Properties

Label 63.4.e.d.37.4
Level $63$
Weight $4$
Character 63.37
Analytic conductor $3.717$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Defining polynomial: \(x^{8} + 19 x^{6} + 319 x^{4} + 798 x^{2} + 1764\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.4
Root \(-2.02770 - 3.51207i\) of defining polynomial
Character \(\chi\) \(=\) 63.37
Dual form 63.4.e.d.46.4

$q$-expansion

\(f(q)\) \(=\) \(q+(2.02770 - 3.51207i) q^{2} +(-4.22311 - 7.31464i) q^{4} +(4.96020 - 8.59131i) q^{5} +(-15.3924 - 10.2992i) q^{7} -1.80961 q^{8} +O(q^{10})\) \(q+(2.02770 - 3.51207i) q^{2} +(-4.22311 - 7.31464i) q^{4} +(4.96020 - 8.59131i) q^{5} +(-15.3924 - 10.2992i) q^{7} -1.80961 q^{8} +(-20.1156 - 34.8412i) q^{10} +(6.76980 + 11.7256i) q^{11} +18.5538 q^{13} +(-67.3826 + 33.1758i) q^{14} +(30.1156 - 52.1617i) q^{16} +(46.8551 + 81.1555i) q^{17} +(-65.9542 + 114.236i) q^{19} -83.7899 q^{20} +54.9084 q^{22} +(99.1391 - 171.714i) q^{23} +(13.2929 + 23.0240i) q^{25} +(37.6214 - 65.1622i) q^{26} +(-10.3307 + 156.085i) q^{28} +188.358 q^{29} +(41.9622 + 72.6807i) q^{31} +(-129.369 - 224.073i) q^{32} +380.032 q^{34} +(-164.833 + 81.1555i) q^{35} +(-40.0778 + 69.4167i) q^{37} +(267.470 + 463.272i) q^{38} +(-8.97600 + 15.5469i) q^{40} -385.828 q^{41} -397.048 q^{43} +(57.1793 - 99.0374i) q^{44} +(-402.048 - 696.368i) q^{46} +(-136.139 + 235.799i) q^{47} +(130.855 + 317.058i) q^{49} +107.816 q^{50} +(-78.3547 - 135.714i) q^{52} +(18.4998 + 32.0426i) q^{53} +134.318 q^{55} +(27.8543 + 18.6374i) q^{56} +(381.932 - 661.526i) q^{58} +(-197.874 - 342.728i) q^{59} +(-6.73689 + 11.6686i) q^{61} +340.347 q^{62} -567.435 q^{64} +(92.0304 - 159.401i) q^{65} +(-170.261 - 294.901i) q^{67} +(395.749 - 685.457i) q^{68} +(-49.2071 + 743.464i) q^{70} -211.140 q^{71} +(-243.062 - 420.995i) q^{73} +(162.531 + 281.512i) q^{74} +1114.13 q^{76} +(16.5604 - 250.210i) q^{77} +(-146.871 + 254.387i) q^{79} +(-298.758 - 517.464i) q^{80} +(-782.343 + 1355.06i) q^{82} +889.635 q^{83} +929.643 q^{85} +(-805.093 + 1394.46i) q^{86} +(-12.2507 - 21.2188i) q^{88} +(-572.182 + 991.048i) q^{89} +(-285.588 - 191.088i) q^{91} -1674.70 q^{92} +(552.096 + 956.258i) q^{94} +(654.292 + 1133.27i) q^{95} +1384.61 q^{97} +(1378.87 + 183.327i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 6q^{4} - 12q^{7} + O(q^{10}) \) \( 8q - 6q^{4} - 12q^{7} - 22q^{10} + 204q^{13} + 102q^{16} - 222q^{19} - 172q^{22} - 366q^{25} - 166q^{28} - 220q^{31} + 2040q^{34} + 374q^{37} - 822q^{40} - 1676q^{43} - 1716q^{46} + 380q^{49} + 40q^{52} + 5020q^{55} + 1694q^{58} - 1332q^{61} - 1372q^{64} - 1890q^{67} - 866q^{70} - 1750q^{73} + 4912q^{76} - 8q^{79} - 2480q^{82} - 2232q^{85} - 2682q^{88} + 466q^{91} + 1416q^{94} + 6020q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.02770 3.51207i 0.716899 1.24171i −0.245323 0.969441i \(-0.578894\pi\)
0.962222 0.272264i \(-0.0877726\pi\)
\(3\) 0 0
\(4\) −4.22311 7.31464i −0.527889 0.914330i
\(5\) 4.96020 8.59131i 0.443654 0.768430i −0.554304 0.832314i \(-0.687015\pi\)
0.997957 + 0.0638840i \(0.0203488\pi\)
\(6\) 0 0
\(7\) −15.3924 10.2992i −0.831114 0.556102i
\(8\) −1.80961 −0.0799740
\(9\) 0 0
\(10\) −20.1156 34.8412i −0.636110 1.10177i
\(11\) 6.76980 + 11.7256i 0.185561 + 0.321401i 0.943765 0.330616i \(-0.107256\pi\)
−0.758204 + 0.652017i \(0.773923\pi\)
\(12\) 0 0
\(13\) 18.5538 0.395838 0.197919 0.980218i \(-0.436582\pi\)
0.197919 + 0.980218i \(0.436582\pi\)
\(14\) −67.3826 + 33.1758i −1.28634 + 0.633330i
\(15\) 0 0
\(16\) 30.1156 52.1617i 0.470556 0.815026i
\(17\) 46.8551 + 81.1555i 0.668473 + 1.15783i 0.978331 + 0.207046i \(0.0663850\pi\)
−0.309858 + 0.950783i \(0.600282\pi\)
\(18\) 0 0
\(19\) −65.9542 + 114.236i −0.796365 + 1.37934i 0.125604 + 0.992080i \(0.459913\pi\)
−0.921969 + 0.387264i \(0.873420\pi\)
\(20\) −83.7899 −0.936799
\(21\) 0 0
\(22\) 54.9084 0.532115
\(23\) 99.1391 171.714i 0.898779 1.55673i 0.0697230 0.997566i \(-0.477788\pi\)
0.829056 0.559165i \(-0.188878\pi\)
\(24\) 0 0
\(25\) 13.2929 + 23.0240i 0.106343 + 0.184192i
\(26\) 37.6214 65.1622i 0.283776 0.491514i
\(27\) 0 0
\(28\) −10.3307 + 156.085i −0.0697254 + 1.05347i
\(29\) 188.358 1.20611 0.603054 0.797700i \(-0.293950\pi\)
0.603054 + 0.797700i \(0.293950\pi\)
\(30\) 0 0
\(31\) 41.9622 + 72.6807i 0.243117 + 0.421092i 0.961601 0.274453i \(-0.0884967\pi\)
−0.718483 + 0.695544i \(0.755163\pi\)
\(32\) −129.369 224.073i −0.714669 1.23784i
\(33\) 0 0
\(34\) 380.032 1.91691
\(35\) −164.833 + 81.1555i −0.796053 + 0.391936i
\(36\) 0 0
\(37\) −40.0778 + 69.4167i −0.178074 + 0.308434i −0.941221 0.337792i \(-0.890320\pi\)
0.763147 + 0.646225i \(0.223653\pi\)
\(38\) 267.470 + 463.272i 1.14183 + 1.97770i
\(39\) 0 0
\(40\) −8.97600 + 15.5469i −0.0354808 + 0.0614545i
