Newspace parameters
Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 63.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.71712033036\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} + 19x^{6} + 319x^{4} + 798x^{2} + 1764 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{2}\cdot 3 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} + 19x^{6} + 319x^{4} + 798x^{2} + 1764 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( 19\nu^{6} + 319\nu^{4} + 6061\nu^{2} + 1764 ) / 13398 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 19\nu^{7} + 319\nu^{5} + 6061\nu^{3} + 1764\nu ) / 13398 \)
|
\(\beta_{4}\) | \(=\) |
\( ( \nu^{6} - 2392 ) / 319 \)
|
\(\beta_{5}\) | \(=\) |
\( ( \nu^{7} - 3987\nu ) / 319 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -74\nu^{6} - 1595\nu^{4} - 23606\nu^{2} - 59052 ) / 6699 \)
|
\(\beta_{7}\) | \(=\) |
\( ( -81\nu^{7} - 1595\nu^{5} - 25839\nu^{3} - 64638\nu ) / 4466 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{6} - \beta_{4} + 10\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{7} - \beta_{5} + 15\beta_{3} \)
|
\(\nu^{4}\) | \(=\) |
\( -19\beta_{6} - 148\beta_{2} - 148 \)
|
\(\nu^{5}\) | \(=\) |
\( -19\beta_{7} - 243\beta_{3} - 243\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( 319\beta_{4} + 2392 \)
|
\(\nu^{7}\) | \(=\) |
\( 319\beta_{5} + 3987\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).
\(n\) | \(10\) | \(29\) |
\(\chi(n)\) | \(\beta_{2}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 |
|
−2.02770 | + | 3.51207i | 0 | −4.22311 | − | 7.31464i | −4.96020 | + | 8.59131i | 0 | −15.3924 | − | 10.2992i | 1.80961 | 0 | −20.1156 | − | 34.8412i | ||||||||||||||||||||||||||||||||
37.2 | −0.799027 | + | 1.38396i | 0 | 2.72311 | + | 4.71657i | 9.14584 | − | 15.8411i | 0 | 12.3924 | + | 13.7633i | −21.4878 | 0 | 14.6156 | + | 25.3149i | |||||||||||||||||||||||||||||||||
37.3 | 0.799027 | − | 1.38396i | 0 | 2.72311 | + | 4.71657i | −9.14584 | + | 15.8411i | 0 | 12.3924 | + | 13.7633i | 21.4878 | 0 | 14.6156 | + | 25.3149i | |||||||||||||||||||||||||||||||||
37.4 | 2.02770 | − | 3.51207i | 0 | −4.22311 | − | 7.31464i | 4.96020 | − | 8.59131i | 0 | −15.3924 | − | 10.2992i | −1.80961 | 0 | −20.1156 | − | 34.8412i | |||||||||||||||||||||||||||||||||
46.1 | −2.02770 | − | 3.51207i | 0 | −4.22311 | + | 7.31464i | −4.96020 | − | 8.59131i | 0 | −15.3924 | + | 10.2992i | 1.80961 | 0 | −20.1156 | + | 34.8412i | |||||||||||||||||||||||||||||||||
46.2 | −0.799027 | − | 1.38396i | 0 | 2.72311 | − | 4.71657i | 9.14584 | + | 15.8411i | 0 | 12.3924 | − | 13.7633i | −21.4878 | 0 | 14.6156 | − | 25.3149i | |||||||||||||||||||||||||||||||||
46.3 | 0.799027 | + | 1.38396i | 0 | 2.72311 | − | 4.71657i | −9.14584 | − | 15.8411i | 0 | 12.3924 | − | 13.7633i | 21.4878 | 0 | 14.6156 | − | 25.3149i | |||||||||||||||||||||||||||||||||
