Defining parameters
| Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 63.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(32\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(63))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 28 | 7 | 21 |
| Cusp forms | 20 | 7 | 13 |
| Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(8\) | \(2\) | \(6\) | \(6\) | \(2\) | \(4\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(6\) | \(0\) | \(6\) | \(4\) | \(0\) | \(4\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(6\) | \(2\) | \(4\) | \(4\) | \(2\) | \(2\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(8\) | \(3\) | \(5\) | \(6\) | \(3\) | \(3\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(16\) | \(5\) | \(11\) | \(12\) | \(5\) | \(7\) | \(4\) | \(0\) | \(4\) | ||||
| Minus space | \(-\) | \(12\) | \(2\) | \(10\) | \(8\) | \(2\) | \(6\) | \(4\) | \(0\) | \(4\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(63))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 7 | |||||||
| 63.4.a.a | $1$ | $3.717$ | \(\Q\) | None | \(-4\) | \(0\) | \(4\) | \(-7\) | $-$ | $+$ | \(q-4q^{2}+8q^{4}+4q^{5}-7q^{7}-2^{4}q^{10}+\cdots\) | |
| 63.4.a.b | $1$ | $3.717$ | \(\Q\) | None | \(1\) | \(0\) | \(-16\) | \(-7\) | $-$ | $+$ | \(q+q^{2}-7q^{4}-2^{4}q^{5}-7q^{7}-15q^{8}+\cdots\) | |
| 63.4.a.c | $1$ | $3.717$ | \(\Q\) | None | \(3\) | \(0\) | \(18\) | \(7\) | $-$ | $-$ | \(q+3q^{2}+q^{4}+18q^{5}+7q^{7}-21q^{8}+\cdots\) | |
| 63.4.a.d | $2$ | $3.717$ | \(\Q(\sqrt{19}) \) | None | \(0\) | \(0\) | \(0\) | \(-14\) | $+$ | $+$ | \(q+\beta q^{2}+11q^{4}+2\beta q^{5}-7q^{7}+3\beta q^{8}+\cdots\) | |
| 63.4.a.e | $2$ | $3.717$ | \(\Q(\sqrt{57}) \) | None | \(3\) | \(0\) | \(-6\) | \(14\) | $-$ | $-$ | \(q+(1+\beta )q^{2}+(7+3\beta )q^{4}+(-2-2\beta )q^{5}+\cdots\) | |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(63))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(63)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)