Properties

Label 63.4.a.d
Level $63$
Weight $4$
Character orbit 63.a
Self dual yes
Analytic conductor $3.717$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{19}) \)
Defining polynomial: \(x^{2} - 19\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{19}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + 11 q^{4} + 2 \beta q^{5} -7 q^{7} + 3 \beta q^{8} +O(q^{10})\) \( q + \beta q^{2} + 11 q^{4} + 2 \beta q^{5} -7 q^{7} + 3 \beta q^{8} + 38 q^{10} -10 \beta q^{11} + 82 q^{13} -7 \beta q^{14} -31 q^{16} -18 \beta q^{17} -20 q^{19} + 22 \beta q^{20} -190 q^{22} -30 \beta q^{23} -49 q^{25} + 82 \beta q^{26} -77 q^{28} + 56 \beta q^{29} + 156 q^{31} -55 \beta q^{32} -342 q^{34} -14 \beta q^{35} + 186 q^{37} -20 \beta q^{38} + 114 q^{40} -38 \beta q^{41} + 164 q^{43} -110 \beta q^{44} -570 q^{46} + 108 \beta q^{47} + 49 q^{49} -49 \beta q^{50} + 902 q^{52} -36 \beta q^{53} -380 q^{55} -21 \beta q^{56} + 1064 q^{58} + 36 \beta q^{59} + 790 q^{61} + 156 \beta q^{62} -797 q^{64} + 164 \beta q^{65} -44 q^{67} -198 \beta q^{68} -266 q^{70} + 102 \beta q^{71} + 126 q^{73} + 186 \beta q^{74} -220 q^{76} + 70 \beta q^{77} -712 q^{79} -62 \beta q^{80} -722 q^{82} -336 \beta q^{83} -684 q^{85} + 164 \beta q^{86} -570 q^{88} -334 \beta q^{89} -574 q^{91} -330 \beta q^{92} + 2052 q^{94} -40 \beta q^{95} + 798 q^{97} + 49 \beta q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 22q^{4} - 14q^{7} + O(q^{10}) \) \( 2q + 22q^{4} - 14q^{7} + 76q^{10} + 164q^{13} - 62q^{16} - 40q^{19} - 380q^{22} - 98q^{25} - 154q^{28} + 312q^{31} - 684q^{34} + 372q^{37} + 228q^{40} + 328q^{43} - 1140q^{46} + 98q^{49} + 1804q^{52} - 760q^{55} + 2128q^{58} + 1580q^{61} - 1594q^{64} - 88q^{67} - 532q^{70} + 252q^{73} - 440q^{76} - 1424q^{79} - 1444q^{82} - 1368q^{85} - 1140q^{88} - 1148q^{91} + 4104q^{94} + 1596q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.35890
4.35890
−4.35890 0 11.0000 −8.71780 0 −7.00000 −13.0767 0 38.0000
1.2 4.35890 0 11.0000 8.71780 0 −7.00000 13.0767 0 38.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(7\) \(1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.4.a.d 2
3.b odd 2 1 inner 63.4.a.d 2
4.b odd 2 1 1008.4.a.be 2
5.b even 2 1 1575.4.a.t 2
7.b odd 2 1 441.4.a.q 2
7.c even 3 2 441.4.e.r 4
7.d odd 6 2 441.4.e.s 4
12.b even 2 1 1008.4.a.be 2
15.d odd 2 1 1575.4.a.t 2
21.c even 2 1 441.4.a.q 2
21.g even 6 2 441.4.e.s 4
21.h odd 6 2 441.4.e.r 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.4.a.d 2 1.a even 1 1 trivial
63.4.a.d 2 3.b odd 2 1 inner
441.4.a.q 2 7.b odd 2 1
441.4.a.q 2 21.c even 2 1
441.4.e.r 4 7.c even 3 2
441.4.e.r 4 21.h odd 6 2
441.4.e.s 4 7.d odd 6 2
441.4.e.s 4 21.g even 6 2
1008.4.a.be 2 4.b odd 2 1
1008.4.a.be 2 12.b even 2 1
1575.4.a.t 2 5.b even 2 1
1575.4.a.t 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 19 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(63))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -19 + T^{2} \)
$3$ \( T^{2} \)
$5$ \( -76 + T^{2} \)
$7$ \( ( 7 + T )^{2} \)
$11$ \( -1900 + T^{2} \)
$13$ \( ( -82 + T )^{2} \)
$17$ \( -6156 + T^{2} \)
$19$ \( ( 20 + T )^{2} \)
$23$ \( -17100 + T^{2} \)
$29$ \( -59584 + T^{2} \)
$31$ \( ( -156 + T )^{2} \)
$37$ \( ( -186 + T )^{2} \)
$41$ \( -27436 + T^{2} \)
$43$ \( ( -164 + T )^{2} \)
$47$ \( -221616 + T^{2} \)
$53$ \( -24624 + T^{2} \)
$59$ \( -24624 + T^{2} \)
$61$ \( ( -790 + T )^{2} \)
$67$ \( ( 44 + T )^{2} \)
$71$ \( -197676 + T^{2} \)
$73$ \( ( -126 + T )^{2} \)
$79$ \( ( 712 + T )^{2} \)
$83$ \( -2145024 + T^{2} \)
$89$ \( -2119564 + T^{2} \)
$97$ \( ( -798 + T )^{2} \)
show more
show less