Properties

Label 63.3.n
Level $63$
Weight $3$
Character orbit 63.n
Rep. character $\chi_{63}(2,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $28$
Newform subspaces $2$
Sturm bound $24$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 63.n (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(63, [\chi])\).

Total New Old
Modular forms 36 36 0
Cusp forms 28 28 0
Eisenstein series 8 8 0

Trace form

\( 28 q - 3 q^{2} - q^{3} + 25 q^{4} - 8 q^{6} - 2 q^{7} - 7 q^{9} + 6 q^{10} + 19 q^{12} - 7 q^{13} - 39 q^{14} + 8 q^{15} - 35 q^{16} - 27 q^{17} - 83 q^{18} - 16 q^{19} + 6 q^{20} - 8 q^{21} + 6 q^{22}+ \cdots - 184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(63, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
63.3.n.a 63.n 63.n $6$ $1.717$ 6.0.63369648.1 None 63.3.j.a \(3\) \(-9\) \(0\) \(-5\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\beta _{5})q^{2}+3\beta _{2}q^{3}+(\beta _{1}-4\beta _{2}+\cdots)q^{4}+\cdots\)
63.3.n.b 63.n 63.n $22$ $1.717$ None 63.3.j.b \(-6\) \(8\) \(0\) \(3\) $\mathrm{SU}(2)[C_{6}]$