Properties

Label 63.4.f.b.22.3
Level $63$
Weight $4$
Character 63.22
Analytic conductor $3.717$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 3 x^{15} + 58 x^{14} - 129 x^{13} + 2107 x^{12} - 4455 x^{11} + 42901 x^{10} - 76404 x^{9} + 599392 x^{8} - 1089732 x^{7} + 4808401 x^{6} - 7939134 x^{5} + 26225236 x^{4} - 39450864 x^{3} + 62254768 x^{2} - 39660672 x + 21307456\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 22.3
Root \(1.30789 + 2.26533i\) of defining polynomial
Character \(\chi\) \(=\) 63.22
Dual form 63.4.f.b.43.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.30789 - 2.26533i) q^{2} +(-3.13193 - 4.14620i) q^{3} +(0.578868 - 1.00263i) q^{4} +(6.77153 - 11.7286i) q^{5} +(-5.29628 + 12.5176i) q^{6} +(3.50000 + 6.06218i) q^{7} -23.9546 q^{8} +(-7.38198 + 25.9713i) q^{9} +O(q^{10})\) \(q+(-1.30789 - 2.26533i) q^{2} +(-3.13193 - 4.14620i) q^{3} +(0.578868 - 1.00263i) q^{4} +(6.77153 - 11.7286i) q^{5} +(-5.29628 + 12.5176i) q^{6} +(3.50000 + 6.06218i) q^{7} -23.9546 q^{8} +(-7.38198 + 25.9713i) q^{9} -35.4255 q^{10} +(-12.0346 - 20.8445i) q^{11} +(-5.97007 + 0.740063i) q^{12} +(-11.9972 + 20.7798i) q^{13} +(9.15520 - 15.8573i) q^{14} +(-69.8372 + 8.65717i) q^{15} +(26.6989 + 46.2438i) q^{16} +79.6971 q^{17} +(68.4881 - 17.2449i) q^{18} -50.0463 q^{19} +(-7.83963 - 13.5786i) q^{20} +(14.1732 - 33.4980i) q^{21} +(-31.4798 + 54.5245i) q^{22} +(75.8039 - 131.296i) q^{23} +(75.0241 + 99.3204i) q^{24} +(-29.2071 - 50.5883i) q^{25} +62.7639 q^{26} +(130.802 - 50.7331i) q^{27} +8.10415 q^{28} +(-128.062 - 221.810i) q^{29} +(110.950 + 146.881i) q^{30} +(1.36254 - 2.35999i) q^{31} +(-25.9800 + 44.9987i) q^{32} +(-48.7341 + 115.182i) q^{33} +(-104.235 - 180.540i) q^{34} +94.8014 q^{35} +(21.7663 + 22.4353i) q^{36} +319.617 q^{37} +(65.4548 + 113.371i) q^{38} +(123.732 - 15.3380i) q^{39} +(-162.209 + 280.954i) q^{40} +(-82.3892 + 142.702i) q^{41} +(-94.4210 + 11.7046i) q^{42} +(-211.384 - 366.129i) q^{43} -27.8657 q^{44} +(254.620 + 262.446i) q^{45} -396.571 q^{46} +(-50.0386 - 86.6693i) q^{47} +(108.117 - 255.532i) q^{48} +(-24.5000 + 42.4352i) q^{49} +(-76.3992 + 132.327i) q^{50} +(-249.606 - 330.440i) q^{51} +(13.8896 + 24.0575i) q^{52} +194.981 q^{53} +(-286.001 - 229.956i) q^{54} -325.970 q^{55} +(-83.8409 - 145.217i) q^{56} +(156.742 + 207.502i) q^{57} +(-334.981 + 580.204i) q^{58} +(-288.258 + 499.277i) q^{59} +(-31.7466 + 75.0321i) q^{60} +(21.5192 + 37.2723i) q^{61} -7.12819 q^{62} +(-183.279 + 46.1485i) q^{63} +563.098 q^{64} +(162.479 + 281.422i) q^{65} +(324.662 - 40.2458i) q^{66} +(508.257 - 880.326i) q^{67} +(46.1341 - 79.9065i) q^{68} +(-781.793 + 96.9127i) q^{69} +(-123.989 - 214.756i) q^{70} -509.305 q^{71} +(176.832 - 622.130i) q^{72} +1039.67 q^{73} +(-418.023 - 724.037i) q^{74} +(-118.274 + 279.538i) q^{75} +(-28.9702 + 50.1778i) q^{76} +(84.2422 - 145.912i) q^{77} +(-196.572 - 260.232i) q^{78} +(447.071 + 774.349i) q^{79} +723.169 q^{80} +(-620.013 - 383.439i) q^{81} +431.023 q^{82} +(-7.23057 - 12.5237i) q^{83} +(-25.3816 - 33.6014i) q^{84} +(539.671 - 934.738i) q^{85} +(-552.934 + 957.709i) q^{86} +(-518.587 + 1225.66i) q^{87} +(288.283 + 499.321i) q^{88} +1532.12 q^{89} +(261.511 - 920.046i) q^{90} -167.961 q^{91} +(-87.7608 - 152.006i) q^{92} +(-14.0524 + 1.74196i) q^{93} +(-130.889 + 226.707i) q^{94} +(-338.890 + 586.974i) q^{95} +(267.941 - 33.2146i) q^{96} +(887.575 + 1537.32i) q^{97} +128.173 q^{98} +(630.198 - 158.680i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} + O(q^{10}) \) \( 16q - 3q^{2} + 2q^{3} - 43q^{4} - 30q^{5} + 19q^{6} + 56q^{7} + 12q^{8} - 124q^{9} - 28q^{10} - 24q^{11} + 268q^{12} - 68q^{13} + 21q^{14} + 56q^{15} - 103q^{16} + 336q^{17} - 479q^{18} + 352q^{19} - 330q^{20} + 70q^{21} - 151q^{22} - 228q^{23} - 195q^{24} - 244q^{25} + 1590q^{26} + 272q^{27} - 602q^{28} - 618q^{29} + 1030q^{30} - 72q^{31} - 786q^{32} - 700q^{33} + 261q^{34} - 420q^{35} + 727q^{36} + 420q^{37} - 1032q^{38} - 22q^{39} + 375q^{40} - 420q^{41} - 175q^{42} + 2q^{43} + 774q^{44} + 1406q^{45} + 804q^{46} - 570q^{47} + 1864q^{48} - 392q^{49} - 1110q^{50} - 2940q^{51} + 431q^{52} + 1056q^{53} + 2269q^{54} - 1676q^{55} + 42q^{56} + 122q^{57} - 37q^{58} + 150q^{59} - 6350q^{60} - 578q^{61} + 2340q^{62} - 350q^{63} - 224q^{64} + 366q^{65} + 5812q^{66} + 898q^{67} - 2526q^{68} - 2166q^{69} - 98q^{70} + 1764q^{71} + 1350q^{72} + 1944q^{73} + 222q^{74} - 2096q^{75} - 1423q^{76} + 168q^{77} - 5558q^{78} + 158q^{79} + 4950q^{80} + 476q^{81} - 422q^{82} - 2958q^{83} + 1715q^{84} + 774q^{85} + 114q^{86} + 44q^{87} - 1317q^{88} + 8760q^{89} - 3659q^{90} - 952q^{91} - 4629q^{92} + 3954q^{93} + 3234q^{94} - 930q^{95} - 5923q^{96} + 60q^{97} + 294q^{98} + 1214q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30789 2.26533i −0.462408 0.800913i 0.536673 0.843790i \(-0.319681\pi\)
−0.999080 + 0.0428770i \(0.986348\pi\)
\(3\) −3.13193 4.14620i −0.602741 0.797937i
\(4\) 0.578868 1.00263i 0.0723584 0.125328i
\(5\) 6.77153 11.7286i 0.605664 1.04904i −0.386282 0.922381i \(-0.626241\pi\)
0.991946 0.126660i \(-0.0404257\pi\)
\(6\) −5.29628 + 12.5176i −0.360366 + 0.851715i
\(7\) 3.50000 + 6.06218i 0.188982 + 0.327327i
\(8\) −23.9546 −1.05865
\(9\) −7.38198 + 25.9713i −0.273407 + 0.961899i
\(10\) −35.4255 −1.12025
\(11\) −12.0346 20.8445i −0.329870 0.571351i 0.652616 0.757689i \(-0.273671\pi\)
−0.982486 + 0.186338i \(0.940338\pi\)
\(12\) −5.97007 + 0.740063i −0.143618 + 0.0178031i
\(13\) −11.9972 + 20.7798i −0.255956 + 0.443329i −0.965155 0.261680i \(-0.915724\pi\)
0.709199 + 0.705009i \(0.249057\pi\)
\(14\) 9.15520 15.8573i 0.174774 0.302717i
\(15\) −69.8372 + 8.65717i −1.20213 + 0.149018i
\(16\) 26.6989 + 46.2438i 0.417170 + 0.722560i
\(17\) 79.6971 1.13702 0.568511 0.822675i \(-0.307520\pi\)
0.568511 + 0.822675i \(0.307520\pi\)
\(18\) 68.4881 17.2449i 0.896823 0.225814i
\(19\) −50.0463 −0.604284 −0.302142 0.953263i \(-0.597702\pi\)
−0.302142 + 0.953263i \(0.597702\pi\)