\(41\) −385.828 −1.46967 −0.734833 0.678249i \(-0.762739\pi\)
−0.734833 + 0.678249i \(0.762739\pi\)
\(42\) 0 0
\(43\) −397.048 −1.40812 −0.704061 0.710139i \(-0.748632\pi\)
−0.704061 + 0.710139i \(0.748632\pi\)
\(44\) 57.1793 99.0374i 0.195911 0.339328i
\(45\) 0 0
\(46\) −402.048 696.368i −1.28867 2.23204i
\(47\) −136.139 + 235.799i −0.422508 + 0.731805i −0.996184 0.0872772i \(-0.972183\pi\)
0.573676 + 0.819082i \(0.305517\pi\)
\(48\) 0 0
\(49\) 130.855 + 317.058i 0.381500 + 0.924369i
\(50\) 107.816 0.304949
\(51\) 0 0
\(52\) −78.3547 135.714i −0.208958 0.361927i
\(53\) 18.4998 + 32.0426i 0.0479461 + 0.0830451i 0.889002 0.457902i \(-0.151399\pi\)
−0.841056 + 0.540948i \(0.818066\pi\)
\(54\) 0 0
\(55\) 134.318 0.329299
\(56\) 27.8543 + 18.6374i 0.0664675 + 0.0444738i
\(57\) 0 0
\(58\) 381.932 661.526i 0.864658 1.49763i
\(59\) −197.874 342.728i −0.436628 0.756262i 0.560799 0.827952i \(-0.310494\pi\)
−0.997427 + 0.0716901i \(0.977161\pi\)
\(60\) 0 0
\(61\) −6.73689 + 11.6686i −0.0141405 + 0.0244921i −0.873009 0.487704i \(-0.837835\pi\)
0.858869 + 0.512196i \(0.171168\pi\)
\(62\) 340.347 0.697162
\(63\) 0 0
\(64\) −567.435 −1.10827
\(65\) 92.0304 159.401i 0.175615 0.304174i
\(66\) 0 0
\(67\) −170.261 294.901i −0.310458 0.537729i 0.668004 0.744158i \(-0.267149\pi\)
−0.978462 + 0.206429i \(0.933816\pi\)
\(68\) 395.749 685.457i 0.705759 1.22241i
\(69\) 0 0
\(70\) −49.2071 + 743.464i −0.0840196 + 1.26944i
\(71\) −211.140 −0.352925 −0.176463 0.984307i \(-0.556466\pi\)
−0.176463 + 0.984307i \(0.556466\pi\)
\(72\) 0 0
\(73\) −243.062 420.995i −0.389702 0.674983i 0.602708 0.797962i \(-0.294089\pi\)
−0.992409 + 0.122979i \(0.960755\pi\)
\(74\) 162.531 + 281.512i 0.255323 + 0.442232i
\(75\) 0 0
\(76\) 1114.13 1.68157
\(77\) 16.5604 250.210i 0.0245096 0.370312i
\(78\) 0 0
\(79\) −146.871 + 254.387i −0.209168 + 0.362289i −0.951453 0.307795i \(-0.900409\pi\)
0.742285 + 0.670084i \(0.233742\pi\)
\(80\) −298.758 517.464i −0.417527 0.723178i
\(81\) 0 0
\(82\) −782.343 + 1355.06i −1.05360 + 1.82489i
\(83\) 889.635 1.17651 0.588253 0.808677i \(-0.299816\pi\)
0.588253 + 0.808677i \(0.299816\pi\)
\(84\) 0 0
\(85\) 929.643 1.18628
\(86\) −805.093 + 1394.46i −1.00948 + 1.74847i
\(87\) 0 0
\(88\) −12.2507 21.2188i −0.0148401 0.0257038i
\(89\) −572.182 + 991.048i −0.681474 + 1.18035i 0.293057 + 0.956095i \(0.405327\pi\)
−0.974531 + 0.224252i \(0.928006\pi\)
\(90\) 0 0
\(91\) −285.588 191.088i −0.328986 0.220126i
\(92\) −1674.70 −1.89782
\(93\) 0 0
\(94\) 552.096 + 956.258i 0.605791 + 1.04926i
\(95\) 654.292 + 1133.27i 0.706620 + 1.22390i
\(96\) 0 0
\(97\) 1384.61 1.44933 0.724667 0.689099i \(-0.241993\pi\)
0.724667 + 0.689099i \(0.241993\pi\)
\(98\) 1378.87 + 183.327i 1.42129 + 0.188968i
\(99\) 0 0
\(100\) 112.275 194.465i 0.112275 0.194465i
\(101\) −892.994 1546.71i −0.879765 1.52380i −0.851599 0.524194i \(-0.824367\pi\)
−0.0281660 0.999603i \(-0.508967\pi\)
\(102\) 0 0
\(103\) −244.831 + 424.059i −0.234212 + 0.405668i −0.959044 0.283259i \(-0.908584\pi\)
0.724831 + 0.688927i \(0.241918\pi\)
\(104\) −33.5750 −0.0316568
\(105\) 0 0
\(106\) 150.048 0.137490
\(107\) −141.034 + 244.278i −0.127423 + 0.220703i −0.922678 0.385573i \(-0.874004\pi\)
0.795254 + 0.606276i \(0.207337\pi\)
\(108\) 0 0
\(109\) 143.616 + 248.749i 0.126201 + 0.218586i 0.922202 0.386709i \(-0.126388\pi\)
−0.796001 + 0.605295i \(0.793055\pi\)
\(110\) 272.357 471.736i 0.236074 0.408893i
\(111\) 0 0
\(112\) −1000.77 + 492.731i −0.844323 + 0.415702i
\(113\) 1895.21 1.57776 0.788879 0.614548i \(-0.210662\pi\)
0.788879 + 0.614548i \(0.210662\pi\)
\(114\) 0 0
\(115\) −983.499 1703.47i −0.797493 1.38130i
\(116\) −795.456 1377.77i −0.636691 1.10278i
\(117\) 0 0
\(118\) −1604.92 −1.25207
\(119\) 114.618 1731.75i 0.0882943 1.33403i
\(120\) 0 0
\(121\) 573.840 993.919i 0.431134 0.746746i
\(122\) 27.3208 + 47.3209i 0.0202746 + 0.0351167i
\(123\) 0 0
\(124\) 354.422 613.877i 0.256678 0.444579i
\(125\) 1503.79 1.07603
\(126\) 0 0
\(127\) −1222.92 −0.854463 −0.427231 0.904142i \(-0.640511\pi\)
−0.427231 + 0.904142i \(0.640511\pi\)
\(128\) −115.635 + 200.285i −0.0798496 + 0.138304i
\(129\) 0 0
\(130\) −373.220 646.435i −0.251796 0.436124i
\(131\) −595.303 + 1031.10i −0.397037 + 0.687689i −0.993359 0.115057i \(-0.963295\pi\)
0.596322 + 0.802746i \(0.296628\pi\)
\(132\) 0 0
\(133\) 2191.73 1079.10i 1.42893 0.703532i
\(134\) −1380.95 −0.890268
\(135\) 0 0
\(136\) −84.7893 146.859i −0.0534605 0.0925963i
\(137\) −53.4807 92.6313i −0.0333516 0.0577666i 0.848868 0.528605i \(-0.177285\pi\)
−0.882219 + 0.470839i \(0.843951\pi\)
\(138\) 0 0
\(139\) −1096.78 −0.669262 −0.334631 0.942349i \(-0.608612\pi\)
−0.334631 + 0.942349i \(0.608612\pi\)
