
\(245\) 62.6299 + 108.478i 0.0163317 + 0.0282874i
\(246\) −719.330 + 61.3246i −0.186434 + 0.0158939i
\(247\) 1387.31 2402.89i 0.357378 0.618997i
\(248\) 3034.74 5256.32i 0.777041 1.34587i
\(249\) −1561.00 2239.91i −0.397287 0.570074i
\(250\) −496.340 859.686i −0.125565 0.217485i
\(251\) 7237.27 1.81997 0.909985 0.414640i \(-0.136093\pi\)
0.909985 + 0.414640i \(0.136093\pi\)
\(252\) 1016.31 174.554i 0.254053 0.0436343i
\(253\) 1248.54 0.310258
\(254\) 1098.55 + 1902.75i 0.271376 + 0.470036i
\(255\) −393.363 + 838.704i −0.0966014 + 0.205967i
\(256\) 1798.16 3114.51i 0.439004 0.760378i
\(257\) 1539.39 2666.29i 0.373635 0.647155i −0.616487 0.787365i \(-0.711445\pi\)
0.990122 + 0.140210i \(0.0447779\pi\)
\(258\) −313.601 + 668.641i −0.0756743 + 0.161348i
\(259\) 90.2908 + 156.388i 0.0216618 + 0.0375193i
\(260\) −365.941 −0.0872873
\(261\) 1254.26 + 1508.32i 0.297458 + 0.357710i
\(262\) −4341.98 −1.02385
\(263\) 1978.57 + 3426.99i 0.463894 + 0.803488i 0.999151 0.0412015i \(-0.0131186\pi\)
−0.535257 + 0.844689i \(0.679785\pi\)
\(264\) 515.889 + 740.258i 0.120268 + 0.172575i
\(265\) 455.711 789.315i 0.105638 0.182971i
\(266\) 590.349 1022.51i 0.136077 0.235693i
\(267\) −3333.68 + 284.204i −0.764111 + 0.0651422i
\(268\) −835.868 1447.77i −0.190518 0.329986i
\(269\) −2552.30 −0.578499 −0.289249 0.957254i \(-0.593406\pi\)
−0.289249 + 0.957254i \(0.593406\pi\)
\(270\) −553.511 + 144.369i −0.124762 + 0.0325408i
\(271\) −1888.99 −0.423424 −0.211712 0.977332i \(-0.567904\pi\)
−0.211712 + 0.977332i \(0.567904\pi\)
\(272\) 328.352 + 568.723i 0.0731959 + 0.126779i
\(273\) 950.882 81.0649i 0.210806 0.0179717i
\(274\) −1876.20 + 3249.67i −0.413669 + 0.716496i
\(275\) 479.237 830.064i 0.105088 0.182017i
\(276\) 2501.40 + 3589.30i 0.545531 + 0.782791i
\(277\) 1476.48 + 2557.34i 0.320264 + 0.554713i 0.980542 0.196307i \(-0.0628951\pi\)
−0.660278 + 0.751021i \(0.729562\pi\)
\(278\) −3267.64 −0.704963
\(279\) −2643.35 + 7163.43i −0.567216 + 1.53714i
\(280\) −384.049 −0.0819691
\(281\) −603.238 1044.84i −0.128065 0.221814i 0.794862 0.606790i \(-0.207543\pi\)
−0.922927 + 0.384976i \(0.874210\pi\)
\(282\) −1107.21 + 2360.73i −0.233807 + 0.498508i
\(283\) −1848.75 + 3202.14i −0.388329 + 0.672605i −0.992225 0.124458i \(-0.960281\pi\)
0.603896 + 0.797063i \(0.293614\pi\)
\(284\) 2833.76 4908.22i 0.592088 1.02553i
\(285\) 596.474 1271.76i 0.123972 0.264326i
\(286\) 169.292 + 293.222i 0.0350015 + 0.0606244i
\(287\) 609.762 0.125412
\(288\) −1745.25 + 4729.61i −0.357084 + 0.967690i
\(289\) −49.2304 −0.0100204
\(290\) −148.117 256.547i −0.0299923 0.0519481i
\(291\) −918.501 1317.97i −0.185029 0.265501i
\(292\) −3156.58 + 5467.35i −0.632619 + 1.09573i
\(293\) −1242.99 + 2152.92i −0.247837 + 0.429267i −0.962925 0.269768i \(-0.913053\pi\)
0.715088 + 0.699034i \(0.246386\pi\)
\(294\) 404.634 34.4959i 0.0802677 0.00684301i
\(295\) 527.228 + 913.185i 0.104056 + 0.180230i
\(296\) −553.667 −0.108720
\(297\) −797.277 807.967i −0.155767 0.157855i
\(298\) 2063.89 0.401201
\(299\) 2024.43 + 3506.42i 0.391558 + 0.678198i
\(300\) 3346.39 285.287i 0.644013 0.0549036i
\(301\) 311.887 540.205i 0.0597239 0.103445i
\(302\) 1707.98 2958.31i 0.325441 0.563681i
\(303\) −3329.13 4777.02i −0.631200 0.905719i
\(304\) −497.895 862.379i −0.0939350 0.162700i
\(305\) −375.156 −0.0704307
\(306\) 1920.29 + 2309.25i 0.358743 + 0.431409i
\(307\) −2167.98 −0.403040 −0.201520 0.979484i \(-0.564588\pi\)
−0.201520 + 0.979484i \(0.564588\pi\)
\(308\) −154.502 267.605i −0.0285830 0.0495072i
\(309\) −1247.14 + 2659.07i −0.229602 + 0.489544i
\(310\) 576.528 998.576i 0.105628 0.182953i
