Defining parameters
Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 63.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(63, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 22 | 34 |
Cusp forms | 40 | 18 | 22 |
Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(63, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
63.4.e.a | $2$ | $3.717$ | \(\Q(\sqrt{-3}) \) | None | \(-3\) | \(0\) | \(-3\) | \(-7\) | \(q+(-3+3\zeta_{6})q^{2}-\zeta_{6}q^{4}+(-3+3\zeta_{6})q^{5}+\cdots\) |
63.4.e.b | $2$ | $3.717$ | \(\Q(\sqrt{-3}) \) | None | \(2\) | \(0\) | \(7\) | \(28\) | \(q+(2-2\zeta_{6})q^{2}+4\zeta_{6}q^{4}+(7-7\zeta_{6})q^{5}+\cdots\) |
63.4.e.c | $6$ | $3.717$ | 6.0.9924270768.1 | None | \(1\) | \(0\) | \(11\) | \(-13\) | \(q+\beta _{1}q^{2}+(-8+\beta _{1}+\beta _{2}+8\beta _{4}+\beta _{5})q^{4}+\cdots\) |
63.4.e.d | $8$ | $3.717$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-12\) | \(q+(\beta _{1}+\beta _{3})q^{2}+(-2-2\beta _{2}-\beta _{6})q^{4}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(63, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(63, [\chi]) \cong \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)