\(20\) −7.83963 13.5786i −0.0876498 0.151814i
\(21\) 14.1732 33.4980i 0.147279 0.348089i
\(22\) −31.4798 + 54.5245i −0.305069 + 0.528394i
\(23\) 75.8039 131.296i 0.687226 1.19031i −0.285506 0.958377i \(-0.592162\pi\)
0.972732 0.231933i \(-0.0745051\pi\)
\(24\) 75.0241 + 99.3204i 0.638093 + 0.844737i
\(25\) −29.2071 50.5883i −0.233657 0.404706i
\(26\) 62.7639 0.473424
\(27\) 130.802 50.7331i 0.932328 0.361614i
\(28\) 8.10415 0.0546978
\(29\) −128.062 221.810i −0.820018 1.42031i −0.905668 0.423987i \(-0.860630\pi\)
0.0856508 0.996325i \(-0.472703\pi\)
\(30\) 110.950 + 146.881i 0.675223 + 0.893892i
\(31\) 1.36254 2.35999i 0.00789417 0.0136731i −0.862051 0.506821i \(-0.830821\pi\)
0.869946 + 0.493148i \(0.164154\pi\)
\(32\) −25.9800 + 44.9987i −0.143521 + 0.248585i
\(33\) −48.7341 + 115.182i −0.257076 + 0.607592i
\(34\) −104.235 180.540i −0.525768 0.910657i
\(35\) 94.8014 0.457839
\(36\) 21.7663 + 22.4353i 0.100770 + 0.103867i
\(37\) 319.617 1.42013 0.710065 0.704137i \(-0.248666\pi\)
0.710065 + 0.704137i \(0.248666\pi\)
\(38\) 65.4548 + 113.371i 0.279426 + 0.483979i
\(39\) 123.732 15.3380i 0.508023 0.0629756i
\(40\) −162.209 + 280.954i −0.641187 + 1.11057i
\(41\) −82.3892 + 142.702i −0.313830 + 0.543570i −0.979188 0.202955i \(-0.934946\pi\)
0.665358 + 0.746524i \(0.268279\pi\)
\(42\) −94.4210 + 11.7046i −0.346892 + 0.0430015i
\(43\) −211.384 366.129i −0.749670 1.29847i −0.947981 0.318328i \(-0.896879\pi\)
0.198310 0.980139i \(-0.436455\pi\)
\(44\) −27.8657 −0.0954754
\(45\) 254.620 + 262.446i 0.843478 + 0.869402i
\(46\) −396.571 −1.27111
\(47\) −50.0386 86.6693i −0.155295 0.268979i 0.777871 0.628424i \(-0.216300\pi\)
−0.933166 + 0.359444i \(0.882966\pi\)
\(48\) 108.117 255.532i 0.325112 0.768392i
\(49\) −24.5000 + 42.4352i −0.0714286 + 0.123718i
\(50\) −76.3992 + 132.327i −0.216090 + 0.374278i
\(51\) −249.606 330.440i −0.685330 0.907272i
\(52\) 13.8896 + 24.0575i 0.0370411 + 0.0641571i
\(53\) 194.981 0.505333 0.252667 0.967553i \(-0.418692\pi\)
0.252667 + 0.967553i \(0.418692\pi\)
\(54\) −286.001 229.956i −0.720737 0.579501i
\(55\) −325.970 −0.799160
\(56\) −83.8409 145.217i −0.200066 0.346525i
\(57\) 156.742 + 207.502i 0.364227 + 0.482181i
\(58\) −334.981 + 580.204i −0.758365 + 1.31353i
\(59\) −288.258 + 499.277i −0.636067 + 1.10170i 0.350221 + 0.936667i \(0.386106\pi\)
−0.986288 + 0.165033i \(0.947227\pi\)
\(60\) −31.7466 + 75.0321i −0.0683078 + 0.161443i
\(61\) 21.5192 + 37.2723i 0.0451680 + 0.0782332i 0.887726 0.460373i \(-0.152284\pi\)
−0.842558 + 0.538606i \(0.818951\pi\)
\(62\) −7.12819 −0.0146013
\(63\) −183.279 + 46.1485i −0.366524 + 0.0922884i
\(64\) 563.098 1.09980
\(65\) 162.479 + 281.422i 0.310046 + 0.537016i
\(66\) 324.662 40.2458i 0.605502 0.0750594i
\(67\) 508.257 880.326i 0.926768 1.60521i 0.138074 0.990422i \(-0.455909\pi\)
0.788693 0.614787i \(-0.210758\pi\)
\(68\) 46.1341 79.9065i 0.0822732 0.142501i
\(69\) −781.793 + 96.9127i −1.36401 + 0.169086i
\(70\) −123.989 214.756i −0.211708 0.366689i
\(71\) −509.305 −0.851315 −0.425657 0.904884i \(-0.639957\pi\)
−0.425657 + 0.904884i \(0.639957\pi\)
\(72\) 176.832 622.130i 0.289442 1.01832i
\(73\) 1039.67 1.66690 0.833452 0.552592i \(-0.186361\pi\)
0.833452 + 0.552592i \(0.186361\pi\)
\(74\) −418.023 724.037i −0.656678 1.13740i
\(75\) −118.274 + 279.538i −0.182095 + 0.430377i
\(76\) −28.9702 + 50.1778i −0.0437251 + 0.0757341i
\(77\) 84.2422 145.912i 0.124679 0.215950i
\(78\) −196.572 260.232i −0.285352 0.377762i
\(79\) 447.071 + 774.349i 0.636701 + 1.10280i 0.986152 + 0.165844i \(0.0530347\pi\)
−0.349451 + 0.936955i \(0.613632\pi\)
\(80\) 723.169 1.01066
\(81\) −620.013 383.439i −0.850498 0.525979i
\(82\) 431.023 0.580470
\(83\) −7.23057 12.5237i −0.00956214 0.0165621i 0.861205 0.508258i \(-0.169710\pi\)
−0.870767 + 0.491696i \(0.836377\pi\)
\(84\) −25.3816 33.6014i −0.0329686 0.0436454i
\(85\) 539.671 934.738i 0.688653 1.19278i
\(86\) −552.934 + 957.709i −0.693307 + 1.20084i
\(87\) −518.587 + 1225.66i −0.639061 + 1.51040i
\(88\) 288.283 + 499.321i 0.349217 + 0.604862i
\(89\) 1532.12 1.82477 0.912384 0.409336i \(-0.134240\pi\)
0.912384 + 0.409336i \(0.134240\pi\)
\(90\) 261.511 920.046i 0.306285 1.07757i
\(91\) −167.961 −0.193484
\(92\) −87.7608 152.006i −0.0994532 0.172258i
\(93\) −14.0524 + 1.74196i −0.0156684 + 0.00194229i
\(94\) −130.889 + 226.707i −0.143619 + 0.248756i
\(95\) −338.890 + 586.974i −0.365993 + 0.633919i
\(96\) 267.941 33.2146i 0.284861 0.0353119i
\(97\) 887.575 + 1537.32i 0.929067 + 1.60919i 0.784886 + 0.619641i \(0.212722\pi\)
0.144182 + 0.989551i \(0.453945\pi\)
\(98\) 128.173 0.132116
\(99\) 630.198 158.680i 0.639770 0.161090i
\(100\) −67.6283 −0.0676283
\(101\) −169.349 293.320i −0.166840 0.288975i 0.770467 0.637480i \(-0.220023\pi\)
−0.937307 + 0.348504i \(0.886690\pi\)
\(102\) −422.098 + 997.617i −0.409745 + 0.968420i
\(103\) 225.235 390.119i 0.215467 0.373200i −0.737950 0.674855i \(-0.764206\pi\)
0.953417 + 0.301656i \(0.0975393\pi\)
\(104\) 287.388 497.770i 0.270968 0.469331i
\(105\) −296.912 393.066i −0.275958 0.365326i
\(106\) −255.013 441.695i −0.233670 0.404728i
\(107\) −581.208 −0.525117 −0.262558 0.964916i \(-0.584566\pi\)
−0.262558 + 0.964916i \(0.584566\pi\)
\(108\) 24.8506 160.513i 0.0221412 0.143013i
\(109\) −1381.38 −1.21388 −0.606938 0.794749i \(-0.707602\pi\)
−0.606938 + 0.794749i \(0.707602\pi\)
\(110\) 426.332 + 738.429i 0.369538 + 0.640058i
\(111\) −1001.02 1325.20i −0.855970 1.13317i
\(112\) −186.892 + 323.707i −0.157675 + 0.273102i
\(113\) −749.878 + 1298.83i −0.624271 + 1.08127i 0.364410 + 0.931239i \(0.381271\pi\)
−0.988681 + 0.150031i \(0.952063\pi\)
\(114\) 265.059 626.460i 0.217764 0.514678i
\(115\) −1026.62 1778.15i −0.832456 1.44186i
\(116\) −296.524 −0.237341
\(117\) −451.114 464.978i −0.356457 0.367413i
\(118\) 1508.03 1.17649
\(119\) 278.940 + 483.138i 0.214877 + 0.372178i
\(120\) 1672.92 207.379i 1.27263 0.157758i
\(121\) 375.837 650.969i 0.282372 0.489083i
\(122\) 56.2892 97.4958i 0.0417720 0.0723513i