\(311\) −2330.99 + 4037.39i −0.425010 + 0.736140i −0.996421 0.0845244i \(-0.973063\pi\)
0.571411 + 0.820664i \(0.306396\pi\)
\(312\) −1242.47 + 2649.11i −0.225451 + 0.480693i
\(313\) −249.595 432.311i −0.0450733 0.0780693i 0.842609 0.538526i \(-0.181019\pi\)
−0.887682 + 0.460457i \(0.847685\pi\)
\(314\) 4128.13 0.741923
\(315\) 476.173 81.7840i 0.0851724 0.0146286i
\(316\) −4071.79 −0.724862
\(317\) 4906.82 + 8498.87i 0.869384 + 1.50582i 0.862628 + 0.505840i \(0.168817\pi\)
0.00675620 + 0.999977i \(0.497849\pi\)
\(318\) −1689.48 2424.27i −0.297929 0.427503i
\(319\) 293.916 509.078i 0.0515867 0.0893508i
\(320\) 284.363 492.532i 0.0496762 0.0860418i
\(321\) 8248.78 703.227i 1.43427 0.122275i
\(322\) 861.466 + 1492.10i 0.149092 + 0.258235i
\(323\) −7375.14 −1.27048
\(324\) 725.428 3910.73i 0.124387 0.670564i
\(325\) 3108.21 0.530500
\(326\) −672.238 1164.35i −0.114208 0.197814i
\(327\) −7759.01 + 661.473i −1.31215 + 0.111864i
\(328\) −934.772 + 1619.07i −0.157360 + 0.272556i
\(329\) 1101.16 1907.27i 0.184526 0.319608i
\(330\) 98.0066 + 140.631i 0.0163487 + 0.0234591i
\(331\) −5015.18 8686.55i −0.832807 1.44246i −0.895803 0.444451i \(-0.853399\pi\)
0.0629962 0.998014i \(-0.479934\pi\)
\(332\) −2866.73 −0.473892
\(333\) 686.478 117.905i 0.112969 0.0194028i
\(334\) 2643.51 0.433073
\(335\) −391.631 678.325i −0.0638719 0.110629i
\(336\) 145.437 310.091i 0.0236137 0.0503477i
\(337\) 4402.86 7625.97i 0.711688 1.23268i −0.252535 0.967588i \(-0.581264\pi\)
0.964223 0.265092i \(-0.0854023\pi\)
\(338\) 1203.10 2083.83i 0.193609 0.335341i
\(339\) −1534.09 + 3270.89i −0.245782 + 0.524042i
\(340\) 486.349 + 842.382i 0.0775765 + 0.134366i
\(341\) 2288.06 0.363359
\(342\) −2911.81 3501.62i −0.460388 0.553643i
\(343\) −343.000 −0.0539949
\(344\) 956.253 + 1656.28i 0.149877 + 0.259595i
\(345\) 1171.99 + 1681.70i 0.182892 + 0.262434i
\(346\) −1552.79 + 2689.52i −0.241268 + 0.417889i
\(347\) −3186.28 + 5518.79i −0.492934 + 0.853788i −0.999967 0.00813945i \(-0.997409\pi\)
0.507032 + 0.861927i \(0.330742\pi\)
\(348\) 2052.34 174.967i 0.316141 0.0269517i
\(349\) 1373.67 + 2379.26i 0.210690 + 0.364925i 0.951931 0.306314i \(-0.0990957\pi\)
−0.741241 + 0.671239i \(0.765762\pi\)
\(350\) 1322.65 0.201996
\(351\) 976.368 3549.14i 0.148475 0.539713i
\(352\) 1510.68 0.228748
\(353\) −5139.65 8902.14i −0.774947 1.34225i −0.934824 0.355110i \(-0.884443\pi\)
0.159878 0.987137i \(-0.448890\pi\)
\(354\) 3406.27 290.392i 0.511415 0.0435993i
\(355\) 1327.71 2299.66i 0.198500 0.343812i
\(356\) −1756.55 + 3042.43i −0.261508 + 0.452946i
\(357\) −1450.37 2081.15i −0.215018 0.308533i
\(358\) 671.412 + 1162.92i 0.0991208 + 0.171682i
\(359\) −10473.7 −1.53978 −0.769891 0.638176i \(-0.779689\pi\)
−0.769891 + 0.638176i \(0.779689\pi\)
\(360\) −512.821 + 1389.73i −0.0750778 + 0.203460i
\(361\) 4324.25 0.630448
\(362\) −126.212 218.605i −0.0183247 0.0317393i
\(363\) 2792.33 5953.64i 0.403745 0.860840i
\(364\) 501.030 867.809i 0.0721459 0.124960i
\(365\) −1478.96 + 2561.63i −0.212088 + 0.367348i
\(366\) −516.469 + 1101.18i −0.0737603 + 0.157267i
\(367\) −991.263 1716.92i −0.140990 0.244203i 0.786879 0.617107i \(-0.211695\pi\)
−0.927870 + 0.372904i \(0.878362\pi\)
\(368\) 1453.11 0.205838
\(369\) 814.215 2206.51i 0.114868 0.311290i
\(370\) −105.184 −0.0147790
\(371\) 1247.88 + 2161.39i 0.174627 + 0.302463i
\(372\) 4584.03 + 6577.70i 0.638900 + 0.916769i
\(373\) −4670.83 + 8090.12i −0.648382 + 1.12303i 0.335127 + 0.942173i \(0.391221\pi\)
−0.983509 + 0.180858i \(0.942113\pi\)
\(374\) 449.990 779.406i 0.0622151 0.107760i
\(375\) 3222.27 274.706i 0.443726 0.0378287i