\(140\) 1289.73 + 862.965i 0.778587 + 0.520956i
\(141\) 0 0
\(142\) −428.128 + 741.539i −0.253012 + 0.438230i
\(143\) 125.605 + 217.555i 0.0734521 + 0.127223i
\(144\) 0 0
\(145\) 934.292 1618.24i 0.535094 0.926811i
\(146\) −1971.42 −1.11751
\(147\) 0 0
\(148\) 677.012 0.376014
\(149\) −358.331 + 620.647i −0.197018 + 0.341244i −0.947560 0.319578i \(-0.896459\pi\)
0.750542 + 0.660822i \(0.229792\pi\)
\(150\) 0 0
\(151\) −77.1840 133.687i −0.0415970 0.0720481i 0.844477 0.535591i \(-0.179911\pi\)
−0.886074 + 0.463543i \(0.846578\pi\)
\(152\) 119.351 206.722i 0.0636885 0.110312i
\(153\) 0 0
\(154\) −845.175 565.511i −0.442248 0.295910i
\(155\) 832.564 0.431439
\(156\) 0 0
\(157\) 1046.87 + 1813.24i 0.532163 + 0.921734i 0.999295 + 0.0375459i \(0.0119541\pi\)
−0.467132 + 0.884188i \(0.654713\pi\)
\(158\) 595.618 + 1031.64i 0.299904 + 0.519449i
\(159\) 0 0
\(160\) −2566.78 −1.26826
\(161\) −3294.50 + 1622.05i −1.61269 + 0.794008i
\(162\) 0 0
\(163\) −1503.93 + 2604.88i −0.722680 + 1.25172i 0.237242 + 0.971451i \(0.423757\pi\)
−0.959922 + 0.280268i \(0.909577\pi\)
\(164\) 1629.40 + 2822.20i 0.775820 + 1.34376i
\(165\) 0 0
\(166\) 1803.91 3124.46i 0.843437 1.46088i
\(167\) −2230.43 −1.03351 −0.516754 0.856134i \(-0.672860\pi\)
−0.516754 + 0.856134i \(0.672860\pi\)
\(168\) 0 0
\(169\) −1852.76 −0.843312
\(170\) 1885.03 3264.97i 0.850444 1.47301i
\(171\) 0 0
\(172\) 1676.78 + 2904.26i 0.743332 + 1.28749i
\(173\) 281.585 487.719i 0.123749 0.214339i −0.797495 0.603326i \(-0.793842\pi\)
0.921243 + 0.388987i \(0.127175\pi\)
\(174\) 0 0
\(175\) 32.5174 491.300i 0.0140462 0.212222i
\(176\) 815.506 0.349267
\(177\) 0 0
\(178\) 2320.42 + 4019.09i 0.977096 + 1.69238i
\(179\) −919.749 1593.05i −0.384052 0.665197i 0.607585 0.794254i \(-0.292138\pi\)
−0.991637 + 0.129057i \(0.958805\pi\)
\(180\) 0 0
\(181\) 2324.71 0.954664 0.477332 0.878723i \(-0.341604\pi\)
0.477332 + 0.878723i \(0.341604\pi\)
\(182\) −1250.20 + 615.537i −0.509182 + 0.250696i
\(183\) 0 0
\(184\) −179.403 + 310.735i −0.0718790 + 0.124498i
\(185\) 397.587 + 688.641i 0.158006 + 0.273675i
\(186\) 0 0
\(187\) −634.400 + 1098.81i −0.248085 + 0.429696i
\(188\) 2299.71 0.892149
\(189\) 0 0
\(190\) 5306.82 2.02630
\(191\) 1563.64 2708.30i 0.592360 1.02600i −0.401553 0.915836i \(-0.631530\pi\)
0.993914 0.110163i \(-0.0351372\pi\)
\(192\) 0 0
\(193\) 1854.64 + 3212.34i 0.691711 + 1.19808i 0.971277 + 0.237952i \(0.0764761\pi\)
−0.279566 + 0.960126i \(0.590191\pi\)
\(194\) 2807.56 4862.84i 1.03903 1.79965i
\(195\) 0 0
\(196\) 1766.56 2296.13i 0.643788 0.836781i
\(197\) 851.150 0.307827 0.153913 0.988084i \(-0.450812\pi\)
0.153913 + 0.988084i \(0.450812\pi\)
\(198\) 0 0
\(199\) −1698.89 2942.57i −0.605182 1.04821i −0.992023 0.126060i \(-0.959767\pi\)
0.386840 0.922147i \(-0.373566\pi\)
\(200\) −24.0549 41.6643i −0.00850469 0.0147306i
\(201\) 0 0
\(202\) −7242.89 −2.52281
\(203\) −2899.29 1939.93i −1.00241 0.670720i
\(204\) 0 0
\(205\) −1913.78 + 3314.77i −0.652022 + 1.12934i
\(206\) 992.885 + 1719.73i 0.335813 + 0.581646i
\(207\) 0 0
\(208\) 558.757 967.796i 0.186264 0.322618i
\(209\) −1785.99 −0.591098
\(210\) 0 0
\(211\) 216.732 0.0707132 0.0353566 0.999375i \(-0.488743\pi\)
0.0353566 + 0.999375i \(0.488743\pi\)
\(212\) 156.253 270.639i 0.0506204 0.0876772i
\(213\) 0 0
\(214\) 571.948 + 990.644i 0.182699 + 0.316444i
\(215\) −1969.44 + 3411.16i −0.624718 + 1.08204i
\(216\) 0 0
\(217\) 102.649 1550.91i 0.0321118 0.485173i
\(218\) 1164.84 0.361893
\(219\) 0 0
\(220\) −567.241 982.490i −0.173833 0.301088i
\(221\) 869.340 + 1505.74i 0.264607 + 0.458312i
\(222\) 0 0
\(223\) −2254.86 −0.677115 −0.338558 0.940946i \(-0.609939\pi\)
−0.338558 + 0.940946i \(0.609939\pi\)
\(224\) −316.465 + 4781.43i −0.0943960 + 1.42622i
\(225\) 0 0
\(226\) 3842.92 6656.13i 1.13109 1.95911i
\(227\) 1695.40 + 2936.52i 0.495716 + 0.858606i 0.999988 0.00493916i \(-0.00157219\pi\)
−0.504271 + 0.863545i \(0.668239\pi\)
\(228\) 0 0
\(229\) −1293.92 + 2241.14i −0.373384 + 0.646720i −0.990084 0.140479i \(-0.955136\pi\)
0.616700 + 0.787198i \(0.288469\pi\)
\(230\) −7976.95 −2.28689
\(231\) 0 0
\(232\) −340.853 −0.0964574
\(233\) 477.210 826.552i 0.134176 0.232400i −0.791106 0.611679i \(-0.790495\pi\)
0.925282 + 0.379279i \(0.123828\pi\)
\(234\) 0 0
\(235\) 1350.55 + 2339.22i 0.374894 + 0.649336i
\(236\) −1671.29 + 2894.76i −0.460982 + 0.798444i
\(237\) 0 0
\(238\) −5849.62 3914.01i −1.59317 1.06600i
\(239\) 199.504 0.0539951 0.0269976 0.999635i \(-0.491405\pi\)
0.0269976 + 0.999635i \(0.491405\pi\)
\(240\) 0 0
\(241\) −2397.21 4152.10i −0.640739 1.10979i −0.985268 0.171017i \(-0.945295\pi\)
0.344529 0.938776i \(-0.388039\pi\)
\(242\) −2327.15 4030.73i −0.618159 1.07068i
\(243\) 0 0
\(244\) 113.803 0.0298585