\(123\) 849.710 105.332i 0.622892 0.0772150i
\(124\) −1.57746 2.73224i −0.00114242 0.00197873i
\(125\) 901.774 0.645257
\(126\) 344.250 + 354.830i 0.243399 + 0.250879i
\(127\) −908.229 −0.634585 −0.317292 0.948328i \(-0.602774\pi\)
−0.317292 + 0.948328i \(0.602774\pi\)
\(128\) −528.628 915.610i −0.365035 0.632260i
\(129\) −856.001 + 2023.13i −0.584238 + 1.38083i
\(130\) 425.008 736.135i 0.286736 0.496641i
\(131\) 309.932 536.818i 0.206709 0.358030i −0.743967 0.668216i \(-0.767058\pi\)
0.950676 + 0.310186i \(0.100391\pi\)
\(132\) 87.2737 + 115.537i 0.0575469 + 0.0761834i
\(133\) −175.162 303.389i −0.114199 0.197798i
\(134\) −2658.97 −1.71418
\(135\) 290.700 1877.67i 0.185329 1.19707i
\(136\) −1909.11 −1.20371
\(137\) 381.288 + 660.410i 0.237778 + 0.411844i 0.960076 0.279738i \(-0.0902475\pi\)
−0.722298 + 0.691582i \(0.756914\pi\)
\(138\) 1242.03 + 1644.26i 0.766152 + 1.01427i
\(139\) −696.068 + 1205.63i −0.424746 + 0.735682i −0.996397 0.0848153i \(-0.972970\pi\)
0.571651 + 0.820497i \(0.306303\pi\)
\(140\) 54.8774 95.0505i 0.0331285 0.0573802i
\(141\) −202.631 + 478.913i −0.121026 + 0.286041i
\(142\) 666.113 + 1153.74i 0.393654 + 0.681830i
\(143\) 577.526 0.337728
\(144\) −1398.10 + 352.033i −0.809086 + 0.203723i
\(145\) −3468.70 −1.98662
\(146\) −1359.77 2355.19i −0.770789 1.33505i
\(147\) 252.677 31.3224i 0.141772 0.0175744i
\(148\) 185.016 320.457i 0.102758 0.177983i
\(149\) −521.124 + 902.613i −0.286525 + 0.496275i −0.972978 0.230899i \(-0.925833\pi\)
0.686453 + 0.727174i \(0.259167\pi\)
\(150\) 787.933 97.6739i 0.428897 0.0531669i
\(151\) −49.9139 86.4533i −0.0269002 0.0465925i 0.852262 0.523115i \(-0.175230\pi\)
−0.879162 + 0.476523i \(0.841897\pi\)
\(152\) 1198.84 0.639727
\(153\) −588.322 + 2069.83i −0.310870 + 1.09370i
\(154\) −440.717 −0.230610
\(155\) −18.4529 31.9614i −0.00956243 0.0165626i
\(156\) 56.2459 132.935i 0.0288671 0.0682266i
\(157\) −246.721 + 427.334i −0.125417 + 0.217229i −0.921896 0.387438i \(-0.873360\pi\)
0.796479 + 0.604666i \(0.206694\pi\)
\(158\) 1169.43 2025.52i 0.588831 1.01988i
\(159\) −610.667 808.430i −0.304585 0.403224i
\(160\) 351.848 + 609.419i 0.173850 + 0.301118i
\(161\) 1061.25 0.519494
\(162\) −57.7075 + 1906.02i −0.0279872 + 0.924392i
\(163\) 2174.81 1.04506 0.522529 0.852622i \(-0.324989\pi\)
0.522529 + 0.852622i \(0.324989\pi\)
\(164\) 95.3849 + 165.211i 0.0454165 + 0.0786637i
\(165\) 1020.92 + 1351.54i 0.481687 + 0.637680i
\(166\) −18.9135 + 32.7592i −0.00884321 + 0.0153169i
\(167\) −1150.10 + 1992.04i −0.532921 + 0.923045i 0.466340 + 0.884605i \(0.345572\pi\)
−0.999261 + 0.0384401i \(0.987761\pi\)
\(168\) −339.514 + 802.431i −0.155917 + 0.368505i
\(169\) 810.634 + 1404.06i 0.368973 + 0.639080i
\(170\) −2823.31 −1.27375
\(171\) 369.441 1299.76i 0.165215 0.581260i
\(172\) −489.454 −0.216980
\(173\) 156.272 + 270.672i 0.0686773 + 0.118953i 0.898319 0.439343i \(-0.144789\pi\)
−0.829642 + 0.558296i \(0.811455\pi\)
\(174\) 3454.78 428.262i 1.50521 0.186589i
\(175\) 204.450 354.118i 0.0883141 0.152965i
\(176\) 642.620 1113.05i 0.275224 0.476701i
\(177\) 2972.91 368.528i 1.26247 0.156499i
\(178\) −2003.84 3470.75i −0.843786 1.46148i
\(179\) 4345.85 1.81466 0.907329 0.420421i \(-0.138118\pi\)
0.907329 + 0.420421i \(0.138118\pi\)
\(180\) 410.527 103.368i 0.169994 0.0428033i
\(181\) −110.995 −0.0455812 −0.0227906 0.999740i \(-0.507255\pi\)
−0.0227906 + 0.999740i \(0.507255\pi\)
\(182\) 219.674 + 380.486i 0.0894687 + 0.154964i
\(183\) 87.1418 205.957i 0.0352006 0.0831956i
\(184\) −1815.85 + 3145.14i −0.727533 + 1.26012i
\(185\) 2164.30 3748.67i 0.860121 1.48977i
\(186\) 22.3250 + 29.5549i 0.00880080 + 0.0116509i
\(187\) −959.122 1661.25i −0.375069 0.649639i
\(188\) −115.863 −0.0449477
\(189\) 765.360 + 615.379i 0.294559 + 0.236837i
\(190\) 1772.92 0.676952
\(191\) −1102.94 1910.35i −0.417833 0.723707i 0.577889 0.816116i \(-0.303877\pi\)
−0.995721 + 0.0924083i \(0.970543\pi\)
\(192\) −1763.58 2334.72i −0.662895 0.877571i
\(193\) 219.259 379.767i 0.0817750 0.141639i −0.822237 0.569145i \(-0.807274\pi\)
0.904012 + 0.427506i \(0.140608\pi\)
\(194\) 2321.69 4021.29i 0.859216 1.48821i
\(195\) 657.958 1555.06i 0.241627 0.571079i
\(196\) 28.3645 + 49.1288i 0.0103369 + 0.0179041i
\(197\) 2536.01 0.917173 0.458587 0.888650i \(-0.348356\pi\)
0.458587 + 0.888650i \(0.348356\pi\)
\(198\) −1183.69 1220.07i −0.424854 0.437911i
\(199\) 2797.01 0.996356 0.498178 0.867075i \(-0.334003\pi\)
0.498178 + 0.867075i \(0.334003\pi\)
\(200\) 699.644 + 1211.82i 0.247361 + 0.428443i
\(201\) −5241.84 + 649.789i −1.83946 + 0.228023i
\(202\) −442.978 + 767.260i −0.154296 + 0.267248i
\(203\) 896.434 1552.67i 0.309937 0.536827i
\(204\) −475.797 + 58.9808i −0.163296 + 0.0202426i
\(205\) 1115.80 + 1932.62i 0.380151 + 0.658441i
\(206\) −1178.33 −0.398534
\(207\) 2850.34 + 2937.95i 0.957065 + 0.986480i
\(208\) −1281.25 −0.427109
\(209\) 602.287 + 1043.19i 0.199335 + 0.345259i
\(210\) −502.095 + 1186.69i −0.164990 + 0.389948i
\(211\) −944.079 + 1635.19i −0.308024 + 0.533514i −0.977930 0.208932i \(-0.933001\pi\)
0.669906 + 0.742446i \(0.266334\pi\)
\(212\) 112.868 195.493i 0.0365651 0.0633327i
\(213\) 1595.11 + 2111.68i 0.513122 + 0.679296i
\(214\) 760.154 + 1316.62i 0.242818 + 0.420573i
\(215\) −5725.58 −1.81619
\(216\) −3133.30 + 1215.29i −0.987010 + 0.382824i
\(217\) 19.0756 0.00596743
\(218\) 1806.69 + 3129.28i 0.561305 + 0.972210i
\(219\) −3256.17 4310.67i −1.00471 1.33008i
\(220\) −188.694 + 326.827i −0.0578260 + 0.100158i
\(221\) −956.142 + 1656.09i −0.291028 + 0.504075i
\(222\) −1692.78 + 4000.85i −0.511767 + 1.20955i
\(223\) −674.874 1168.92i −0.202659 0.351015i 0.746725 0.665132i \(-0.231625\pi\)
−0.949384 + 0.314117i \(0.898292\pi\)
\(224\) −363.720 −0.108491
\(225\) 1529.45 385.105i 0.453170 0.114105i
\(226\) 3923.02 1.15467
\(227\) −1242.53 2152.13i −0.363303 0.629260i 0.625199 0.780465i \(-0.285018\pi\)
−0.988502 + 0.151206i \(0.951684\pi\)
\(228\) 298.780 37.0374i 0.0867859 0.0107582i