\(376\) 3376.18 + 5847.72i 0.463067 + 0.802056i
\(377\) 1906.27 0.260418
\(378\) 415.479 1510.28i 0.0565342 0.205504i
\(379\) 8964.44 1.21497 0.607483 0.794333i \(-0.292179\pi\)
0.607483 + 0.794333i \(0.292179\pi\)
\(380\) −737.473 1277.34i −0.0995567 0.172437i
\(381\) −7131.88 + 608.009i −0.958996 + 0.0817566i
\(382\) 3683.59 6380.16i 0.493374 0.854548i
\(383\) −2285.75 + 3959.03i −0.304951 + 0.528190i −0.977250 0.212089i \(-0.931973\pi\)
0.672300 + 0.740279i \(0.265307\pi\)
\(384\) 3383.54 + 4855.10i 0.449650 + 0.645210i
\(385\) −72.3892 125.382i −0.00958258 0.0165975i
\(386\) 7322.52 0.965560
\(387\) −1538.34 1849.94i −0.202063 0.242992i
\(388\) −1686.80 −0.220706
\(389\) −4418.60 7653.23i −0.575917 0.997517i −0.995941 0.0900045i \(-0.971312\pi\)
0.420024 0.907513i \(-0.362021\pi\)
\(390\) −236.039 + 503.267i −0.0306469 + 0.0653434i
\(391\) 5381.09 9320.32i 0.695993 1.20550i
\(392\) 525.823 910.752i 0.0677502 0.117347i
\(393\) 6006.52 12806.7i 0.770964 1.64380i
\(394\) 2110.19 + 3654.96i 0.269822 + 0.467346i
\(395\) −1907.77 −0.243013
\(396\) −1174.67 + 201.753i −0.149064 + 0.0256023i
\(397\) −3649.31 −0.461344 −0.230672 0.973032i \(-0.574092\pi\)
−0.230672 + 0.973032i \(0.574092\pi\)
\(398\) −3781.37 6549.53i −0.476239 0.824870i
\(399\) 2199.25 + 3155.74i 0.275941 + 0.395952i
\(400\) 557.757 966.063i 0.0697196 0.120758i
\(401\) 509.732 882.882i 0.0634784 0.109948i −0.832540 0.553965i \(-0.813114\pi\)
0.896018 + 0.444018i \(0.146447\pi\)
\(402\) −2530.21 + 215.707i −0.313919 + 0.0267624i
\(403\) 3709.95 + 6425.81i 0.458575 + 0.794274i
\(404\) −6113.84 −0.752908
\(405\) 339.886 1832.30i 0.0417015 0.224809i
\(406\) 811.182 0.0991584
\(407\) −104.360 180.757i −0.0127100 0.0220143i
\(408\) 7749.42 660.656i 0.940327 0.0801650i
\(409\) −690.083 + 1195.26i −0.0834289 + 0.144503i −0.904721 0.426005i \(-0.859920\pi\)
0.821292 + 0.570508i \(0.193254\pi\)
\(410\) −177.584 + 307.585i −0.0213909 + 0.0370501i
\(411\) −6989.49 10029.3i −0.838847 1.20368i
\(412\) 1541.94 + 2670.73i 0.184384 + 0.319362i
\(413\) −2887.42 −0.344022
\(414\) 6549.69 1124.93i 0.777536 0.133544i
\(415\) −1343.15 −0.158874
\(416\) 2449.47 + 4242.60i 0.288690 + 0.500025i
\(417\) 4520.32 9637.93i 0.530841 1.13183i
\(418\) −682.339 + 1181.85i −0.0798428 + 0.138292i
\(419\) −5644.76 + 9777.01i −0.658149 + 1.13995i 0.322945 + 0.946418i \(0.395327\pi\)
−0.981094 + 0.193530i \(0.938006\pi\)
\(420\) 215.418 459.300i 0.0250269 0.0533609i
\(421\) 5670.06 + 9820.84i 0.656394 + 1.13691i 0.981542 + 0.191245i \(0.0612525\pi\)
−0.325148 + 0.945663i \(0.605414\pi\)
\(422\) −7306.29 −0.842807
\(423\) −5431.32 6531.47i −0.624302 0.750759i
\(424\) −7652.04 −0.876452
\(425\) −4130.93 7154.97i −0.471481 0.816629i
\(426\) −4922.29 7063.08i −0.559826 0.803303i
\(427\) 513.646 889.661i 0.0582133 0.100828i
\(428\) 4346.37 7528.13i 0.490863 0.850200i
\(429\) −1099.05 + 93.6968i −0.123689 + 0.0105448i
\(430\) 181.665 + 314.653i 0.0203737 + 0.0352882i
\(431\) 15264.9 1.70600 0.853000 0.521911i \(-0.174781\pi\)
0.853000 + 0.521911i \(0.174781\pi\)
\(432\) −927.904 940.346i −0.103342 0.104728i
\(433\) −3367.10 −0.373701 −0.186851 0.982388i \(-0.559828\pi\)
−0.186851 + 0.982388i \(0.559828\pi\)
\(434\) 1578.71 + 2734.41i 0.174610 + 0.302433i
\(435\) 961.588 81.9776i 0.105988 0.00903569i
\(436\) −4088.30 + 7081.15i −0.449069 + 0.777811i
\(437\) −8159.57 + 14132.8i −0.893193 + 1.54706i
\(438\) 5483.02 + 7867.68i 0.598148 + 0.858293i
\(439\) −5526.68 9572.50i −0.600852 1.04071i −0.992692 0.120673i \(-0.961495\pi\)
0.391840 0.920033i \(-0.371839\pi\)
\(440\) 443.894 0.0480950
\(441\) −458.008 + 1241.19i −0.0494555 + 0.134024i