\(245\) 3373.01 + 448.459i 0.879567 + 0.116943i
\(246\) 0 0
\(247\) −1223.70 + 2119.51i −0.315231 + 0.545997i
\(248\) −75.9351 131.523i −0.0194431 0.0336764i
\(249\) 0 0
\(250\) 3049.23 5281.42i 0.771401 1.33611i
\(251\) 6249.73 1.57163 0.785816 0.618460i \(-0.212243\pi\)
0.785816 + 0.618460i \(0.212243\pi\)
\(252\) 0 0
\(253\) 2684.61 0.667114
\(254\) −2479.71 + 4294.99i −0.612564 + 1.06099i
\(255\) 0 0
\(256\) −1800.79 3119.07i −0.439647 0.761491i
\(257\) 1918.93 3323.68i 0.465756 0.806713i −0.533479 0.845813i \(-0.679116\pi\)
0.999235 + 0.0390999i \(0.0124491\pi\)
\(258\) 0 0
\(259\) 1331.83 655.726i 0.319521 0.157316i
\(260\) −1554.62 −0.370821
\(261\) 0 0
\(262\) 2414.19 + 4181.50i 0.569271 + 0.986007i
\(263\) −103.602 179.443i −0.0242903 0.0420721i 0.853625 0.520889i \(-0.174399\pi\)
−0.877915 + 0.478816i \(0.841066\pi\)
\(264\) 0 0
\(265\) 367.051 0.0850858
\(266\) 654.292 9885.61i 0.150817 2.27867i
\(267\) 0 0
\(268\) −1438.06 + 2490.80i −0.327775 + 0.567722i
\(269\) −2402.04 4160.46i −0.544442 0.943002i −0.998642 0.0521018i \(-0.983408\pi\)
0.454199 0.890900i \(-0.349925\pi\)
\(270\) 0 0
\(271\) −1607.88 + 2784.92i −0.360411 + 0.624251i −0.988029 0.154271i \(-0.950697\pi\)
0.627617 + 0.778522i \(0.284030\pi\)
\(272\) 5644.27 1.25821
\(273\) 0 0
\(274\) −433.771 −0.0956388
\(275\) −179.980 + 311.735i −0.0394663 + 0.0683576i
\(276\) 0 0
\(277\) −1027.20 1779.16i −0.222810 0.385918i 0.732850 0.680390i \(-0.238190\pi\)
−0.955660 + 0.294472i \(0.904856\pi\)
\(278\) −2223.93 + 3851.97i −0.479794 + 0.831027i
\(279\) 0 0
\(280\) 298.283 146.859i 0.0636635 0.0313447i
\(281\) 1768.61 0.375468 0.187734 0.982220i \(-0.439886\pi\)
0.187734 + 0.982220i \(0.439886\pi\)
\(282\) 0 0
\(283\) −1170.26 2026.96i −0.245813 0.425760i 0.716547 0.697539i \(-0.245721\pi\)
−0.962360 + 0.271779i \(0.912388\pi\)
\(284\) 891.668 + 1544.41i 0.186305 + 0.322690i
\(285\) 0 0
\(286\) 1018.76 0.210631
\(287\) 5938.84 + 3973.71i 1.22146 + 0.817284i
\(288\) 0 0
\(289\) −1934.31 + 3350.32i −0.393712 + 0.681929i
\(290\) −3788.92 6562.60i −0.767217 1.32886i
\(291\) 0 0
\(292\) −2052.95 + 3555.82i −0.411438 + 0.712632i
\(293\) −3633.47 −0.724470 −0.362235 0.932087i \(-0.617986\pi\)
−0.362235 + 0.932087i \(0.617986\pi\)
\(294\) 0 0
\(295\) −3925.98 −0.774846
\(296\) 72.5250 125.617i 0.0142413 0.0246667i
\(297\) 0 0
\(298\) 1453.17 + 2516.97i 0.282483 + 0.489276i
\(299\) 1839.40 3185.94i 0.355771 0.616213i
\(300\) 0 0
\(301\) 6111.54 + 4089.26i 1.17031 + 0.783060i
\(302\) −626.023 −0.119283
\(303\) 0 0
\(304\) 3972.50 + 6880.56i 0.749468 + 1.29812i
\(305\) 66.8326 + 115.758i 0.0125470 + 0.0217320i
\(306\) 0 0
\(307\) 5954.32 1.10694 0.553471 0.832868i \(-0.313303\pi\)
0.553471 + 0.832868i \(0.313303\pi\)
\(308\) −1900.13 + 935.529i −0.351526 + 0.173074i
\(309\) 0 0
\(310\) 1688.19 2924.03i 0.309299 0.535721i
\(311\) −590.047 1021.99i −0.107584 0.186340i 0.807207 0.590268i \(-0.200978\pi\)
−0.914791 + 0.403928i \(0.867645\pi\)
\(312\) 0 0
\(313\) 4873.12 8440.50i 0.880017 1.52423i 0.0286960 0.999588i \(-0.490865\pi\)
0.851321 0.524646i \(-0.175802\pi\)
\(314\) 8490.97 1.52603
\(315\) 0 0
\(316\) 2481.00 0.441669
\(317\) −4295.96 + 7440.81i −0.761151 + 1.31835i 0.181106 + 0.983464i \(0.442032\pi\)
−0.942258 + 0.334889i \(0.891301\pi\)
\(318\) 0 0
\(319\) 1275.14 + 2208.62i 0.223807 + 0.387645i
\(320\) −2814.59 + 4875.01i −0.491688 + 0.851629i
\(321\) 0 0
\(322\) −983.499 + 14859.6i −0.170212 + 2.57171i
\(323\) −12361.2 −2.12939
\(324\) 0 0
\(325\) 246.633 + 427.181i 0.0420946 + 0.0729100i
\(326\) 6099.02 + 10563.8i 1.03618 + 1.79471i
\(327\) 0 0
\(328\) 698.197 0.117535
\(329\) 4524.04 2227.41i 0.758111 0.373256i
\(330\) 0 0
\(331\) 2625.60 4547.67i 0.436000 0.755174i −0.561377 0.827560i \(-0.689728\pi\)
0.997377 + 0.0723864i \(0.0230615\pi\)
\(332\) −3757.03 6507.36i −0.621065 1.07572i
\(333\) 0 0
\(334\) −4522.64 + 7833.44i −0.740921 + 1.28331i
\(335\) −3378.11 −0.550943
\(336\) 0 0
\(337\) −8496.45 −1.37339 −0.686693 0.726947i \(-0.740938\pi\)
−0.686693 + 0.726947i \(0.740938\pi\)
\(338\) −3756.83 + 6507.02i −0.604570 + 1.04715i
\(339\) 0 0
\(340\) −3925.98 6800.00i −0.626225 1.08465i
\(341\) −568.152 + 984.068i −0.0902263 + 0.156276i
\(342\) 0 0
\(343\) 1251.26 6228.00i 0.196973 0.980409i
\(344\) 718.500 0.112613
\(345\) 0 0
\(346\) −1141.94 1977.89i −0.177430 0.307319i
\(347\) 2915.07 + 5049.06i 0.450978 + 0.781117i 0.998447 0.0557090i \(-0.0177419\pi\)
−0.547469 + 0.836826i \(0.684409\pi\)
\(348\) 0 0
\(349\) 1811.13 0.277786 0.138893 0.990307i \(-0.455646\pi\)
0.138893 + 0.990307i \(0.455646\pi\)
\(350\) −1659.55 1110.41i −0.253447 0.169583i
\(351\) 0 0
\(352\) 1751.60 3033.87i 0.265230 0.459391i