46.4 | 2.02770 | + | 3.51207i | 0 | −4.22311 | + | 7.31464i | 4.96020 | + | 8.59131i | 0 | −15.3924 | + | 10.2992i | −1.80961 | 0 | −20.1156 | + | 34.8412i | |||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
21.h | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 63.4.e.d | ✓ | 8 |
3.b | odd | 2 | 1 | inner | 63.4.e.d | ✓ | 8 |
7.b | odd | 2 | 1 | 441.4.e.x | 8 | ||
7.c | even | 3 | 1 | inner | 63.4.e.d | ✓ | 8 |
7.c | even | 3 | 1 | 441.4.a.w | 4 | ||
7.d | odd | 6 | 1 | 441.4.a.v | 4 | ||
7.d | odd | 6 | 1 | 441.4.e.x | 8 | ||
21.c | even | 2 | 1 | 441.4.e.x | 8 | ||
21.g | even | 6 | 1 | 441.4.a.v | 4 | ||
21.g | even | 6 | 1 | 441.4.e.x | 8 | ||
21.h | odd | 6 | 1 | inner | 63.4.e.d | ✓ | 8 |
21.h | odd | 6 | 1 | 441.4.a.w | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.4.e.d | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
63.4.e.d | ✓ | 8 | 3.b | odd | 2 | 1 | inner |
63.4.e.d | ✓ | 8 | 7.c | even | 3 | 1 | inner |
63.4.e.d | ✓ | 8 | 21.h | odd | 6 | 1 | inner |
441.4.a.v | 4 | 7.d | odd | 6 | 1 | ||
441.4.a.v | 4 | 21.g | even | 6 | 1 | ||
441.4.a.w | 4 | 7.c | even | 3 | 1 | ||
441.4.a.w | 4 | 21.h | odd | 6 | 1 | ||
441.4.e.x | 8 | 7.b | odd | 2 | 1 | ||
441.4.e.x | 8 | 7.d | odd | 6 | 1 | ||
441.4.e.x | 8 | 21.c | even | 2 | 1 | ||
441.4.e.x | 8 | 21.g | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} + 19T_{2}^{6} + 319T_{2}^{4} + 798T_{2}^{2} + 1764 \)
acting on \(S_{4}^{\mathrm{new}}(63, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} + 19 T^{6} + 319 T^{4} + \cdots + 1764 \)
$3$
\( T^{8} \)
$5$
\( T^{8} + 433 T^{6} + \cdots + 1084253184 \)
$7$
\( (T^{4} + 6 T^{3} - 77 T^{2} + 2058 T + 117649)^{2} \)
$11$
\( T^{8} + 3937 T^{6} + \cdots + 473520144384 \)
$13$
\( (T^{2} - 51 T + 602)^{4} \)
$17$
\( T^{8} + 15396 T^{6} + \cdots + 33\!\cdots\!64 \)
$19$
\( (T^{4} + 111 T^{3} + 15079 T^{2} + \cdots + 7606564)^{2} \)
$23$
\( T^{8} + 40452 T^{6} + \cdots + 20\!\cdots\!64 \)
$29$
\( (T^{4} - 38185 T^{2} + 96018048)^{2} \)
$31$
\( (T^{4} + 110 T^{3} + 28375 T^{2} + \cdots + 264875625)^{2} \)
$37$
\( (T^{4} - 187 T^{3} + 56383 T^{2} + \cdots + 458559396)^{2} \)
$41$
\( (T^{4} - 190144 T^{2} + \cdots + 6145155072)^{2} \)
$43$
\( (T^{2} + 419 T + 8716)^{4} \)
$47$
\( T^{8} + 135600 T^{6} + \cdots + 20\!\cdots\!04 \)
$53$
\( T^{8} + \cdots + 737093829878784 \)
$59$
\( T^{8} + 205665 T^{6} + \cdots + 59\!\cdots\!64 \)
$61$
\( (T^{4} + 666 T^{3} + 434764 T^{2} + \cdots + 77299264)^{2} \)
$67$
\( (T^{4} + 945 T^{3} + \cdots + 42369282244)^{2} \)
$71$
\( (T^{4} - 557280 T^{2} + \cdots + 22856214528)^{2} \)
$73$
\( (T^{4} + 875 T^{3} + \cdots + 35736877764)^{2} \)
$79$
\( (T^{4} + 4 T^{3} + 85125 T^{2} + \cdots + 7243541881)^{2} \)
$83$
\( (T^{4} - 804825 T^{2} + \cdots + 10585989792)^{2} \)
$89$
\( T^{8} + 2191972 T^{6} + \cdots + 13\!\cdots\!84 \)
$97$
\( (T^{2} - 1505 T + 166698)^{4} \)
show more
show less