\(442\) 2918.52 0.314072
\(443\) −3869.09 6701.45i −0.414957 0.718726i 0.580467 0.814284i \(-0.302870\pi\)
−0.995424 + 0.0955576i \(0.969537\pi\)
\(444\) 310.559 662.153i 0.0331947 0.0707757i
\(445\) −823.000 + 1425.48i −0.0876718 + 0.151852i
\(446\) −3569.80 + 6183.07i −0.379002 + 0.656450i
\(447\) −2855.10 + 6087.47i −0.302106 + 0.644133i
\(448\) 778.675 + 1348.70i 0.0821181 + 0.142233i
\(449\) 1209.56 0.127133 0.0635665 0.997978i \(-0.479752\pi\)
0.0635665 + 0.997978i \(0.479752\pi\)
\(450\) 1766.14 4786.19i 0.185014 0.501385i
\(451\) −704.778 −0.0735847
\(452\) 1896.73 + 3285.23i 0.197377 + 0.341867i
\(453\) 6362.82 + 9130.12i 0.659937 + 0.946954i
\(454\) −1255.95 + 2175.38i −0.129834 + 0.224880i
\(455\) 234.749 406.597i 0.0241872 0.0418935i
\(456\) −11750.8 + 1001.78i −1.20676 + 0.102879i
\(457\) 7128.81 + 12347.5i 0.729697 + 1.26387i 0.957011 + 0.290051i \(0.0936722\pi\)
−0.227314 + 0.973821i \(0.572994\pi\)
\(458\) 713.204 0.0727638
\(459\) −9467.61 + 2469.38i −0.962768 + 0.251113i
\(460\) 2152.31 0.218157
\(461\) −5958.98 10321.2i −0.602033 1.04275i −0.992513 0.122140i \(-0.961024\pi\)
0.390480 0.920611i \(-0.372309\pi\)
\(462\) −467.685 + 39.8713i −0.0470967 + 0.00401511i
\(463\) −3930.43 + 6807.71i −0.394520 + 0.683329i −0.993040 0.117779i \(-0.962422\pi\)
0.598520 + 0.801108i \(0.295756\pi\)
\(464\) 342.072 592.486i 0.0342248 0.0592791i
\(465\) 2147.77 + 3081.87i 0.214194 + 0.307351i
\(466\) −3137.11 5433.63i −0.311854 0.540146i
\(467\) 16152.3 1.60051 0.800257 0.599657i \(-0.204696\pi\)
0.800257 + 0.599657i \(0.204696\pi\)
\(468\) −2471.26 2971.83i −0.244090 0.293532i
\(469\) 2144.81 0.211169
\(470\) 641.394 + 1110.93i 0.0629474 + 0.109028i
\(471\) −5710.69 + 12176.0i −0.558672 + 1.19117i
\(472\) 4426.45 7666.84i 0.431661 0.747659i
\(473\) −360.487 + 624.382i −0.0350427 + 0.0606958i
\(474\) −2626.38 + 5599.81i −0.254501 + 0.542632i
\(475\) 6263.90 + 10849.4i 0.605068 + 1.04801i
\(476\) −2663.55 −0.256478
\(477\) 9487.56 1629.52i 0.910703 0.156416i
\(478\) −5868.03 −0.561501
\(479\) 5851.93 + 10135.8i 0.558207 + 0.966844i 0.997646 + 0.0685711i \(0.0218440\pi\)
−0.439439 + 0.898273i \(0.644823\pi\)
\(480\) 1418.05 + 2034.78i 0.134843 + 0.193489i
\(481\) 338.427 586.173i 0.0320810 0.0555659i
\(482\) −664.318 + 1150.63i −0.0627777 + 0.108734i
\(483\) −5592.69 + 476.790i −0.526866 + 0.0449165i
\(484\) −3452.41 5979.74i −0.324230 0.561584i
\(485\) −790.318 −0.0739928
\(486\) −4910.38 3520.15i −0.458312 0.328554i
\(487\) 41.1258 0.00382667 0.00191333 0.999998i \(-0.499391\pi\)
0.00191333 + 0.999998i \(0.499391\pi\)
\(488\) 1574.85 + 2727.72i 0.146086 + 0.253029i
\(489\) 4364.21 372.059i 0.403592 0.0344072i
\(490\) 99.8938 173.021i 0.00920967 0.0159516i
\(491\) −4217.83 + 7305.49i −0.387674 + 0.671471i −0.992136 0.125163i \(-0.960055\pi\)
0.604462 + 0.796634i \(0.293388\pi\)
\(492\) −1411.99 2026.09i −0.129385 0.185657i
\(493\) −2533.50 4388.15i −0.231446 0.400877i
\(494\) −4425.48 −0.403060
\(495\) −550.372 + 94.5280i −0.0499745 + 0.00858327i
\(496\) 2662.94 0.241068
\(497\) 3635.68 + 6297.18i 0.328134 + 0.568344i
\(498\) −1849.09 + 3942.52i −0.166385 + 0.354756i
\(499\) −1093.08 + 1893.27i −0.0980618 + 0.169848i −0.910882 0.412666i \(-0.864598\pi\)
0.812821 + 0.582514i \(0.197931\pi\)
\(500\) 1697.85 2940.76i 0.151860 0.263029i
\(501\) −3656.92 + 7797.06i −0.326106 + 0.695303i
\(502\) −5771.67 9996.83i −0.513152 0.888805i
\(503\) 14676.6 1.30098 0.650492 0.759513i \(-0.274563\pi\)
0.650492 + 0.759513i \(0.274563\pi\)
\(504\) −2593.55 3118.89i −0.229218 0.275647i
\(505\) −2864.53 −0.252416