\(353\) −1663.88 2881.92i −0.250876 0.434531i 0.712891 0.701275i \(-0.247385\pi\)
−0.963767 + 0.266744i \(0.914052\pi\)
\(354\) 0 0
\(355\) −1047.30 + 1813.97i −0.156577 + 0.271199i
\(356\) 9665.55 1.43897
\(357\) 0 0
\(358\) −7459.89 −1.10131
\(359\) 435.430 754.188i 0.0640143 0.110876i −0.832242 0.554413i \(-0.812943\pi\)
0.896256 + 0.443536i \(0.146276\pi\)
\(360\) 0 0
\(361\) −5270.42 9128.63i −0.768395 1.33090i
\(362\) 4713.80 8164.55i 0.684398 1.18541i
\(363\) 0 0
\(364\) −191.673 + 2895.96i −0.0276000 + 0.417004i
\(365\) −4822.54 −0.691570
\(366\) 0 0
\(367\) −587.358 1017.33i −0.0835418 0.144699i 0.821227 0.570601i \(-0.193290\pi\)
−0.904769 + 0.425903i \(0.859957\pi\)
\(368\) −5971.26 10342.5i −0.845851 1.46506i
\(369\) 0 0
\(370\) 3224.75 0.453099
\(371\) 45.2546 683.746i 0.00633289 0.0956829i
\(372\) 0 0
\(373\) −1814.17 + 3142.23i −0.251834 + 0.436189i −0.964031 0.265791i \(-0.914367\pi\)
0.712197 + 0.701980i \(0.247700\pi\)
\(374\) 2572.74 + 4456.12i 0.355704 + 0.616097i
\(375\) 0 0
\(376\) 246.357 426.703i 0.0337897 0.0585254i
\(377\) 3494.75 0.477424
\(378\) 0 0
\(379\) 7321.99 0.992362 0.496181 0.868219i \(-0.334735\pi\)
0.496181 + 0.868219i \(0.334735\pi\)
\(380\) 5526.29 9571.82i 0.746034 1.29217i
\(381\) 0 0
\(382\) −6341.17 10983.2i −0.849325 1.47107i
\(383\) 3677.45 6369.52i 0.490623 0.849784i −0.509318 0.860578i \(-0.670102\pi\)
0.999942 + 0.0107937i \(0.00343580\pi\)
\(384\) 0 0
\(385\) −2067.49 1383.36i −0.273685 0.183124i
\(386\) 15042.6 1.98355
\(387\) 0 0
\(388\) −5847.35 10127.9i −0.765088 1.32517i
\(389\) −4534.81 7854.52i −0.591064 1.02375i −0.994089 0.108564i \(-0.965375\pi\)
0.403025 0.915189i \(-0.367959\pi\)
\(390\) 0 0
\(391\) 18580.7 2.40324
\(392\) −236.795 573.751i −0.0305101 0.0739255i
\(393\) 0 0
\(394\) 1725.87 2989.30i 0.220681 0.382230i
\(395\) 1457.01 + 2523.62i 0.185596 + 0.321462i
\(396\) 0 0
\(397\) −3688.41 + 6388.52i −0.466288 + 0.807634i −0.999259 0.0384997i \(-0.987742\pi\)
0.532971 + 0.846134i \(0.321075\pi\)
\(398\) −13779.4 −1.73542
\(399\) 0 0
\(400\) 1601.29 0.200161
\(401\) 1426.76 2471.21i 0.177678 0.307747i −0.763407 0.645918i \(-0.776475\pi\)
0.941085 + 0.338171i \(0.109808\pi\)
\(402\) 0 0
\(403\) 778.558 + 1348.50i 0.0962350 + 0.166684i
\(404\) −7542.43 + 13063.9i −0.928836 + 1.60879i
\(405\) 0 0
\(406\) −12692.0 + 6248.93i −1.55147 + 0.763864i
\(407\) −1085.27 −0.132175
\(408\) 0 0
\(409\) −5630.03 9751.49i −0.680652 1.17892i −0.974782 0.223159i \(-0.928363\pi\)
0.294130 0.955766i \(-0.404970\pi\)
\(410\) 7761.15 + 13442.7i 0.934868 + 1.61924i
\(411\) 0 0
\(412\) 4135.79 0.494553
\(413\) −484.045 + 7313.37i −0.0576714 + 0.871350i
\(414\) 0 0
\(415\) 4412.76 7643.13i 0.521961 0.904064i
\(416\) −2400.28 4157.41i −0.282893 0.489985i
\(417\) 0 0
\(418\) −3621.44 + 6272.52i −0.423757 + 0.733969i
\(419\) −9221.47 −1.07517 −0.537587 0.843208i \(-0.680664\pi\)
−0.537587 + 0.843208i \(0.680664\pi\)
\(420\) 0 0
\(421\) −8520.28 −0.986349 −0.493175 0.869930i \(-0.664164\pi\)
−0.493175 + 0.869930i \(0.664164\pi\)
\(422\) 439.468 761.181i 0.0506942 0.0878049i
\(423\) 0 0
\(424\) −33.4774 57.9845i −0.00383444 0.00664145i
\(425\) −1245.68 + 2157.58i −0.142175 + 0.246254i
\(426\) 0 0
\(427\) 223.874 110.225i 0.0253725 0.0124921i
\(428\) 2382.41 0.269061
\(429\) 0 0
\(430\) 7986.84 + 13833.6i 0.895720 + 1.55143i
\(431\) −4581.05 7934.62i −0.511976 0.886768i −0.999904 0.0138840i \(-0.995580\pi\)
0.487928 0.872884i \(-0.337753\pi\)
\(432\) 0 0
\(433\) −10976.2 −1.21820 −0.609100 0.793093i \(-0.708469\pi\)
−0.609100 + 0.793093i \(0.708469\pi\)
\(434\) −5238.77 3505.28i −0.579421 0.387694i
\(435\) 0 0
\(436\) 1213.01 2100.99i 0.133240 0.230778i
\(437\) 13077.3 + 22650.5i 1.43151 + 2.47945i
\(438\) 0 0
\(439\) −1991.59 + 3449.54i −0.216523 + 0.375028i −0.953743 0.300625i \(-0.902805\pi\)
0.737220 + 0.675653i \(0.236138\pi\)
\(440\) −243.063 −0.0263354
\(441\) 0 0
\(442\) 7051.03 0.758786
\(443\) −2262.22 + 3918.29i −0.242622 + 0.420234i −0.961460 0.274944i \(-0.911341\pi\)
0.718838 + 0.695177i \(0.244674\pi\)
\(444\) 0 0
\(445\) 5676.27 + 9831.59i 0.604676 + 1.04733i
\(446\) −4572.18 + 7919.24i −0.485423 + 0.840778i
\(447\) 0 0
\(448\) 8734.21 + 5844.10i 0.921099 + 0.616312i
\(449\) −2076.49 −0.218253 −0.109127 0.994028i \(-0.534805\pi\)
−0.109127 + 0.994028i \(0.534805\pi\)
\(450\) 0 0
\(451\) −2611.98 4524.09i −0.272713 0.472352i
\(452\) −8003.70 13862.8i −0.832881 1.44259i
\(453\) 0 0
\(454\) 13751.0 1.42151
\(455\) −3058.27 + 1505.74i −0.315108 + 0.155143i
\(456\) 0 0
\(457\) 923.795 1600.06i 0.0945587 0.163780i −0.814866 0.579650i \(-0.803189\pi\)
0.909424 + 0.415869i \(0.136523\pi\)
\(458\) 5247.37 + 9088.71i 0.535357 + 0.927266i
\(459\) 0 0