\(229\) 931.009 1612.56i 0.268659 0.465330i −0.699857 0.714283i \(-0.746753\pi\)
0.968516 + 0.248953i \(0.0800863\pi\)
\(230\) −2685.39 + 4651.24i −0.769868 + 1.33345i
\(231\) −868.820 + 107.701i −0.247464 + 0.0306761i
\(232\) 3067.67 + 5313.35i 0.868113 + 1.50362i
\(233\) −4094.94 −1.15137 −0.575684 0.817672i \(-0.695264\pi\)
−0.575684 + 0.817672i \(0.695264\pi\)
\(234\) −463.322 + 1630.06i −0.129437 + 0.455386i
\(235\) −1355.35 −0.376227
\(236\) 333.726 + 578.030i 0.0920496 + 0.159435i
\(237\) 1810.41 4278.85i 0.496198 1.17275i
\(238\) 729.643 1263.78i 0.198722 0.344196i
\(239\) 1061.36 1838.33i 0.287254 0.497538i −0.685900 0.727696i \(-0.740591\pi\)
0.973153 + 0.230158i \(0.0739244\pi\)
\(240\) −2264.92 2998.40i −0.609166 0.806442i
\(241\) −2644.98 4581.25i −0.706964 1.22450i −0.965978 0.258624i \(-0.916731\pi\)
0.259014 0.965874i \(-0.416603\pi\)
\(242\) −1966.21 −0.522284
\(243\) 352.024 + 3771.60i 0.0929315 + 0.995673i
\(244\) 49.8270 0.0130731
\(245\) 331.805 + 574.703i 0.0865234 + 0.149863i
\(246\) −1349.93 1787.11i −0.349873 0.463178i
\(247\) 600.416 1039.95i 0.154670 0.267897i
\(248\) −32.6390 + 56.5325i −0.00835718 + 0.0144751i
\(249\) −29.2802 + 69.2028i −0.00745203 + 0.0176127i
\(250\) −1179.42 2042.81i −0.298372 0.516795i
\(251\) −4632.56 −1.16496 −0.582480 0.812845i \(-0.697918\pi\)
−0.582480 + 0.812845i \(0.697918\pi\)
\(252\) −59.8247 + 210.475i −0.0149548 + 0.0526138i
\(253\) −3649.07 −0.906780
\(254\) 1187.86 + 2057.43i 0.293437 + 0.508248i
\(255\) −5565.82 + 689.951i −1.36684 + 0.169437i
\(256\) 869.621 1506.23i 0.212310 0.367731i
\(257\) −1578.23 + 2733.58i −0.383065 + 0.663487i −0.991499 0.130117i \(-0.958465\pi\)
0.608434 + 0.793604i \(0.291798\pi\)
\(258\) 5702.61 706.907i 1.37608 0.170582i
\(259\) 1118.66 + 1937.58i 0.268379 + 0.464846i
\(260\) 376.215 0.0897379
\(261\) 6706.03 1688.53i 1.59039 0.400451i
\(262\) −1621.42 −0.382335
\(263\) 894.284 + 1548.95i 0.209673 + 0.363164i 0.951611 0.307304i \(-0.0994268\pi\)
−0.741939 + 0.670468i \(0.766093\pi\)
\(264\) 1167.40 2759.12i 0.272154 0.643228i
\(265\) 1320.32 2286.86i 0.306062 0.530115i
\(266\) −458.184 + 793.598i −0.105613 + 0.182927i
\(267\) −4798.50 6352.47i −1.09986 1.45605i
\(268\) −588.427 1019.18i −0.134119 0.232301i
\(269\) 5780.38 1.31017 0.655085 0.755555i \(-0.272633\pi\)
0.655085 + 0.755555i \(0.272633\pi\)
\(270\) −4633.73 + 1797.25i −1.04444 + 0.405100i
\(271\) 5745.97 1.28798 0.643991 0.765033i \(-0.277277\pi\)
0.643991 + 0.765033i \(0.277277\pi\)
\(272\) 2127.82 + 3685.50i 0.474332 + 0.821567i
\(273\) 526.042 + 696.400i 0.116621 + 0.154388i
\(274\) 997.362 1727.48i 0.219901 0.380879i
\(275\) −702.992 + 1217.62i −0.154153 + 0.267001i
\(276\) −355.387 + 839.947i −0.0775065 + 0.183184i
\(277\) −1746.81 3025.57i −0.378902 0.656278i 0.612001 0.790857i \(-0.290365\pi\)
−0.990903 + 0.134579i \(0.957032\pi\)
\(278\) 3641.51 0.785623
\(279\) 51.2336 + 52.8083i 0.0109938 + 0.0113317i
\(280\) −2270.92 −0.484692
\(281\) −927.263 1606.07i −0.196854 0.340961i 0.750653 0.660697i \(-0.229739\pi\)
−0.947507 + 0.319736i \(0.896406\pi\)
\(282\) 1349.91 167.338i 0.285057 0.0353362i
\(283\) −2710.16 + 4694.13i −0.569266 + 0.985997i 0.427373 + 0.904075i \(0.359439\pi\)
−0.996639 + 0.0819218i \(0.973894\pi\)
\(284\) −294.820 + 510.643i −0.0615998 + 0.106694i
\(285\) 3495.09 433.259i 0.726426 0.0900493i
\(286\) −755.338 1308.28i −0.156168 0.270491i
\(287\) −1153.45 −0.237233
\(288\) −976.888 1006.91i −0.199874 0.206017i
\(289\) 1438.63 0.292820
\(290\) 4536.66 + 7857.73i 0.918628 + 1.59111i
\(291\) 3594.23 8494.86i 0.724047 1.71126i
\(292\) 601.830 1042.40i 0.120615 0.208911i
\(293\) −707.626 + 1225.64i −0.141092 + 0.244379i −0.927908 0.372809i \(-0.878395\pi\)
0.786816 + 0.617188i \(0.211728\pi\)
\(294\) −401.429 531.431i −0.0796320 0.105421i
\(295\) 3903.89 + 6761.73i 0.770485 + 1.33452i
\(296\) −7656.29 −1.50342
\(297\) −2631.66 2115.95i −0.514155 0.413401i
\(298\) 2726.28 0.529964
\(299\) 1818.87 + 3150.37i 0.351799 + 0.609334i
\(300\) 211.807 + 280.400i 0.0407623 + 0.0539631i
\(301\) 1479.69 2562.90i 0.283349 0.490775i
\(302\) −130.563 + 226.142i −0.0248777 + 0.0430895i
\(303\) −685.777 + 1620.81i −0.130023 + 0.307305i
\(304\) −1336.18 2314.33i −0.252089 0.436632i
\(305\) 582.870 0.109426
\(306\) 5458.31 1374.37i 1.01971 0.256756i
\(307\) 6596.15 1.22626 0.613131 0.789982i \(-0.289910\pi\)
0.613131 + 0.789982i \(0.289910\pi\)
\(308\) −97.5301 168.927i −0.0180432 0.0312517i
\(309\) −2322.94 + 287.956i −0.427661 + 0.0530137i
\(310\) −48.2687 + 83.6039i −0.00884348 + 0.0153174i
\(311\) 379.003 656.452i 0.0691037 0.119691i −0.829403 0.558650i \(-0.811319\pi\)
0.898507 + 0.438959i \(0.144653\pi\)
\(312\) −2963.93 + 367.416i −0.537820 + 0.0666693i
\(313\) −3552.76 6153.56i −0.641578 1.11125i −0.985081 0.172094i \(-0.944947\pi\)
0.343503 0.939152i \(-0.388387\pi\)
\(314\) 1290.73 0.231975
\(315\) −699.822 + 2462.11i −0.125176 + 0.440394i
\(316\) 1035.18 0.184283
\(317\) 2629.69 + 4554.75i 0.465924 + 0.807005i 0.999243 0.0389100i \(-0.0123886\pi\)
−0.533318 + 0.845915i \(0.679055\pi\)
\(318\) −1032.67 + 2440.69i −0.182105 + 0.430400i
\(319\) −3082.35 + 5338.78i −0.540998 + 0.937036i
\(320\) 3813.03 6604.36i 0.666109 1.15373i
\(321\) 1820.30 + 2409.81i 0.316509 + 0.419010i
\(322\) −1388.00 2404.09i −0.240218 0.416070i
\(323\) −3988.54 −0.687085
\(324\) −743.352 + 399.682i −0.127461 + 0.0685325i
\(325\) 1401.62 0.239224
\(326\) −2844.41 4926.66i −0.483243 0.837001i
\(327\) 4326.40 + 5727.49i 0.731653 + 0.968596i
\(328\) 1973.60 3418.37i 0.332237 0.575451i
\(329\) 350.270 606.685i 0.0586961 0.101665i
\(330\) 1726.43 4080.37i 0.287991 0.680657i
\(331\) 2126.09 + 3682.50i 0.353053 + 0.611507i 0.986783 0.162048i \(-0.0518100\pi\)
−0.633729 + 0.773555i \(0.718477\pi\)
\(332\) −16.7422 −0.00276761
\(333\) −2359.41 + 8300.87i −0.388273 + 1.36602i
\(334\) 6016.82 0.985706
\(335\) −6883.35 11922.3i −1.12262 1.94443i
\(336\) 1927.49 238.935i 0.312956 0.0387946i