\(506\) −995.703 1724.61i −0.0874791 0.151518i
\(507\) 4481.96 + 6431.24i 0.392605 + 0.563356i
\(508\) −3757.86 + 6508.81i −0.328205 + 0.568468i
\(509\) 6449.79 11171.4i 0.561654 0.972814i −0.435698 0.900093i \(-0.643498\pi\)
0.997352 0.0727208i \(-0.0231682\pi\)
\(510\) 1472.20 125.509i 0.127824 0.0108973i
\(511\) −4049.84 7014.54i −0.350596 0.607250i
\(512\) 3374.96 0.291315
\(513\) 14356.2 3744.43i 1.23555 0.322263i
\(514\) −4910.59 −0.421395
\(515\) 722.451 + 1251.32i 0.0618155 + 0.107068i
\(516\) −2517.19 + 214.596i −0.214754 + 0.0183082i
\(517\) −1272.75 + 2204.46i −0.108270 + 0.187528i
\(518\) 144.013 249.437i 0.0122153 0.0211576i
\(519\) −5784.70 8300.56i −0.489248 0.702031i
\(520\) 719.745 + 1246.63i 0.0606979 + 0.105132i
\(521\) 11771.7 0.989880 0.494940 0.868927i \(-0.335190\pi\)
0.494940 + 0.868927i \(0.335190\pi\)
\(522\) 1083.17 2935.37i 0.0908221 0.246126i
\(523\) 5339.23 0.446402 0.223201 0.974772i \(-0.428349\pi\)
0.223201 + 0.974772i \(0.428349\pi\)
\(524\) −7426.39 12862.9i −0.619128 1.07236i
\(525\) −1829.70 + 3901.18i −0.152104 + 0.324307i
\(526\) 3155.80 5466.00i 0.261595 0.453097i
\(527\) 9861.31 17080.3i 0.815115 1.41182i
\(528\) −168.099 + 358.410i −0.0138553 + 0.0295413i
\(529\) −5823.36 10086.3i −0.478619 0.828992i
\(530\) −1453.70 −0.119141
\(531\) −3855.58 + 10448.5i −0.315099 + 0.853913i
\(532\) 4038.85 0.329148
\(533\) −1142.75 1979.30i −0.0928669 0.160850i
\(534\) 3051.15 + 4378.15i 0.247259 + 0.354796i
\(535\) 2036.41 3527.17i 0.164564 0.285033i
\(536\) −3288.02 + 5695.02i −0.264964 + 0.458932i
\(537\) −4358.85 + 371.602i −0.350276 + 0.0298618i
\(538\) 2035.44 + 3525.48i 0.163111 + 0.282517i
\(539\) 396.448 0.0316813
\(540\) −1374.39 1392.82i −0.109527 0.110995i
\(541\) 828.599 0.0658489 0.0329244 0.999458i \(-0.489518\pi\)
0.0329244 + 0.999458i \(0.489518\pi\)
\(542\) 1506.46 + 2609.26i 0.119387 + 0.206784i
\(543\) 819.373 69.8534i 0.0647563 0.00552062i
\(544\) 6510.86 11277.1i 0.513145 0.888793i
\(545\) −1915.50 + 3317.75i −0.150552 + 0.260765i
\(546\) −870.296 1248.80i −0.0682147 0.0978825i
\(547\) −6948.69 12035.5i −0.543153 0.940768i −0.998721 0.0505673i \(-0.983897\pi\)
0.455568 0.890201i \(-0.349436\pi\)
\(548\) −12836.0 −1.00059
\(549\) −2533.49 3046.66i −0.196952 0.236846i
\(550\) −1528.75 −0.118520
\(551\) 3841.65 + 6653.93i 0.297023 + 0.514459i
\(552\) 7307.66 15580.9i 0.563469 1.20139i
\(553\) 2612.03 4524.16i 0.200858 0.347897i
\(554\) 2354.96 4078.92i 0.180601 0.312810i
\(555\) 145.507 310.240i 0.0111287 0.0237279i
\(556\) −5588.86 9680.19i −0.426296 0.738366i
\(557\) 11168.5 0.849595 0.424798 0.905288i \(-0.360345\pi\)
0.424798 + 0.905288i \(0.360345\pi\)
\(558\) 12002.9 2061.53i 0.910614 0.156401i
\(559\) −2338.02 −0.176901
\(560\) −84.2495 145.924i −0.00635749 0.0110115i
\(561\) 1676.37 + 2405.45i 0.126161 + 0.181031i
\(562\) −962.156 + 1666.50i −0.0722172 + 0.125084i
\(563\) 322.865 559.218i 0.0241689 0.0418618i −0.853688 0.520785i \(-0.825639\pi\)
0.877857 + 0.478923i \(0.158973\pi\)
\(564\) −8887.26 + 757.660i −0.663513 + 0.0565660i
\(565\) 888.678 + 1539.23i 0.0661716 + 0.114613i
\(566\) 5897.47 0.437967
\(567\) 3879.85 + 3314.73i 0.287369 + 0.245512i
\(568\) −22294.1 −1.64690
\(569\) −9542.50 16528.1i −0.703062 1.21774i −0.967386 0.253306i \(-0.918482\pi\)
0.264324 0.964434i \(-0.414851\pi\)
\(570\) −2232.37 + 190.314i −0.164041 + 0.0139849i
\(571\) 1409.15 2440.71i 0.103277 0.178880i −0.809756 0.586766i \(-0.800401\pi\)
0.913033 + 0.407886i \(0.133734\pi\)
\(572\) −579.103 + 1003.04i −0.0423313 + 0.0733199i
\(573\) 13722.6 + 19690.8i 1.00047 + 1.43560i
\(574\) −486.281 842.263i −0.0353606 0.0612463i