\(460\) −8306.85 + 14387.9i −0.841976 + 1.45834i
\(461\) 876.945 0.0885974 0.0442987 0.999018i \(-0.485895\pi\)
0.0442987 + 0.999018i \(0.485895\pi\)
\(462\) 0 0
\(463\) 16245.2 1.63062 0.815310 0.579025i \(-0.196566\pi\)
0.815310 + 0.579025i \(0.196566\pi\)
\(464\) 5672.50 9825.05i 0.567541 0.983010i
\(465\) 0 0
\(466\) −1935.27 3351.99i −0.192382 0.333215i
\(467\) 9480.88 16421.4i 0.939449 1.62717i 0.172947 0.984931i \(-0.444671\pi\)
0.766502 0.642242i \(-0.221996\pi\)
\(468\) 0 0
\(469\) −416.496 + 6292.78i −0.0410064 + 0.619560i
\(470\) 10954.0 1.07505
\(471\) 0 0
\(472\) 358.075 + 620.204i 0.0349189 + 0.0604813i
\(473\) −2687.94 4655.64i −0.261293 0.452572i
\(474\) 0 0
\(475\) −3506.89 −0.338752
\(476\) −13151.2 + 6474.98i −1.26635 + 0.623488i
\(477\) 0 0
\(478\) 404.533 700.672i 0.0387090 0.0670460i
\(479\) 4188.88 + 7255.35i 0.399572 + 0.692078i 0.993673 0.112312i \(-0.0358256\pi\)
−0.594101 + 0.804390i \(0.702492\pi\)
\(480\) 0 0
\(481\) −743.594 + 1287.94i −0.0704885 + 0.122090i
\(482\) −19443.3 −1.83738
\(483\) 0 0
\(484\) −9693.55 −0.910364
\(485\) 6867.92 11895.6i 0.643002 1.11371i
\(486\) 0 0
\(487\) 2279.42 + 3948.08i 0.212096 + 0.367360i 0.952370 0.304944i \(-0.0986378\pi\)
−0.740275 + 0.672305i \(0.765304\pi\)
\(488\) 12.1911 21.1156i 0.00113087 0.00195873i
\(489\) 0 0
\(490\) 8414.47 10936.9i 0.775769 1.00833i
\(491\) 15809.9 1.45314 0.726570 0.687092i \(-0.241113\pi\)
0.726570 + 0.687092i \(0.241113\pi\)
\(492\) 0 0
\(493\) 8825.53 + 15286.3i 0.806251 + 1.39647i
\(494\) 4962.59 + 8595.45i 0.451978 + 0.782849i
\(495\) 0 0
\(496\) 5054.86 0.457601
\(497\) 3249.96 + 2174.56i 0.293321 + 0.196263i
\(498\) 0 0
\(499\) −6693.04 + 11592.7i −0.600444 + 1.04000i 0.392309 + 0.919833i \(0.371676\pi\)
−0.992754 + 0.120167i \(0.961657\pi\)
\(500\) −6350.67 10999.7i −0.568022 0.983842i
\(501\) 0 0
\(502\) 12672.6 21949.5i 1.12670 1.95150i
\(503\) 5720.55 0.507091 0.253545 0.967323i \(-0.418403\pi\)
0.253545 + 0.967323i \(0.418403\pi\)
\(504\) 0 0
\(505\) −17717.7 −1.56124
\(506\) 5443.57 9428.54i 0.478254 0.828359i
\(507\) 0 0
\(508\) 5164.53 + 8945.24i 0.451061 + 0.781261i
\(509\) 7646.59 13244.3i 0.665873 1.15333i −0.313175 0.949695i \(-0.601393\pi\)
0.979048 0.203630i \(-0.0652740\pi\)
\(510\) 0 0
\(511\) −594.583 + 8983.48i −0.0514732 + 0.777702i
\(512\) −16456.0 −1.42043
\(513\) 0 0
\(514\) −7782.00 13478.8i −0.667800 1.15666i
\(515\) 2428.82 + 4206.83i 0.207818 + 0.359952i
\(516\) 0 0
\(517\) −3686.53 −0.313604
\(518\) 397.587 6007.10i 0.0337239 0.509530i
\(519\) 0 0
\(520\) −166.539 + 288.454i −0.0140446 + 0.0243260i
\(521\) −2184.35 3783.40i −0.183681 0.318145i 0.759450 0.650566i \(-0.225468\pi\)
−0.943131 + 0.332420i \(0.892135\pi\)
\(522\) 0 0
\(523\) 1211.08 2097.66i 0.101256 0.175381i −0.810946 0.585121i \(-0.801047\pi\)
0.912202 + 0.409740i \(0.134381\pi\)
\(524\) 10056.1 0.838366
\(525\) 0 0
\(526\) −840.291 −0.0696548
\(527\) −3932.29 + 6810.93i −0.325035 + 0.562976i
\(528\) 0 0
\(529\) −13573.6 23510.2i −1.11561 1.93229i
\(530\) 744.268 1289.11i 0.0609980 0.105652i
\(531\) 0 0
\(532\) −17149.2 11474.6i −1.39758 0.935124i
\(533\) −7158.57 −0.581749
\(534\) 0 0
\(535\) 1399.11 + 2423.33i 0.113063 + 0.195832i
\(536\) 308.105 + 533.654i 0.0248286 + 0.0430044i
\(537\) 0 0
\(538\) −19482.4 −1.56124
\(539\) −2831.85 + 3680.78i −0.226302 + 0.294142i
\(540\) 0 0
\(541\) −6581.27 + 11399.1i −0.523014 + 0.905888i 0.476627 + 0.879106i \(0.341859\pi\)
−0.999641 + 0.0267819i \(0.991474\pi\)
\(542\) 6520.57 + 11294.0i 0.516757 + 0.895050i
\(543\) 0 0
\(544\) 12123.2 20998.0i 0.955473 1.65493i
\(545\) 2849.45 0.223958
\(546\) 0 0
\(547\) 12112.4 0.946778 0.473389 0.880853i \(-0.343031\pi\)
0.473389 + 0.880853i \(0.343031\pi\)
\(548\) −451.710 + 782.384i −0.0352118 + 0.0609887i
\(549\) 0 0
\(550\) 729.892 + 1264.21i 0.0565867 + 0.0980110i
\(551\) −12423.0 + 21517.2i −0.960503 + 1.66364i
\(552\) 0 0
\(553\) 4880.68 2403.00i 0.375312 0.184785i
\(554\) −8331.38 −0.638928
\(555\) 0 0
\(556\) 4631.81 + 8022.54i 0.353296 + 0.611927i
\(557\) 4179.82 + 7239.67i 0.317962 + 0.550726i 0.980063 0.198689i \(-0.0636682\pi\)
−0.662101 + 0.749415i \(0.730335\pi\)
\(558\) 0 0
\(559\) −7366.74 −0.557388
\(560\) −730.829 + 11042.0i −0.0551485 + 0.833231i
\(561\) 0 0
\(562\) 3586.21 6211.50i 0.269173 0.466221i
\(563\) −6819.20 11811.2i −0.510471 0.884162i −0.999926 0.0121334i \(-0.996138\pi\)
0.489455 0.872028i \(-0.337196\pi\)
\(564\) 0 0
\(565\) 9400.63 16282.4i 0.699978 1.21240i
\(566\) −9491.76 −0.704891
\(567\) 0 0
\(568\) 382.080 0.0282249
\(569\) −7745.67 + 13415.9i −0.570677 + 0.988442i 0.425820 + 0.904808i \(0.359986\pi\)
−0.996497 + 0.0836335i \(0.973348\pi\)
\(570\) 0 0