\(337\) −1296.08 + 2244.87i −0.209501 + 0.362867i −0.951558 0.307471i \(-0.900517\pi\)
0.742056 + 0.670338i \(0.233851\pi\)
\(338\) 2120.43 3672.70i 0.341232 0.591031i
\(339\) 7733.77 958.694i 1.23906 0.153596i
\(340\) −624.796 1082.18i −0.0996598 0.172616i
\(341\) −65.5905 −0.0104162
\(342\) −3427.58 + 863.041i −0.541936 + 0.136456i
\(343\) −343.000 −0.0539949
\(344\) 5063.62 + 8770.45i 0.793640 + 1.37462i
\(345\) −4157.28 + 9825.60i −0.648755 + 1.53331i
\(346\) 408.773 708.016i 0.0635138 0.110009i
\(347\) 245.989 426.066i 0.0380559 0.0659148i −0.846370 0.532595i \(-0.821217\pi\)
0.884426 + 0.466680i \(0.154550\pi\)
\(348\) 928.692 + 1229.45i 0.143055 + 0.189383i
\(349\) 5958.75 + 10320.9i 0.913939 + 1.58299i 0.808448 + 0.588568i \(0.200308\pi\)
0.105491 + 0.994420i \(0.466358\pi\)
\(350\) −1069.59 −0.163348
\(351\) −515.036 + 3326.69i −0.0783208 + 0.505885i
\(352\) 1250.63 0.189372
\(353\) −4039.98 6997.45i −0.609140 1.05506i −0.991382 0.130999i \(-0.958181\pi\)
0.382242 0.924062i \(-0.375152\pi\)
\(354\) −4723.06 6252.61i −0.709118 0.938764i
\(355\) −3448.77 + 5973.45i −0.515611 + 0.893064i
\(356\) 886.894 1536.15i 0.132037 0.228695i
\(357\) 1129.57 2669.70i 0.167459 0.395785i
\(358\) −5683.87 9844.76i −0.839112 1.45338i
\(359\) −6675.40 −0.981376 −0.490688 0.871335i \(-0.663255\pi\)
−0.490688 + 0.871335i \(0.663255\pi\)
\(360\) −6099.31 6286.77i −0.892949 0.920394i
\(361\) −4354.37 −0.634840
\(362\) 145.169 + 251.440i 0.0210771 + 0.0365066i
\(363\) −3876.15 + 480.495i −0.560454 + 0.0694751i
\(364\) −97.2271 + 168.402i −0.0140002 + 0.0242491i
\(365\) 7040.14 12193.9i 1.00958 1.74865i
\(366\) −580.532 + 71.9639i −0.0829095 + 0.0102776i
\(367\) 5888.45 + 10199.1i 0.837532 + 1.45065i 0.891952 + 0.452130i \(0.149336\pi\)
−0.0544197 + 0.998518i \(0.517331\pi\)
\(368\) 8095.51 1.14676
\(369\) −3097.96 3193.18i −0.437055 0.450488i
\(370\) −11322.6 −1.59091
\(371\) 682.433 + 1182.01i 0.0954991 + 0.165409i
\(372\) −6.38792 + 15.0977i −0.000890318 + 0.00210424i
\(373\) −741.638 + 1284.55i −0.102950 + 0.178315i −0.912899 0.408185i \(-0.866162\pi\)
0.809949 + 0.586501i \(0.199495\pi\)
\(374\) −2508.85 + 4345.45i −0.346870 + 0.600796i
\(375\) −2824.30 3738.94i −0.388923 0.514874i
\(376\) 1198.65 + 2076.12i 0.164403 + 0.284755i
\(377\) 6145.54 0.839553
\(378\) 393.030 2538.63i 0.0534796 0.345432i
\(379\) −13400.9 −1.81625 −0.908124 0.418701i \(-0.862486\pi\)
−0.908124 + 0.418701i \(0.862486\pi\)
\(380\) 392.344 + 679.561i 0.0529654 + 0.0917387i
\(381\) 2844.51 + 3765.70i 0.382490 + 0.506359i
\(382\) −2885.04 + 4997.04i −0.386418 + 0.669296i
\(383\) −5883.57 + 10190.6i −0.784952 + 1.35958i 0.144076 + 0.989567i \(0.453979\pi\)
−0.929028 + 0.370010i \(0.879354\pi\)
\(384\) −2140.68 + 5059.43i −0.284482 + 0.672364i
\(385\) −1140.90 1976.09i −0.151027 0.261587i
\(386\) −1147.06 −0.151254
\(387\) 11069.3 2787.17i 1.45396 0.366097i
\(388\) 2055.15 0.268903
\(389\) −3900.97 6756.68i −0.508450 0.880661i −0.999952 0.00978494i \(-0.996885\pi\)
0.491502 0.870876i \(-0.336448\pi\)
\(390\) −4383.26 + 543.358i −0.569115 + 0.0705487i
\(391\) 6041.35 10463.9i 0.781391 1.35341i
\(392\) 586.886 1016.52i 0.0756180 0.130974i
\(393\) −3196.44 + 396.237i −0.410278 + 0.0508589i
\(394\) −3316.81 5744.88i −0.424108 0.734576i
\(395\) 12109.4 1.54251
\(396\) 205.704 723.708i 0.0261036 0.0918377i
\(397\) −6197.81 −0.783525 −0.391762 0.920066i \(-0.628134\pi\)
−0.391762 + 0.920066i \(0.628134\pi\)
\(398\) −3658.17 6336.14i −0.460723 0.797995i
\(399\) −709.318 + 1676.45i −0.0889983 + 0.210345i
\(400\) 1559.60 2701.30i 0.194950 0.337662i
\(401\) −500.722 + 867.276i −0.0623563 + 0.108004i −0.895518 0.445025i \(-0.853195\pi\)
0.833162 + 0.553029i \(0.186528\pi\)
\(402\) 8327.71 + 11024.6i 1.03321 + 1.36781i
\(403\) 32.6933 + 56.6265i 0.00404112 + 0.00699943i
\(404\) −392.122 −0.0482891
\(405\) −8695.64 + 4675.43i −1.06689 + 0.573640i
\(406\) −4689.73 −0.573270
\(407\) −3846.47 6662.27i −0.468458 0.811392i
\(408\) 5979.20 + 7915.55i 0.725526 + 0.960485i
\(409\) −5054.60 + 8754.82i −0.611085 + 1.05843i 0.379973 + 0.924998i \(0.375933\pi\)
−0.991058 + 0.133433i \(0.957400\pi\)
\(410\) 2918.68 5055.31i 0.351569 0.608936i
\(411\) 1544.02 3649.26i 0.185307 0.437967i
\(412\) −260.763 451.655i −0.0311817 0.0540083i
\(413\) −4035.61 −0.480821
\(414\) 2927.48 10299.5i 0.347531 1.22268i
\(415\) −195.848 −0.0231658
\(416\) −623.375 1079.72i −0.0734699 0.127254i
\(417\) 7178.80 889.899i 0.843040 0.104505i
\(418\) 1575.44 2728.75i 0.184348 0.319300i
\(419\) −178.252 + 308.741i −0.0207832 + 0.0359976i −0.876230 0.481893i \(-0.839949\pi\)
0.855447 + 0.517891i \(0.173283\pi\)
\(420\) −565.971 + 70.1590i −0.0657537 + 0.00815097i
\(421\) 1435.87 + 2487.00i 0.166223 + 0.287907i 0.937089 0.349091i \(-0.113509\pi\)
−0.770866 + 0.636998i \(0.780176\pi\)
\(422\) 4938.99 0.569731
\(423\) 2620.30 659.773i 0.301189 0.0758375i
\(424\) −4670.68 −0.534972
\(425\) −2327.72 4031.74i −0.265673 0.460160i
\(426\) 2697.42 6375.28i 0.306785 0.725078i
\(427\) −150.634 + 260.906i −0.0170719 + 0.0295694i
\(428\) −336.442 + 582.735i −0.0379966 + 0.0658121i
\(429\) −1808.77 2394.54i −0.203563 0.269486i
\(430\) 7488.41 + 12970.3i 0.839821 + 1.45461i
\(431\) −3224.02 −0.360314 −0.180157 0.983638i \(-0.557661\pi\)
−0.180157 + 0.983638i \(0.557661\pi\)
\(432\) 5838.36 + 4694.27i 0.650227 + 0.522808i
\(433\) −14285.5 −1.58549 −0.792744 0.609555i \(-0.791348\pi\)
−0.792744 + 0.609555i \(0.791348\pi\)
\(434\) −24.9487 43.2123i −0.00275939 0.00477940i
\(435\) 10863.7 + 14381.9i 1.19742 + 1.58520i
\(436\) −799.638 + 1385.01i −0.0878342 + 0.152133i
\(437\) −3793.70 + 6570.88i −0.415280 + 0.719286i
\(438\) −5506.38 + 13014.2i −0.600696 + 1.41973i
\(439\) −1757.57 3044.19i −0.191080 0.330960i 0.754528 0.656267i \(-0.227866\pi\)
−0.945608 + 0.325307i \(0.894532\pi\)
\(440\) 7808.47 0.846032
\(441\) −921.238 949.552i −0.0994750 0.102532i
\(442\) 5002.10 0.538294
\(443\) 3991.41 + 6913.33i 0.428076 + 0.741449i 0.996702 0.0811467i \(-0.0258582\pi\)