\(575\) −18281.2 −1.32588
\(576\) 5920.23 1016.82i 0.428258 0.0735545i
\(577\) 16153.2 1.16546 0.582728 0.812667i \(-0.301985\pi\)
0.582728 + 0.812667i \(0.301985\pi\)
\(578\) 39.2609 + 68.0019i 0.00282533 + 0.00489361i
\(579\) −10129.7 + 21597.8i −0.727072 + 1.55022i
\(580\) 506.671 877.580i 0.0362730 0.0628267i
\(581\) 1838.99 3185.22i 0.131315 0.227444i
\(582\) −1088.01 + 2319.80i −0.0774908 + 0.165221i
\(583\) −1442.33 2498.18i −0.102462 0.177469i
\(584\) 24833.8 1.75964
\(585\) −1157.87 1392.40i −0.0818322 0.0984078i
\(586\) 3965.10 0.279517
\(587\) −6970.50 12073.3i −0.490125 0.848921i 0.509811 0.860287i \(-0.329715\pi\)
−0.999935 + 0.0113658i \(0.996382\pi\)
\(588\) 794.265 + 1139.70i 0.0557057 + 0.0799330i
\(589\) −14953.1 + 25899.6i −1.04607 + 1.81184i
\(590\) 840.920 1456.52i 0.0586782 0.101634i
\(591\) −13699.5 + 1167.91i −0.953506 + 0.0812886i
\(592\) −121.459 210.373i −0.00843232 0.0146052i
\(593\) 203.913 0.0141209 0.00706046 0.999975i \(-0.497753\pi\)
0.00706046 + 0.999975i \(0.497753\pi\)
\(594\) −480.220 + 1745.62i −0.0331712 + 0.120579i
\(595\) −1247.96 −0.0859854
\(596\) 3530.01 + 6114.16i 0.242609 + 0.420211i
\(597\) 24548.9 2092.85i 1.68295 0.143475i
\(598\) 3228.94 5592.68i 0.220804 0.382444i
\(599\) 1154.51 1999.67i 0.0787514 0.136401i −0.823960 0.566648i \(-0.808240\pi\)
0.902711 + 0.430246i \(0.141573\pi\)
\(600\) −7553.66 10838.9i −0.513961 0.737492i
\(601\) −11175.2 19356.0i −0.758477 1.31372i −0.943627 0.331010i \(-0.892611\pi\)
0.185150 0.982710i \(-0.440723\pi\)
\(602\) −994.911 −0.0673580
\(603\) 2863.97 7761.30i 0.193416 0.524153i
\(604\) 11685.1 0.787186
\(605\) −1617.56 2801.70i −0.108700 0.188273i
\(606\) −3943.54 + 8408.16i −0.264348 + 0.563627i
\(607\) 8552.63 14813.6i 0.571895 0.990552i −0.424476 0.905439i \(-0.639542\pi\)
0.996371 0.0851126i \(-0.0271250\pi\)
\(608\) −9872.70 + 17100.0i −0.658538 + 1.14062i
\(609\) −1122.16 + 2392.59i −0.0746668 + 0.159200i
\(610\) 299.184 + 518.202i 0.0198584 + 0.0343957i
\(611\) −8254.71 −0.546563
\(612\) −3556.63 + 9638.42i −0.234916 + 0.636617i
\(613\) −7474.70 −0.492496 −0.246248 0.969207i \(-0.579198\pi\)
−0.246248 + 0.969207i \(0.579198\pi\)
\(614\) 1728.95 + 2994.63i 0.113639 + 0.196829i
\(615\) −661.563 949.288i −0.0433769 0.0622423i
\(616\) −607.759 + 1052.67i −0.0397521 + 0.0688527i
\(617\) −1802.12 + 3121.37i −0.117586 + 0.203665i −0.918811 0.394699i \(-0.870849\pi\)
0.801224 + 0.598364i \(0.204182\pi\)
\(618\) 4667.54 397.919i 0.303813 0.0259007i
\(619\) 2271.30 + 3934.01i 0.147482 + 0.255446i 0.930296 0.366809i \(-0.119550\pi\)
−0.782814 + 0.622256i \(0.786216\pi\)
\(620\) 3944.30 0.255495
\(621\) −5742.59 + 20874.6i −0.371082 + 1.34890i
\(622\) 7435.78 0.479337
\(623\) −2253.63 3903.40i −0.144927 0.251021i
\(624\) −1279.12 + 109.048i −0.0820608 + 0.00699587i
\(625\) −6608.58 + 11446.4i −0.422949 + 0.732569i
\(626\) −398.100 + 689.530i −0.0254174 + 0.0440242i
\(627\) −2541.95 3647.49i −0.161907 0.232323i
\(628\) 7060.62 + 12229.4i 0.448646 + 0.777077i
\(629\) −1799.13 −0.114048
\(630\) −492.712 592.514i −0.0311589 0.0374704i
\(631\) −11564.2 −0.729578 −0.364789 0.931090i \(-0.618859\pi\)
−0.364789 + 0.931090i \(0.618859\pi\)
\(632\) 8008.53 + 13871.2i 0.504054 + 0.873048i
\(633\) 10107.2 21550.0i 0.634638 1.35314i
\(634\) 7826.31 13555.6i 0.490256 0.849149i
\(635\) −1760.68 + 3049.59i −0.110032 + 0.190581i
\(636\) 4292.12 9151.38i 0.267600 0.570560i
\(637\) 642.814 + 1113.39i 0.0399831 + 0.0692527i
\(638\) −937.585 −0.0581808
\(639\) 27641.9 4747.58i 1.71126 0.293914i
\(640\) 2911.34 0.179814
