Properties

Label 63.4.a.a
Level $63$
Weight $4$
Character orbit 63.a
Self dual yes
Analytic conductor $3.717$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(3.71712033036\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 4q^{2} + 8q^{4} + 4q^{5} - 7q^{7} + O(q^{10}) \) \( q - 4q^{2} + 8q^{4} + 4q^{5} - 7q^{7} - 16q^{10} - 62q^{11} - 62q^{13} + 28q^{14} - 64q^{16} - 84q^{17} + 100q^{19} + 32q^{20} + 248q^{22} + 42q^{23} - 109q^{25} + 248q^{26} - 56q^{28} + 10q^{29} - 48q^{31} + 256q^{32} + 336q^{34} - 28q^{35} - 246q^{37} - 400q^{38} + 248q^{41} + 68q^{43} - 496q^{44} - 168q^{46} - 324q^{47} + 49q^{49} + 436q^{50} - 496q^{52} - 258q^{53} - 248q^{55} - 40q^{58} - 120q^{59} + 622q^{61} + 192q^{62} - 512q^{64} - 248q^{65} + 904q^{67} - 672q^{68} + 112q^{70} + 678q^{71} - 642q^{73} + 984q^{74} + 800q^{76} + 434q^{77} + 740q^{79} - 256q^{80} - 992q^{82} - 468q^{83} - 336q^{85} - 272q^{86} - 200q^{89} + 434q^{91} + 336q^{92} + 1296q^{94} + 400q^{95} - 1266q^{97} - 196q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−4.00000 0 8.00000 4.00000 0 −7.00000 0 0 −16.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.4.a.a 1
3.b odd 2 1 21.4.a.b 1
4.b odd 2 1 1008.4.a.m 1
5.b even 2 1 1575.4.a.k 1
7.b odd 2 1 441.4.a.b 1
7.c even 3 2 441.4.e.m 2
7.d odd 6 2 441.4.e.n 2
12.b even 2 1 336.4.a.h 1
15.d odd 2 1 525.4.a.b 1
15.e even 4 2 525.4.d.b 2
21.c even 2 1 147.4.a.g 1
21.g even 6 2 147.4.e.b 2
21.h odd 6 2 147.4.e.c 2
24.f even 2 1 1344.4.a.i 1
24.h odd 2 1 1344.4.a.w 1
84.h odd 2 1 2352.4.a.l 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.a.b 1 3.b odd 2 1
63.4.a.a 1 1.a even 1 1 trivial
147.4.a.g 1 21.c even 2 1
147.4.e.b 2 21.g even 6 2
147.4.e.c 2 21.h odd 6 2
336.4.a.h 1 12.b even 2 1
441.4.a.b 1 7.b odd 2 1
441.4.e.m 2 7.c even 3 2
441.4.e.n 2 7.d odd 6 2
525.4.a.b 1 15.d odd 2 1
525.4.d.b 2 15.e even 4 2
1008.4.a.m 1 4.b odd 2 1
1344.4.a.i 1 24.f even 2 1
1344.4.a.w 1 24.h odd 2 1
1575.4.a.k 1 5.b even 2 1
2352.4.a.l 1 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} + 4 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(63))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 4 + T \)
$3$ \( T \)
$5$ \( -4 + T \)
$7$ \( 7 + T \)
$11$ \( 62 + T \)
$13$ \( 62 + T \)
$17$ \( 84 + T \)
$19$ \( -100 + T \)
$23$ \( -42 + T \)
$29$ \( -10 + T \)
$31$ \( 48 + T \)
$37$ \( 246 + T \)
$41$ \( -248 + T \)
$43$ \( -68 + T \)
$47$ \( 324 + T \)
$53$ \( 258 + T \)
$59$ \( 120 + T \)
$61$ \( -622 + T \)
$67$ \( -904 + T \)
$71$ \( -678 + T \)
$73$ \( 642 + T \)
$79$ \( -740 + T \)
$83$ \( 468 + T \)
$89$ \( 200 + T \)
$97$ \( 1266 + T \)
show more
show less