−0.568626 + 0.822596i \(0.692525\pi\)
\(444\) −1908.14 + 236.537i −0.203956 + 0.0252828i
\(445\) 10374.8 17969.7i 1.10520 1.91425i
\(446\) −1765.32 + 3057.62i −0.187422 + 0.324624i
\(447\) 5374.54 666.240i 0.568696 0.0704968i
\(448\) 1970.84 + 3413.60i 0.207843 + 0.359994i
\(449\) 3502.50 0.368137 0.184068 0.982913i \(-0.441073\pi\)
0.184068 + 0.982913i \(0.441073\pi\)
\(450\) −2872.73 2961.02i −0.300937 0.310187i
\(451\) 3966.08 0.414092
\(452\) 868.161 + 1503.70i 0.0903426 + 0.156478i
\(453\) −202.126 + 477.719i −0.0209640 + 0.0495479i
\(454\) −3250.19 + 5629.49i −0.335988 + 0.581949i
\(455\) −1137.35 + 1969.95i −0.117187 + 0.202973i
\(456\) −3754.68 4970.62i −0.385589 0.510461i
\(457\) −6531.24 11312.4i −0.668531 1.15793i −0.978315 0.207123i \(-0.933590\pi\)
0.309784 0.950807i \(-0.399743\pi\)
\(458\) −4870.62 −0.496919
\(459\) 10424.5 4043.28i 1.06008 0.411164i
\(460\) −2377.10 −0.240941
\(461\) −3357.21 5814.86i −0.339178 0.587473i 0.645101 0.764098i \(-0.276815\pi\)
−0.984278 + 0.176625i \(0.943482\pi\)
\(462\) 1380.30 + 1827.30i 0.138998 + 0.184012i
\(463\) 3048.84 5280.74i 0.306029 0.530058i −0.671461 0.741040i \(-0.734333\pi\)
0.977490 + 0.210982i \(0.0676661\pi\)
\(464\) 6838.22 11844.1i 0.684174 1.18502i
\(465\) −74.7252 + 176.611i −0.00745225 + 0.0176132i
\(466\) 5355.72 + 9276.38i 0.532401 + 0.922146i
\(467\) −11929.4 −1.18207 −0.591033 0.806647i \(-0.701280\pi\)
−0.591033 + 0.806647i \(0.701280\pi\)
\(468\) −727.335 + 183.138i −0.0718399 + 0.0180888i
\(469\) 7115.59 0.700571
\(470\) 1772.64 + 3070.31i 0.173970 + 0.301325i
\(471\) 2544.53 315.425i 0.248929 0.0308578i
\(472\) 6905.08 11960.0i 0.673373 1.16632i
\(473\) −5087.85 + 8812.42i −0.494587 + 0.856650i
\(474\) −12060.8 + 1495.08i −1.16872 + 0.144876i
\(475\) 1461.71 + 2531.75i 0.141195 + 0.244558i
\(476\) 645.877 0.0621927
\(477\) −1439.34 + 5063.90i −0.138162 + 0.486080i
\(478\) −5552.55 −0.531313
\(479\) 3745.00 + 6486.54i 0.357231 + 0.618742i 0.987497 0.157637i \(-0.0503876\pi\)
−0.630266 + 0.776379i \(0.717054\pi\)
\(480\) 1424.81 3367.50i 0.135486 0.320218i
\(481\) −3834.52 + 6641.58i −0.363490 + 0.629584i
\(482\) −6918.68 + 11983.5i −0.653811 + 1.13243i
\(483\) −3323.78 4400.17i −0.313120 0.414523i
\(484\) −435.120 753.650i −0.0408640 0.0707785i
\(485\) 24040.9 2.25081
\(486\) 8083.50 5730.28i 0.754475 0.534837i
\(487\) 14200.8 1.32135 0.660675 0.750672i \(-0.270270\pi\)
0.660675 + 0.750672i \(0.270270\pi\)
\(488\) −515.482 892.841i −0.0478172 0.0828217i
\(489\) −6811.37 9017.21i −0.629899 0.833890i
\(490\) 867.926 1503.29i 0.0800181 0.138595i
\(491\) −5395.93 + 9346.03i −0.495957 + 0.859023i −0.999989 0.00466183i \(-0.998516\pi\)
0.504032 + 0.863685i \(0.331849\pi\)
\(492\) 386.261 912.916i 0.0353943 0.0836533i
\(493\) −10206.2 17677.6i −0.932378 1.61493i
\(494\) −3141.10 −0.286083
\(495\) 2406.31 8465.86i 0.218496 0.768711i
\(496\) 145.513 0.0131729
\(497\) −1782.57 3087.50i −0.160883 0.278658i
\(498\) 195.062 24.1803i 0.0175521 0.00217579i
\(499\) −3170.09 + 5490.75i −0.284394 + 0.492585i −0.972462 0.233061i \(-0.925126\pi\)
0.688068 + 0.725646i \(0.258459\pi\)
\(500\) 522.008 904.144i 0.0466898 0.0808691i
\(501\) 11861.4 1470.37i 1.05775 0.131120i
\(502\) 6058.87 + 10494.3i 0.538686 + 0.933032i
\(503\) 18901.4 1.67549 0.837747 0.546059i \(-0.183873\pi\)
0.837747 + 0.546059i \(0.183873\pi\)
\(504\) 4390.37 1105.47i 0.388021 0.0977012i
\(505\) −4587.00 −0.404195
\(506\) 4772.57 + 8266.34i 0.419302 + 0.726252i
\(507\) 3282.66 7758.47i 0.287551 0.679617i
\(508\) −525.744 + 910.616i −0.0459176 + 0.0795316i
\(509\) 6838.35 11844.4i 0.595491 1.03142i −0.397987 0.917391i \(-0.630291\pi\)
0.993477 0.114029i \(-0.0363757\pi\)
\(510\) 8842.43 + 11706.0i 0.767744 + 1.01638i
\(511\) 3638.84 + 6302.65i 0.315015 + 0.545622i
\(512\) −13007.5 −1.12277
\(513\) −6546.15 + 2539.00i −0.563391 + 0.218518i
\(514\) 8256.61 0.708528
\(515\) −3050.38 5283.40i −0.261001 0.452067i
\(516\) 1532.94 + 2029.38i 0.130783 + 0.173136i
\(517\) −1204.39 + 2086.06i −0.102454 + 0.177456i
\(518\) 2926.16 5068.26i 0.248201 0.429897i
\(519\) 632.825 1495.66i 0.0535220 0.126498i
\(520\) −3892.11 6741.33i −0.328231 0.568513i
\(521\) −10323.9 −0.868139 −0.434069 0.900879i \(-0.642923\pi\)
−0.434069 + 0.900879i \(0.642923\pi\)
\(522\) −12595.8 12982.9i −1.05614 1.08860i
\(523\) 9294.18 0.777067 0.388534 0.921435i \(-0.372982\pi\)
0.388534 + 0.921435i \(0.372982\pi\)
\(524\) −358.819 621.493i −0.0299143 0.0518130i
\(525\) −2108.57 + 261.382i −0.175287 + 0.0217289i
\(526\) 2339.24 4051.69i 0.193909 0.335859i
\(527\) 108.590 188.084i 0.00897585 0.0155466i
\(528\) −6627.58 + 821.569i −0.546266 + 0.0677163i
\(529\) −5408.95 9368.57i −0.444559 0.769999i
\(530\) −6907.30 −0.566102
\(531\) −10838.9 11172.1i −0.885819 0.913044i
\(532\) −405.582 −0.0330531
\(533\) −1976.88 3424.06i −0.160653 0.278260i
\(534\) −8114.54 + 19178.5i −0.657585 + 1.55418i
\(535\) −3935.66 + 6816.77i −0.318044 + 0.550869i
\(536\) −12175.1 + 21087.8i −0.981124 + 1.69936i
\(537\) −13610.9 18018.8i −1.09377 1.44798i
\(538\) −7560.08 13094.4i −0.605833 1.04933i
\(539\) 1179.39 0.0942485
\(540\) −1714.33 1378.38i −0.136616 0.109845i
\(541\) 4432.55 0.352256 0.176128 0.984367i \(-0.443643\pi\)
0.176128 + 0.984367i \(0.443643\pi\)
\(542\) −7515.08 13016.5i −0.595572 1.03156i
\(543\) 347.629 + 460.208i 0.0274736 + 0.0363709i
\(544\) −2070.53 + 3586.26i −0.163186 + 0.282647i
\(545\) −9354.07 + 16201.7i −0.735201 + 1.27340i
\(546\) 889.569 2102.47i 0.0697253 0.164794i
\(547\) −2164.18 3748.47i −0.169166 0.293004i 0.768961 0.639296i \(-0.220774\pi\)
−0.938127 + 0.346292i \(0.887441\pi\)
\(548\) 882.860 0.0688210
\(549\) −1126.86 + 283.737i −0.0876017 + 0.0220575i
\(550\) 3677.74 0.285126
\(551\) 6409.02 + 11100.8i 0.495524 + 0.858272i
\(552\) 18727.5 2321.50i 1.44401 0.179003i
\(553\) −3129.49 + 5420.44i −0.240650 + 0.416819i
\(554\) −4569.27 + 7914.21i −0.350415 + 0.606936i