\(571\) 2324.08 + 4025.42i 0.170332 + 0.295024i 0.938536 0.345182i \(-0.112183\pi\)
−0.768204 + 0.640205i \(0.778849\pi\)
\(572\) 1060.89 1837.52i 0.0775491 0.134319i
\(573\) 0 0
\(574\) 25998.1 12800.2i 1.89049 0.930782i
\(575\) 5271.38 0.382316
\(576\) 0 0
\(577\) 2739.53 + 4745.01i 0.197657 + 0.342352i 0.947768 0.318959i \(-0.103333\pi\)
−0.750111 + 0.661312i \(0.770000\pi\)
\(578\) 7844.37 + 13586.8i 0.564503 + 0.977748i
\(579\) 0 0
\(580\) −15782.5 −1.12988
\(581\) −13693.6 9162.49i −0.977811 0.654258i
\(582\) 0 0
\(583\) −250.480 + 433.844i −0.0177939 + 0.0308199i
\(584\) 439.846 + 761.836i 0.0311660 + 0.0539811i
\(585\) 0 0
\(586\) −7367.59 + 12761.0i −0.519372 + 0.899579i
\(587\) 4408.22 0.309960 0.154980 0.987918i \(-0.450469\pi\)
0.154980 + 0.987918i \(0.450469\pi\)
\(588\) 0 0
\(589\) −11070.3 −0.774441
\(590\) −7960.71 + 13788.3i −0.555487 + 0.962131i
\(591\) 0 0
\(592\) 2413.93 + 4181.05i 0.167588 + 0.290270i
\(593\) −1407.63 + 2438.08i −0.0974779 + 0.168837i −0.910640 0.413201i \(-0.864411\pi\)
0.813162 + 0.582037i \(0.197744\pi\)
\(594\) 0 0
\(595\) −14309.5 9574.54i −0.985935 0.659694i
\(596\) 6053.09 0.416014
\(597\) 0 0
\(598\) −7459.51 12920.2i −0.510104 0.883526i
\(599\) −9859.53 17077.2i −0.672537 1.16487i −0.977182 0.212402i \(-0.931871\pi\)
0.304646 0.952466i \(-0.401462\pi\)
\(600\) 0 0
\(601\) −13982.8 −0.949033 −0.474517 0.880247i \(-0.657377\pi\)
−0.474517 + 0.880247i \(0.657377\pi\)
\(602\) 26754.1 13172.4i 1.81132 0.891805i
\(603\) 0 0
\(604\) −651.913 + 1129.15i −0.0439172 + 0.0760667i
\(605\) −5692.71 9860.07i −0.382548 0.662593i
\(606\) 0 0
\(607\) −6694.14 + 11594.6i −0.447622 + 0.775305i −0.998231 0.0594590i \(-0.981062\pi\)
0.550608 + 0.834764i \(0.314396\pi\)
\(608\) 34129.7 2.27655
\(609\) 0 0
\(610\) 542.065 0.0359797
\(611\) −2525.89 + 4374.96i −0.167245 + 0.289676i
\(612\) 0 0
\(613\) 13895.9 + 24068.5i 0.915582 + 1.58583i 0.806047 + 0.591852i \(0.201603\pi\)
0.109535 + 0.993983i \(0.465064\pi\)
\(614\) 12073.6 20912.0i 0.793566 1.37450i
\(615\) 0 0
\(616\) −29.9679 + 452.781i −0.00196013 + 0.0296154i
\(617\) −19107.2 −1.24672 −0.623361 0.781935i \(-0.714233\pi\)
−0.623361 + 0.781935i \(0.714233\pi\)
\(618\) 0 0
\(619\) −546.469 946.512i −0.0354837 0.0614596i 0.847738 0.530415i \(-0.177964\pi\)
−0.883222 + 0.468955i \(0.844631\pi\)
\(620\) −3516.01 6089.90i −0.227752 0.394478i
\(621\) 0 0
\(622\) −4785.75 −0.308507
\(623\) 19014.2 9361.66i 1.22278 0.602034i
\(624\) 0 0
\(625\) 5797.49 10041.5i 0.371039 0.642659i
\(626\) −19762.4 34229.5i −1.26177 2.18544i
\(627\) 0 0
\(628\) 8842.13 15315.0i 0.561846 0.973146i
\(629\) −7511.40 −0.476151
\(630\) 0 0
\(631\) 19235.2 1.21353 0.606767 0.794879i \(-0.292466\pi\)
0.606767 + 0.794879i \(0.292466\pi\)
\(632\) 265.778 460.341i 0.0167280 0.0289737i
\(633\) 0 0
\(634\) 17421.8 + 30175.4i 1.09134 + 1.89025i
\(635\) −6065.93 + 10506.5i −0.379085 + 0.656595i
\(636\) 0 0
\(637\) 2427.85 + 5882.63i 0.151012 + 0.365900i
\(638\) 10342.4 0.641788
\(639\) 0 0
\(640\) 1147.14 + 1986.91i 0.0708511 + 0.122718i
\(641\) 9975.33 + 17277.8i 0.614667 + 1.06463i 0.990443 + 0.137924i \(0.0440430\pi\)
−0.375776 + 0.926711i \(0.622624\pi\)
\(642\) 0 0
\(643\) 688.125 0.0422037 0.0211019 0.999777i \(-0.493283\pi\)
0.0211019 + 0.999777i \(0.493283\pi\)
\(644\) 25777.7 + 17248.0i 1.57731 + 1.05538i
\(645\) 0 0
\(646\) −25064.7 + 43413.4i −1.52656 + 2.64408i
\(647\) −5483.09 9497.00i −0.333173 0.577072i 0.649959 0.759969i \(-0.274786\pi\)
−0.983132 + 0.182897i \(0.941453\pi\)
\(648\) 0 0
\(649\) 2679.14 4640.41i 0.162042 0.280666i
\(650\) 2000.39 0.120710
\(651\) 0 0
\(652\) 25405.0 1.52598
\(653\) 6462.54 11193.4i 0.387287 0.670802i −0.604796 0.796380i \(-0.706745\pi\)
0.992084 + 0.125579i \(0.0400788\pi\)
\(654\) 0 0
\(655\) 5905.64 + 10228.9i 0.352294 + 0.610191i
\(656\) −11619.4 + 20125.5i −0.691559 + 1.19782i
\(657\) 0 0
\(658\) 1350.55 20405.3i 0.0800150 1.20894i
\(659\) −11779.0 −0.696273 −0.348137 0.937444i \(-0.613185\pi\)
−0.348137 + 0.937444i \(0.613185\pi\)
\(660\) 0 0
\(661\) 12520.0 + 21685.3i 0.736721 + 1.27604i 0.953964 + 0.299921i \(0.0969604\pi\)
−0.217243 + 0.976118i \(0.569706\pi\)
\(662\) −10647.8 18442.6i −0.625136 1.08277i
\(663\) 0 0
\(664\) −1609.89 −0.0940900
\(665\) 1600.54 24182.4i 0.0933329 1.41016i
\(666\) 0 0
\(667\) 18673.6 32343.6i 1.08403 1.87759i
\(668\) 9419.36 + 16314.8i 0.545578 + 0.944968i
\(669\) 0 0
\(670\) −6849.78 + 11864.2i −0.394971 + 0.684109i
\(671\) −182.430 −0.0104957
\(672\) 0 0
\(673\) 4104.64 0.235100 0.117550 0.993067i \(-0.462496\pi\)
0.117550 + 0.993067i \(0.462496\pi\)
\(674\) −17228.2 + 29840.2i −0.984580 + 1.70534i
\(675\) 0 0
\(676\) 7824.40 + 13552.3i 0.445175 + 0.771066i
