Properties

Label 63.4.a.d
Level $63$
Weight $4$
Character orbit 63.a
Self dual yes
Analytic conductor $3.717$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [63,4,Mod(1,63)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("63.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(63, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{19}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{19}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + 11 q^{4} + 2 \beta q^{5} - 7 q^{7} + 3 \beta q^{8} + 38 q^{10} - 10 \beta q^{11} + 82 q^{13} - 7 \beta q^{14} - 31 q^{16} - 18 \beta q^{17} - 20 q^{19} + 22 \beta q^{20} - 190 q^{22} + \cdots + 49 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 22 q^{4} - 14 q^{7} + 76 q^{10} + 164 q^{13} - 62 q^{16} - 40 q^{19} - 380 q^{22} - 98 q^{25} - 154 q^{28} + 312 q^{31} - 684 q^{34} + 372 q^{37} + 228 q^{40} + 328 q^{43} - 1140 q^{46} + 98 q^{49}+ \cdots + 1596 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.35890
4.35890
−4.35890 0 11.0000 −8.71780 0 −7.00000 −13.0767 0 38.0000
1.2 4.35890 0 11.0000 8.71780 0 −7.00000 13.0767 0 38.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.4.a.d 2
3.b odd 2 1 inner 63.4.a.d 2
4.b odd 2 1 1008.4.a.be 2
5.b even 2 1 1575.4.a.t 2
7.b odd 2 1 441.4.a.q 2
7.c even 3 2 441.4.e.r 4
7.d odd 6 2 441.4.e.s 4
12.b even 2 1 1008.4.a.be 2
15.d odd 2 1 1575.4.a.t 2
21.c even 2 1 441.4.a.q 2
21.g even 6 2 441.4.e.s 4
21.h odd 6 2 441.4.e.r 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.4.a.d 2 1.a even 1 1 trivial
63.4.a.d 2 3.b odd 2 1 inner
441.4.a.q 2 7.b odd 2 1
441.4.a.q 2 21.c even 2 1
441.4.e.r 4 7.c even 3 2
441.4.e.r 4 21.h odd 6 2
441.4.e.s 4 7.d odd 6 2
441.4.e.s 4 21.g even 6 2
1008.4.a.be 2 4.b odd 2 1
1008.4.a.be 2 12.b even 2 1
1575.4.a.t 2 5.b even 2 1
1575.4.a.t 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 19 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(63))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 19 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 76 \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 1900 \) Copy content Toggle raw display
$13$ \( (T - 82)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 6156 \) Copy content Toggle raw display
$19$ \( (T + 20)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 17100 \) Copy content Toggle raw display
$29$ \( T^{2} - 59584 \) Copy content Toggle raw display
$31$ \( (T - 156)^{2} \) Copy content Toggle raw display
$37$ \( (T - 186)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 27436 \) Copy content Toggle raw display
$43$ \( (T - 164)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 221616 \) Copy content Toggle raw display
$53$ \( T^{2} - 24624 \) Copy content Toggle raw display
$59$ \( T^{2} - 24624 \) Copy content Toggle raw display
$61$ \( (T - 790)^{2} \) Copy content Toggle raw display
$67$ \( (T + 44)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 197676 \) Copy content Toggle raw display
$73$ \( (T - 126)^{2} \) Copy content Toggle raw display
$79$ \( (T + 712)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 2145024 \) Copy content Toggle raw display
$89$ \( T^{2} - 2119564 \) Copy content Toggle raw display
$97$ \( (T - 798)^{2} \) Copy content Toggle raw display
show more
show less