\(555\) −22321.2 + 2766.98i −1.70717 + 0.211625i
\(556\) 805.862 + 1395.79i 0.0614679 + 0.106466i
\(557\) 6102.88 0.464250 0.232125 0.972686i \(-0.425432\pi\)
0.232125 + 0.972686i \(0.425432\pi\)
\(558\) 52.6202 185.128i 0.00399209 0.0140450i
\(559\) 10144.1 0.767530
\(560\) 2531.09 + 4383.98i 0.190997 + 0.330816i
\(561\) −3883.96 + 9179.63i −0.292301 + 0.690846i
\(562\) −2425.51 + 4201.11i −0.182053 + 0.315326i
\(563\) −2428.85 + 4206.89i −0.181819 + 0.314919i −0.942500 0.334207i \(-0.891532\pi\)
0.760681 + 0.649126i \(0.224865\pi\)
\(564\) 362.875 + 480.390i 0.0270918 + 0.0358654i
\(565\) 10155.6 + 17590.1i 0.756197 + 1.30977i
\(566\) 14178.3 1.05293
\(567\) 154.429 5100.66i 0.0114381 0.377791i
\(568\) 12200.2 0.901246
\(569\) −1501.30 2600.33i −0.110611 0.191585i 0.805406 0.592724i \(-0.201948\pi\)
−0.916017 + 0.401140i \(0.868614\pi\)
\(570\) −5552.66 7350.87i −0.408027 0.540165i
\(571\) −9682.85 + 16771.2i −0.709658 + 1.22916i 0.255326 + 0.966855i \(0.417817\pi\)
−0.964984 + 0.262309i \(0.915516\pi\)
\(572\) 334.311 579.044i 0.0244375 0.0423270i
\(573\) −4466.36 + 10556.1i −0.325628 + 0.769612i
\(574\) 1508.58 + 2612.94i 0.109698 + 0.190003i
\(575\) −8856.06 −0.642301
\(576\) −4156.78 + 14624.4i −0.300693 + 1.05790i
\(577\) 9688.50 0.699025 0.349512 0.936932i \(-0.386347\pi\)
0.349512 + 0.936932i \(0.386347\pi\)
\(578\) −1881.56 3258.96i −0.135402 0.234524i
\(579\) −2261.29 + 280.315i −0.162308 + 0.0201200i
\(580\) −2007.92 + 3477.82i −0.143749 + 0.248980i
\(581\) 50.6140 87.6660i 0.00361415 0.00625989i
\(582\) −23944.5 + 2968.21i −1.70538 + 0.211402i
\(583\) −2346.52 4064.28i −0.166694 0.288723i
\(584\) −24904.8 −1.76467
\(585\) −8508.29 + 2142.33i −0.601324 + 0.151409i
\(586\) 3701.98 0.260968
\(587\) 872.314 + 1510.89i 0.0613360 + 0.106237i 0.895063 0.445940i \(-0.147131\pi\)
−0.833727 + 0.552177i \(0.813797\pi\)
\(588\) 114.862 271.473i 0.00805583 0.0190397i
\(589\) −68.1900 + 118.109i −0.00477033 + 0.00826245i
\(590\) 10211.7 17687.2i 0.712556 1.23418i
\(591\) −7942.61 10514.8i −0.552818 0.731846i
\(592\) 8533.43 + 14780.3i 0.592435 + 1.02613i
\(593\) 20857.6 1.44438 0.722192 0.691692i \(-0.243135\pi\)
0.722192 + 0.691692i \(0.243135\pi\)
\(594\) −1351.42 + 8728.98i −0.0933490 + 0.602954i
\(595\) 7555.39 0.520573
\(596\) 603.324 + 1044.99i 0.0414649 + 0.0718194i
\(597\) −8760.06 11597.0i −0.600545 0.795030i
\(598\) 4757.75 8240.66i 0.325349 0.563521i
\(599\) −3598.35 + 6232.52i −0.245450 + 0.425132i −0.962258 0.272139i \(-0.912269\pi\)
0.716808 + 0.697271i \(0.245602\pi\)
\(600\) 2833.21 6696.20i 0.192775 0.455619i
\(601\) −5649.25 9784.79i −0.383424 0.664110i 0.608125 0.793841i \(-0.291922\pi\)
−0.991549 + 0.129731i \(0.958589\pi\)
\(602\) −7741.07 −0.524091
\(603\) 19111.2 + 19698.6i 1.29066 + 1.33033i
\(604\) −115.574 −0.00778583
\(605\) −5089.98 8816.11i −0.342045 0.592439i
\(606\) 4568.59 566.332i 0.306248 0.0379631i
\(607\) 9204.31 15942.3i 0.615472 1.06603i −0.374829 0.927094i \(-0.622299\pi\)
0.990301 0.138935i \(-0.0443680\pi\)
\(608\) 1300.20 2252.02i 0.0867272 0.150216i
\(609\) −9245.25 + 1146.06i −0.615166 + 0.0762573i
\(610\) −762.328 1320.39i −0.0505996 0.0876411i
\(611\) 2401.29 0.158995
\(612\) 1734.71 + 1788.03i 0.114578 + 0.118099i
\(613\) −8745.01 −0.576195 −0.288098 0.957601i \(-0.593023\pi\)
−0.288098 + 0.957601i \(0.593023\pi\)
\(614\) −8627.01 14942.4i −0.567032 0.982129i
\(615\) 4518.44 10679.2i 0.296262 0.700206i
\(616\) −2017.98 + 3495.25i −0.131992 + 0.228616i
\(617\) 14619.8 25322.2i 0.953923 1.65224i 0.217110 0.976147i \(-0.430337\pi\)
0.736813 0.676096i \(-0.236330\pi\)
\(618\) 3690.45 + 4885.59i 0.240213 + 0.318005i
\(619\) −1289.82 2234.04i −0.0837518 0.145062i 0.821107 0.570775i \(-0.193357\pi\)
−0.904859 + 0.425712i \(0.860024\pi\)
\(620\) −42.7273 −0.00276769
\(621\) 3254.24 21019.6i 0.210287 1.35827i
\(622\) −1982.77 −0.127816
\(623\) 5362.42 + 9287.98i 0.344849 + 0.597295i
\(624\) 4012.78 + 5312.31i 0.257436 + 0.340806i
\(625\) 9757.28 16900.1i 0.624466 1.08161i
\(626\) −9293.21 + 16096.3i −0.593341 + 1.02770i
\(627\) 2438.96 5764.41i 0.155347 0.367158i
\(628\) 285.638 + 494.739i 0.0181500 + 0.0314367i
\(629\) 25472.6 1.61472
\(630\) 6492.77 1634.84i 0.410600 0.103386i
\(631\) 15166.5 0.956847 0.478424 0.878129i \(-0.341208\pi\)
0.478424 + 0.878129i \(0.341208\pi\)
\(632\) −10709.4 18549.2i −0.674044 1.16748i
\(633\) 9736.64 1206.97i 0.611369 0.0757866i
\(634\) 6878.67 11914.2i 0.430894 0.746330i
\(635\) −6150.10 + 10652.3i −0.384345 + 0.665705i
\(636\) −1164.05 + 144.298i −0.0725748 + 0.00899652i
\(637\) −587.863 1018.21i −0.0365651 0.0633327i
\(638\) 16125.4 1.00065
\(639\) 3759.68 13227.3i 0.232755 0.818879i
\(640\) −14318.5 −0.884355
\(641\) 5784.05 + 10018.3i 0.356406 + 0.617313i 0.987357 0.158509i \(-0.0506688\pi\)
−0.630952 + 0.775822i \(0.717335\pi\)
\(642\) 3078.24 7275.33i 0.189234 0.447250i
\(643\) 26.3640 45.6638i 0.00161694 0.00280063i −0.865216 0.501400i \(-0.832819\pi\)
0.866833 + 0.498599i \(0.166152\pi\)
\(644\) 614.325 1064.04i 0.0375898 0.0651074i
\(645\) 17932.1 + 23739.4i 1.09469 + 1.44921i
\(646\) 5216.56 + 9035.35i 0.317713 + 0.550296i
\(647\) −13568.7 −0.824484 −0.412242 0.911074i \(-0.635254\pi\)
−0.412242 + 0.911074i \(0.635254\pi\)
\(648\) 14852.1 + 9185.10i 0.900381 + 0.556829i
\(649\) 13876.3 0.839277
\(650\) −1833.15 3175.12i −0.110619 0.191597i
\(651\) −59.7434 79.0911i −0.00359682 0.00476164i
\(652\) 1258.93 2180.53i 0.0756188 0.130976i
\(653\) 7707.15 13349.2i 0.461875 0.799990i −0.537180 0.843468i \(-0.680510\pi\)
0.999054 + 0.0434774i \(0.0138437\pi\)
\(654\) 7316.20 17291.6i 0.437440 1.03388i
\(655\) −4197.42 7270.15i −0.250392 0.433692i
\(656\) −8798.80 −0.523682
\(657\) −7674.81 + 27001.5i −0.455743 + 1.60339i
\(658\) −1832.45 −0.108566
\(659\) 9417.53 + 16311.6i 0.556684 + 0.964206i 0.997770 + 0.0667409i \(0.0212601\pi\)
−0.441086 + 0.897465i \(0.645407\pi\)
\(660\) 1946.07 241.238i 0.114774 0.0142276i
\(661\) −4509.40 + 7810.50i −0.265348 + 0.459597i −0.967655 0.252278i \(-0.918820\pi\)