\(677\) −6076.70 + 10525.1i −0.344973 + 0.597510i −0.985349 0.170551i \(-0.945445\pi\)
0.640376 + 0.768061i \(0.278778\pi\)
\(678\) 0 0
\(679\) −21312.5 14260.3i −1.20456 0.805978i
\(680\) −1682.29 −0.0948717
\(681\) 0 0
\(682\) 2304.08 + 3990.78i 0.129366 + 0.224069i
\(683\) 10207.0 + 17679.0i 0.571830 + 0.990438i 0.996378 + 0.0850328i \(0.0270995\pi\)
−0.424549 + 0.905405i \(0.639567\pi\)
\(684\) 0 0
\(685\) −1061.10 −0.0591862
\(686\) −19336.0 17023.0i −1.07617 0.947437i
\(687\) 0 0
\(688\) −11957.3 + 20710.7i −0.662600 + 1.14766i
\(689\) 343.241 + 594.511i 0.0189789 + 0.0328724i
\(690\) 0 0
\(691\) −8046.76 + 13937.4i −0.443000 + 0.767299i −0.997911 0.0646110i \(-0.979419\pi\)
0.554910 + 0.831910i \(0.312753\pi\)
\(692\) −4756.66 −0.261302
\(693\) 0 0
\(694\) 23643.6 1.29322
\(695\) −5440.23 + 9422.76i −0.296921 + 0.514282i
\(696\) 0 0
\(697\) −18078.0 31312.1i −0.982431 1.70162i
\(698\) 3672.42 6360.81i 0.199145 0.344929i
\(699\) 0 0
\(700\) −3731.01 + 1836.96i −0.201456 + 0.0991867i
\(701\) 20803.0 1.12085 0.560426 0.828204i \(-0.310637\pi\)
0.560426 + 0.828204i \(0.310637\pi\)
\(702\) 0 0
\(703\) −5286.60 9156.65i −0.283624 0.491251i
\(704\) −3841.42 6653.54i −0.205652 0.356200i
\(705\) 0 0
\(706\) −13495.4 −0.719412
\(707\) −2184.46 + 33004.8i −0.116202 + 1.75569i
\(708\) 0 0
\(709\) −70.7460 + 122.536i −0.00374742 + 0.00649073i −0.867893 0.496751i \(-0.834526\pi\)
0.864146 + 0.503242i \(0.167860\pi\)
\(710\) 4247.20 + 7356.36i 0.224499 + 0.388844i
\(711\) 0 0
\(712\) 1035.42 1793.41i 0.0545002 0.0943971i
\(713\) 16640.4 0.874035
\(714\) 0 0
\(715\) 2492.11 0.130349
\(716\) −7768.40 + 13455.3i −0.405473 + 0.702300i
\(717\) 0 0
\(718\) −1765.84 3058.53i −0.0917836 0.158974i
\(719\) 3332.23 5771.59i 0.172839 0.299366i −0.766572 0.642158i \(-0.778039\pi\)
0.939411 + 0.342792i \(0.111373\pi\)
\(720\) 0 0
\(721\) 8135.99 4005.76i 0.420250 0.206910i
\(722\) −42747.2 −2.20345
\(723\) 0 0
\(724\) −9817.50 17004.4i −0.503957 0.872878i
\(725\) 2503.82 + 4336.74i 0.128261 + 0.222155i
\(726\) 0 0
\(727\) −4837.23 −0.246772 −0.123386 0.992359i \(-0.539375\pi\)
−0.123386 + 0.992359i \(0.539375\pi\)
\(728\) 516.802 + 345.795i 0.0263104 + 0.0176044i
\(729\) 0 0
\(730\) −9778.65 + 16937.1i −0.495786 + 0.858727i
\(731\) −18603.7 32222.6i −0.941291 1.63036i
\(732\) 0 0
\(733\) 15801.3 27368.6i 0.796225 1.37910i −0.125834 0.992051i \(-0.540161\pi\)
0.922059 0.387050i \(-0.126506\pi\)
\(734\) −4763.93 −0.239564
\(735\) 0 0
\(736\) −51302.0 −2.56932
\(737\) 2305.27 3992.84i 0.115218 0.199563i
\(738\) 0 0
\(739\) 4113.79 + 7125.30i 0.204774 + 0.354680i 0.950061 0.312065i \(-0.101021\pi\)
−0.745286 + 0.666744i \(0.767687\pi\)
\(740\) 3358.11 5816.42i 0.166820 0.288940i
\(741\) 0 0
\(742\) −2309.61 1545.37i −0.114270 0.0764586i
\(743\) 37020.3 1.82792 0.913959 0.405805i \(-0.133009\pi\)
0.913959 + 0.405805i \(0.133009\pi\)
\(744\) 0 0
\(745\) 3554.78 + 6157.07i 0.174815 + 0.302789i
\(746\) 7357.16 + 12743.0i 0.361079 + 0.625407i
\(747\) 0 0
\(748\) 10716.6 0.523846
\(749\) 4686.72 2307.50i 0.228637 0.112569i
\(750\) 0 0
\(751\) 12575.0 21780.5i 0.611008 1.05830i −0.380063 0.924960i \(-0.624098\pi\)
0.991071 0.133336i \(-0.0425689\pi\)
\(752\) 8199.78 + 14202.4i 0.397627 + 0.688710i
\(753\) 0 0
\(754\) 7086.29 12273.8i 0.342265 0.592820i
\(755\) −1531.39 −0.0738186
\(756\) 0 0
\(757\) 20460.8 0.982377 0.491189 0.871053i \(-0.336563\pi\)
0.491189 + 0.871053i \(0.336563\pi\)
\(758\) 14846.8 25715.4i 0.711424 1.23222i
\(759\) 0 0
\(760\) −1184.01 2050.77i −0.0565113 0.0978804i
\(761\) −16329.6 + 28283.6i −0.777853 + 1.34728i 0.155324 + 0.987864i \(0.450358\pi\)
−0.933177 + 0.359417i \(0.882976\pi\)
\(762\) 0 0
\(763\) 351.316 5307.98i 0.0166690 0.251850i
\(764\) −26413.7 −1.25080
\(765\) 0 0
\(766\) −14913.5 25830.9i −0.703455 1.21842i
\(767\) −3671.32 6358.91i −0.172834 0.299357i
\(768\) 0 0
\(769\) −11005.3 −0.516075 −0.258037 0.966135i \(-0.583076\pi\)
−0.258037 + 0.966135i \(0.583076\pi\)
\(770\) −9050.72 + 4456.12i −0.423591 + 0.208555i
\(771\) 0 0
\(772\) 15664.7 27132.1i 0.730293 1.26490i
\(773\) 1519.09 + 2631.14i 0.0706829 + 0.122426i 0.899201 0.437536i \(-0.144149\pi\)
−0.828518 + 0.559963i \(0.810815\pi\)
\(774\) 0 0
\(775\) −1115.60 + 1932.27i −0.0517077 + 0.0895604i
\(776\) −2505.59 −0.115909
\(777\) 0 0
\(778\) −36780.9 −1.69493
\(779\) 25447.0 44075.5i 1.17039 2.02717i
\(780\) 0 0
\(781\) −1429.38 2475.75i −0.0654893 0.113431i
\(782\) 37676.0 65256.8i 1.72288 2.98411i
\(783\) 0 0
\(784\) 20479.1 + 2722.79i 0.932902 + 0.124034i
\(785\) 20770.8 0.944384
\(786\) 0 0
\(787\) 6153.38 + 10658.0i 0.278710 + 0.482739i 0.971064 0.238818i \(-0.0767600\pi\)
−0.692355 + 0.721557i \(0.743427\pi\)
\(788\) −3594.50 6225.86i