\(641\) −849.583 1471.52i −0.0523503 0.0906733i 0.838663 0.544651i \(-0.183338\pi\)
−0.891013 + 0.453978i \(0.850005\pi\)
\(642\) −7549.70 10833.2i −0.464117 0.665969i
\(643\) −14633.7 + 25346.3i −0.897506 + 1.55453i −0.0668341 + 0.997764i \(0.521290\pi\)
−0.830672 + 0.556762i \(0.812044\pi\)
\(644\) −2946.85 + 5104.09i −0.180314 + 0.312313i
\(645\) −1179.38 + 100.545i −0.0719971 + 0.00613792i
\(646\) 5881.62 + 10187.3i 0.358219 + 0.620453i
\(647\) 19018.7 1.15564 0.577822 0.816163i \(-0.303903\pi\)
0.577822 + 0.816163i \(0.303903\pi\)
\(648\) −14749.3 + 5220.46i −0.894146 + 0.316480i
\(649\) 3337.36 0.201853
\(650\) −2478.77 4293.36i −0.149578 0.259076i
\(651\) −10249.1 + 873.759i −0.617041 + 0.0526042i
\(652\) 2299.55 3982.94i 0.138125 0.239239i
\(653\) 4734.89 8201.06i 0.283753 0.491474i −0.688553 0.725186i \(-0.741754\pi\)
0.972306 + 0.233712i \(0.0750872\pi\)
\(654\) 7101.44 + 10190.0i 0.424600 + 0.609266i
\(655\) −3479.50 6026.67i −0.207565 0.359514i
\(656\) −820.250 −0.0488192
\(657\) −30790.8 + 5288.41i −1.82841 + 0.314034i
\(658\) −3512.67 −0.208113
\(659\) 8612.54 + 14917.4i 0.509100 + 0.881787i 0.999944 + 0.0105401i \(0.00335508\pi\)
−0.490844 + 0.871247i \(0.663312\pi\)
\(660\) −248.985 + 530.870i −0.0146844 + 0.0313092i
\(661\) 4939.90 8556.16i 0.290681 0.503474i −0.683290 0.730147i \(-0.739452\pi\)
0.973971 + 0.226673i \(0.0727849\pi\)
\(662\) −7999.13 + 13854.9i −0.469630 + 0.813423i
\(663\) −4037.36 + 8608.21i −0.236498 + 0.504246i
\(664\) 5638.37 + 9765.94i 0.329535 + 0.570771i
\(665\) 1892.33 0.110348
\(666\) −710.322 854.202i −0.0413280 0.0496992i
\(667\) −11211.9 −0.650862
\(668\) 4521.37 + 7831.25i 0.261882 + 0.453593i
\(669\) −13298.7 19082.6i −0.768548 1.10280i
\(670\) −624.645 + 1081.92i −0.0360181 + 0.0623853i
\(671\) −593.685 + 1028.29i −0.0341564 + 0.0591606i
\(672\) −6766.89 + 576.893i −0.388450 + 0.0331163i
\(673\) 15090.5 + 26137.5i 0.864334 + 1.49707i 0.867707 + 0.497076i \(0.165593\pi\)
−0.00337288 + 0.999994i \(0.501074\pi\)
\(674\) −14045.0 −0.802659
\(675\) 11673.7 + 11830.3i 0.665663 + 0.674588i
\(676\) 8230.97 0.468308
\(677\) 11225.4 + 19443.0i 0.637265 + 1.10378i 0.986030 + 0.166566i \(0.0532679\pi\)
−0.348765 + 0.937210i \(0.613399\pi\)
\(678\) 5741.49 489.475i 0.325222 0.0277259i
\(679\) 1082.07 1874.20i 0.0611575 0.105928i
\(680\) 1913.13 3313.65i 0.107890 0.186871i
\(681\) −4678.86 6713.78i −0.263281 0.377786i
\(682\) −1824.71 3160.50i −0.102451 0.177451i
\(683\) −12957.7 −0.725933 −0.362966 0.931802i \(-0.618236\pi\)
−0.362966 + 0.931802i \(0.618236\pi\)
\(684\) 5393.08 14615.1i 0.301476 0.816994i
\(685\) −6014.07 −0.335454
\(686\) 273.540 + 473.785i 0.0152242 + 0.0263691i
\(687\) −986.617 + 2103.60i −0.0547916 + 0.116823i
\(688\) −419.550 + 726.681i −0.0232488 + 0.0402681i
\(689\) 4677.28 8101.28i 0.258621 0.447945i
\(690\) 1388.28 2960.01i 0.0765956 0.163312i
\(691\) −285.528 494.549i −0.0157192 0.0272265i 0.858059 0.513551i \(-0.171670\pi\)
−0.873778 + 0.486325i \(0.838337\pi\)
\(692\) −10623.4 −0.583586
\(693\) 529.376 1434.60i 0.0290178 0.0786377i
\(694\) 10164.1 0.555944
\(695\) −2618.56 4535.48i −0.142918 0.247541i
\(696\) −4632.66 6647.48i −0.252300 0.362029i
\(697\) −3037.52 + 5261.14i −0.165071 + 0.285911i
\(698\) 2190.98 3794.89i 0.118811 0.205786i
\(699\) 20366.3 1736.27i 1.10204 0.0939513i
\(700\) 2262.22 + 3918.28i 0.122148 + 0.211567i
\(701\) −26258.8 −1.41481 −0.707404 0.706810i \(-0.750134\pi\)
−0.707404 + 0.706810i \(0.750134\pi\)
\(702\) −5681.07 + 1481.76i −0.305439 + 0.0796659i
\(703\) 2728.10 0.146361
\(704\) −900.011 1558.87i −0.0481825 0.0834545i
\(705\) −4163.97 + 354.988i −0.222446 + 0.0189640i