0.702307 + 0.711875i \(0.252154\pi\)
\(662\) 5561.38 9632.59i 0.326509 0.565531i
\(663\) 9861.05 1222.40i 0.577634 0.0716047i
\(664\) 173.205 + 300.000i 0.0101230 + 0.0175335i
\(665\) −4744.46 −0.276665
\(666\) 21890.0 5511.76i 1.27360 0.320685i
\(667\) −38830.4 −2.25415
\(668\) 1331.52 + 2306.25i 0.0771226 + 0.133580i
\(669\) −2732.90 + 6459.13i −0.157937 + 0.373280i
\(670\) −18005.3 + 31186.0i −1.03822 + 1.79824i
\(671\) 517.949 897.114i 0.0297991 0.0516136i
\(672\) 1139.15 + 1508.06i 0.0653922 + 0.0865693i
\(673\) −11519.7 19952.8i −0.659812 1.14283i −0.980664 0.195699i \(-0.937303\pi\)
0.320852 0.947129i \(-0.396031\pi\)
\(674\) 6780.49 0.387500
\(675\) −6386.85 5135.27i −0.364193 0.292825i
\(676\) 1877.00 0.106793
\(677\) 14577.1 + 25248.3i 0.827539 + 1.43334i 0.899963 + 0.435965i \(0.143593\pi\)
−0.0724245 + 0.997374i \(0.523074\pi\)
\(678\) −12286.6 16265.6i −0.695967 0.921354i
\(679\) −6213.02 + 10761.3i −0.351154 + 0.608217i
\(680\) −12927.6 + 22391.2i −0.729044 + 1.26274i
\(681\) −5031.64 + 11892.1i −0.283132 + 0.669174i
\(682\) 85.7848 + 148.584i 0.00481653 + 0.00834247i
\(683\) −8818.55 −0.494045 −0.247022 0.969010i \(-0.579452\pi\)
−0.247022 + 0.969010i \(0.579452\pi\)
\(684\) −1089.32 1122.80i −0.0608937 0.0627653i
\(685\) 10327.6 0.576054
\(686\) 448.605 + 777.007i 0.0249677 + 0.0432453i
\(687\) −9601.84 + 1190.26i −0.533236 + 0.0661010i
\(688\) 11287.5 19550.5i 0.625480 1.08336i
\(689\) −2339.23 + 4051.66i −0.129343 + 0.224029i
\(690\) 27695.4 3433.18i 1.52804 0.189419i
\(691\) 4721.50 + 8177.88i 0.259934 + 0.450219i 0.966224 0.257704i \(-0.0829659\pi\)
−0.706290 + 0.707923i \(0.749633\pi\)
\(692\) 361.844 0.0198775
\(693\) 3167.64 + 3264.99i 0.173634 + 0.178971i
\(694\) −1286.90 −0.0703894
\(695\) 9426.88 + 16327.8i 0.514507 + 0.891152i
\(696\) 12422.5 29360.2i 0.676543 1.59899i
\(697\) −6566.18 + 11373.0i −0.356832 + 0.618051i
\(698\) 15586.7 26997.0i 0.845225 1.46397i
\(699\) 12825.1 + 16978.5i 0.693977 + 0.918719i
\(700\) −236.699 409.975i −0.0127805 0.0221365i
\(701\) −11255.0 −0.606411 −0.303205 0.952925i \(-0.598057\pi\)
−0.303205 + 0.952925i \(0.598057\pi\)
\(702\) 8209.64 3184.21i 0.441386 0.171197i
\(703\) −15995.7 −0.858162
\(704\) −6776.65 11737.5i −0.362791 0.628372i
\(705\) 4244.87 + 5619.55i 0.226767 + 0.300205i
\(706\) −10567.7 + 18303.7i −0.563342 + 0.975737i
\(707\) 1185.44 2053.24i 0.0630595 0.109222i
\(708\) 1351.42 3194.05i 0.0717367 0.169548i
\(709\) −11242.5 19472.6i −0.595515 1.03146i −0.993474 0.114060i \(-0.963615\pi\)
0.397958 0.917403i \(-0.369719\pi\)
\(710\) 18042.4 0.953689
\(711\) −23411.1 + 5894.76i −1.23486 + 0.310929i
\(712\) −36701.2 −1.93179
\(713\) −206.572 357.792i −0.0108502 0.0187930i
\(714\) −7525.08 + 932.824i −0.394424 + 0.0488937i
\(715\) 3910.73 6773.59i 0.204550 0.354291i
\(716\) 2515.67 4357.27i 0.131306 0.227428i
\(717\) −10946.2 + 1356.91i −0.570143 + 0.0706762i
\(718\) 8730.66 + 15121.9i 0.453796 + 0.785997i
\(719\) −27322.6 −1.41719 −0.708595 0.705615i \(-0.750671\pi\)
−0.708595 + 0.705615i \(0.750671\pi\)
\(720\) −5338.42 + 18781.6i −0.276321 + 0.972152i
\(721\) 3153.30 0.162878
\(722\) 5695.02 + 9864.06i 0.293555 + 0.508452i
\(723\) −10710.9 + 25314.8i −0.550956 + 1.30217i
\(724\) −64.2514 + 111.287i −0.00329818 + 0.00571262i
\(725\) −7480.65 + 12956.9i −0.383206 + 0.663732i
\(726\) 6158.03 + 8152.30i 0.314802 + 0.416750i
\(727\) 388.538 + 672.967i 0.0198213 + 0.0343315i 0.875766 0.482736i \(-0.160357\pi\)
−0.855945 + 0.517068i \(0.827024\pi\)
\(728\) 4023.43 0.204833
\(729\) 14535.3 13272.0i 0.738470 0.674286i
\(730\) −36830.8 −1.86736
\(731\) −16846.7 29179.4i −0.852392 1.47639i
\(732\) −156.055 206.593i −0.00787972 0.0104315i
\(733\) 12682.6 21966.9i 0.639075 1.10691i −0.346561 0.938028i \(-0.612651\pi\)
0.985636 0.168883i \(-0.0540161\pi\)
\(734\) 15402.8 26678.5i 0.774563 1.34158i
\(735\) 1343.64 3175.66i 0.0674300 0.159369i
\(736\) 3938.77 + 6822.15i 0.197262 + 0.341668i
\(737\) −24466.7 −1.22285
\(738\) −3181.80 + 11194.2i −0.158704 + 0.558353i
\(739\) 851.804 0.0424007 0.0212004 0.999775i \(-0.493251\pi\)
0.0212004 + 0.999775i \(0.493251\pi\)
\(740\) −2505.68 4339.97i −0.124474 0.215595i
\(741\) −6192.31 + 767.611i −0.306991 + 0.0380552i
\(742\) 1785.09 3091.86i 0.0883190 0.152973i
\(743\) 16910.0 29289.0i 0.834950 1.44618i −0.0591206 0.998251i \(-0.518830\pi\)
0.894071 0.447926i \(-0.147837\pi\)
\(744\) 336.618 41.7279i 0.0165874 0.00205621i
\(745\) 7057.61 + 12224.1i 0.347075 + 0.601152i
\(746\) 3879.91 0.190420
\(747\) 378.632 95.3371i 0.0185454 0.00466962i
\(748\) −2220.82 −0.108558
\(749\) −2034.23 3523.39i −0.0992377 0.171885i
\(750\) −4776.05 + 11288.1i −0.232529 + 0.549575i
\(751\) 376.630 652.341i 0.0183001 0.0316968i −0.856730 0.515765i \(-0.827508\pi\)
0.875030 + 0.484068i \(0.160841\pi\)
\(752\) 2671.95 4627.95i 0.129569 0.224420i
\(753\) 14508.9 + 19207.5i 0.702169 + 0.929564i
\(754\) −8037.67 13921.7i −0.388216 0.672409i
\(755\) −1351.97 −0.0651699
\(756\) 1060.04 411.148i 0.0509963 0.0197795i
\(757\) −8507.90 −0.408487 −0.204244 0.978920i \(-0.565473\pi\)
−0.204244 + 0.978920i \(0.565473\pi\)
\(758\) 17526.9 + 30357.4i 0.839847 + 1.45466i
\(759\) 11428.7 + 15129.8i 0.546553 + 0.723553i
\(760\) 8117.95 14060.7i 0.387459 0.671099i
\(761\) −1839.97 + 3186.93i −0.0876466 + 0.151808i −0.906516 0.422172i \(-0.861268\pi\)
0.818869 + 0.573980i \(0.194601\pi\)
\(762\) 4810.24 11368.9i 0.228683 0.540486i
\(763\) −4834.84 8374.19i −0.229401 0.397334i
\(764\) −2553.83 −0.120935
\(765\) 20292.5 + 20916.2i 0.959053 + 0.988529i
\(766\) 30780.2 1.45187
\(767\) −6916.57 11979.9i −0.325610 0.563973i
\(768\) −8968.72 + 1111.78i −0.421394 + 0.0522369i
\(769\) −10837.0 + 18770.3i −0.508184 + 0.880201i 0.491771 + 0.870725i \(0.336350\pi\)
−0.999955 + 0.00947643i \(0.996984\pi\)
\(770\) −2984.32 + 5169.00i −0.139672 + 0.241919i
\(771\) 16276.9 2017.72i 0.760310 0.0942496i
\(772\) −253.843 439.670i