\(706\) −8197.67 + 14198.8i −0.437002 + 0.756910i
\(707\) 3921.98 6793.07i 0.208630 0.361358i
\(708\) 6686.24 + 9594.20i 0.354921 + 0.509283i
\(709\) 5120.65 + 8869.22i 0.271241 + 0.469803i 0.969180 0.246354i \(-0.0792326\pi\)
−0.697939 + 0.716157i \(0.745899\pi\)
\(710\) −4235.35 −0.223873
\(711\) −12883.5 15493.1i −0.679561 0.817210i
\(712\) 13819.3 0.727390
\(713\) −21820.3 37794.0i −1.14611 1.98513i
\(714\) −1718.04 + 3663.09i −0.0900503 + 0.192000i
\(715\) −271.328 + 469.954i −0.0141917 + 0.0245808i
\(716\) −2296.72 + 3978.04i −0.119878 + 0.207635i
\(717\) 8117.60 17307.8i 0.422813 0.901496i
\(718\) 8352.71 + 14467.3i 0.434151 + 0.751971i
\(719\) −9398.00 −0.487464 −0.243732 0.969843i \(-0.578372\pi\)
−0.243732 + 0.969843i \(0.578372\pi\)
\(720\) −640.546 + 110.016i −0.0331552 + 0.00569450i
\(721\) −3956.58 −0.204370
\(722\) −3448.55 5973.07i −0.177759 0.307887i
\(723\) −2474.81 3551.15i −0.127302 0.182668i
\(724\) 431.736 747.789i 0.0221621 0.0383859i
\(725\) −4303.53 + 7453.93i −0.220454 + 0.381837i
\(726\) −10450.6 + 890.938i −0.534240 + 0.0455452i
\(727\) −3140.35 5439.24i −0.160205 0.277483i 0.774737 0.632283i \(-0.217882\pi\)
−0.934942 + 0.354800i \(0.884549\pi\)
\(728\) −3941.77 −0.200675
\(729\) 17175.5 9613.60i 0.872608 0.488422i
\(730\) 4717.83 0.239198
\(731\) 3107.32 + 5382.04i 0.157221 + 0.272314i
\(732\) −4145.55 + 353.417i −0.209322 + 0.0178452i
\(733\) −5268.97 + 9126.13i −0.265503 + 0.459865i −0.967695 0.252122i \(-0.918872\pi\)
0.702192 + 0.711988i \(0.252205\pi\)
\(734\) −1581.05 + 2738.46i −0.0795063 + 0.137709i
\(735\) 372.139 + 533.988i 0.0186756 + 0.0267979i
\(736\) −14406.7 24953.2i −0.721521 1.24971i
\(737\) −2479.03 −0.123902
\(738\) −3697.17 + 635.000i −0.184410 + 0.0316730i
\(739\) 20509.6 1.02092 0.510459 0.859902i \(-0.329475\pi\)
0.510459 + 0.859902i \(0.329475\pi\)
\(740\) −179.903 311.601i −0.00893696 0.0154793i
\(741\) 6122.02 13053.0i 0.303506 0.647117i
\(742\) 1990.35 3447.38i 0.0984742 0.170562i
\(743\) 13139.5 22758.2i 0.648776 1.12371i −0.334640 0.942346i \(-0.608615\pi\)
0.983416 0.181367i \(-0.0580520\pi\)
\(744\) 13391.9 28553.4i 0.659908 1.40702i
\(745\) 1653.92 + 2864.68i 0.0813357 + 0.140878i
\(746\) 14899.8 0.731261
\(747\) −9070.54 10907.8i −0.444276 0.534266i
\(748\) 3078.60 0.150487
\(749\) 5576.33 + 9658.48i 0.272035 + 0.471179i
\(750\) −2949.19 4231.84i −0.143585 0.206033i
\(751\) 688.771 1192.99i 0.0334668 0.0579663i −0.848807 0.528703i \(-0.822679\pi\)
0.882274 + 0.470737i \(0.156012\pi\)
\(752\) −1481.28 + 2565.65i −0.0718306 + 0.124414i
\(753\) 37470.1 3194.41i 1.81339 0.154596i
\(754\) −1520.23 2633.12i −0.0734265 0.127178i
\(755\) 5474.85 0.263907
\(756\) 5184.76 1352.31i 0.249428 0.0650569i
\(757\) 13632.8 0.654549 0.327275 0.944929i \(-0.393870\pi\)
0.327275 + 0.944929i \(0.393870\pi\)
\(758\) −7149.07 12382.6i −0.342567 0.593344i
\(759\) 6464.17 551.085i 0.309136 0.0263546i
\(760\) −2900.97 + 5024.62i −0.138459 + 0.239819i
\(761\) −776.057 + 1344.17i −0.0369672 + 0.0640291i −0.883917 0.467644i \(-0.845103\pi\)
0.846950 + 0.531673i \(0.178436\pi\)
\(762\) 6527.47 + 9366.37i 0.310322 + 0.445286i
\(763\) −5245.24 9085.01i −0.248873 0.431061i
\(764\) 25201.2 1.19338
\(765\) −1666.40 + 4515.91i −0.0787565 + 0.213429i
\(766\) 7291.46 0.343931
\(767\) 5411.31 + 9372.66i 0.254747 + 0.441235i
\(768\) 7935.06 16918.6i 0.372828 0.794921i
\(769\) 5314.20 9204.46i 0.249200 0.431627i −0.714104 0.700040i \(-0.753166\pi\)
0.963304 + 0.268412i \(0.0864990\pi\)
\(770\) −115.460 + 199.982i −0.00540374 + 0.00935955i
\(771\) 6793.11 14483.8i 0.317313 0.676554i
\(772\)