Properties

Label 63.3.m.d
Level $63$
Weight $3$
Character orbit 63.m
Analytic conductor $1.717$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 63.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.71662566547\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 \zeta_{6} q^{2} + (5 \zeta_{6} - 5) q^{4} + (3 \zeta_{6} - 6) q^{5} + (3 \zeta_{6} + 5) q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 \zeta_{6} q^{2} + (5 \zeta_{6} - 5) q^{4} + (3 \zeta_{6} - 6) q^{5} + (3 \zeta_{6} + 5) q^{7} - 3 q^{8} + ( - 9 \zeta_{6} - 9) q^{10} + ( - 15 \zeta_{6} + 15) q^{11} + ( - 16 \zeta_{6} + 8) q^{13} + (24 \zeta_{6} - 9) q^{14} + 11 \zeta_{6} q^{16} + ( - 6 \zeta_{6} - 6) q^{17} + (6 \zeta_{6} - 12) q^{19} + ( - 30 \zeta_{6} + 15) q^{20} + 45 q^{22} + ( - 2 \zeta_{6} + 2) q^{25} + ( - 24 \zeta_{6} + 48) q^{26} + (25 \zeta_{6} - 40) q^{28} + 9 q^{29} + ( - 7 \zeta_{6} - 7) q^{31} + (45 \zeta_{6} - 45) q^{32} + ( - 36 \zeta_{6} + 18) q^{34} + (6 \zeta_{6} - 39) q^{35} - 10 \zeta_{6} q^{37} + ( - 18 \zeta_{6} - 18) q^{38} + ( - 9 \zeta_{6} + 18) q^{40} + (12 \zeta_{6} - 6) q^{41} - 74 q^{43} + 75 \zeta_{6} q^{44} + (39 \zeta_{6} + 16) q^{49} + 6 q^{50} + (40 \zeta_{6} + 40) q^{52} + ( - 33 \zeta_{6} + 33) q^{53} + (90 \zeta_{6} - 45) q^{55} + ( - 9 \zeta_{6} - 15) q^{56} + 27 \zeta_{6} q^{58} + ( - 9 \zeta_{6} - 9) q^{59} + ( - 52 \zeta_{6} + 104) q^{61} + ( - 42 \zeta_{6} + 21) q^{62} - 91 q^{64} + 72 \zeta_{6} q^{65} + ( - 76 \zeta_{6} + 76) q^{67} + ( - 30 \zeta_{6} + 60) q^{68} + ( - 99 \zeta_{6} - 18) q^{70} - 84 q^{71} + ( - 36 \zeta_{6} - 36) q^{73} + ( - 30 \zeta_{6} + 30) q^{74} + ( - 60 \zeta_{6} + 30) q^{76} + ( - 75 \zeta_{6} + 120) q^{77} + 43 \zeta_{6} q^{79} + ( - 33 \zeta_{6} - 33) q^{80} + (18 \zeta_{6} - 36) q^{82} + (138 \zeta_{6} - 69) q^{83} + 54 q^{85} - 222 \zeta_{6} q^{86} + (45 \zeta_{6} - 45) q^{88} + ( - 42 \zeta_{6} + 84) q^{89} + ( - 104 \zeta_{6} + 88) q^{91} + ( - 54 \zeta_{6} + 54) q^{95} + (214 \zeta_{6} - 107) q^{97} + (165 \zeta_{6} - 117) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} - 5 q^{4} - 9 q^{5} + 13 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{2} - 5 q^{4} - 9 q^{5} + 13 q^{7} - 6 q^{8} - 27 q^{10} + 15 q^{11} + 6 q^{14} + 11 q^{16} - 18 q^{17} - 18 q^{19} + 90 q^{22} + 2 q^{25} + 72 q^{26} - 55 q^{28} + 18 q^{29} - 21 q^{31} - 45 q^{32} - 72 q^{35} - 10 q^{37} - 54 q^{38} + 27 q^{40} - 148 q^{43} + 75 q^{44} + 71 q^{49} + 12 q^{50} + 120 q^{52} + 33 q^{53} - 39 q^{56} + 27 q^{58} - 27 q^{59} + 156 q^{61} - 182 q^{64} + 72 q^{65} + 76 q^{67} + 90 q^{68} - 135 q^{70} - 168 q^{71} - 108 q^{73} + 30 q^{74} + 165 q^{77} + 43 q^{79} - 99 q^{80} - 54 q^{82} + 108 q^{85} - 222 q^{86} - 45 q^{88} + 126 q^{89} + 72 q^{91} + 54 q^{95} - 69 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
10.1
0.500000 + 0.866025i
0.500000 0.866025i
1.50000 + 2.59808i 0 −2.50000 + 4.33013i −4.50000 + 2.59808i 0 6.50000 + 2.59808i −3.00000 0 −13.5000 7.79423i
19.1 1.50000 2.59808i 0 −2.50000 4.33013i −4.50000 2.59808i 0 6.50000 2.59808i −3.00000 0 −13.5000 + 7.79423i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.3.m.d 2
3.b odd 2 1 21.3.f.a 2
4.b odd 2 1 1008.3.cg.a 2
7.b odd 2 1 441.3.m.g 2
7.c even 3 1 441.3.d.a 2
7.c even 3 1 441.3.m.g 2
7.d odd 6 1 inner 63.3.m.d 2
7.d odd 6 1 441.3.d.a 2
12.b even 2 1 336.3.bh.d 2
15.d odd 2 1 525.3.o.h 2
15.e even 4 2 525.3.s.e 4
21.c even 2 1 147.3.f.a 2
21.g even 6 1 21.3.f.a 2
21.g even 6 1 147.3.d.c 2
21.h odd 6 1 147.3.d.c 2
21.h odd 6 1 147.3.f.a 2
28.f even 6 1 1008.3.cg.a 2
84.j odd 6 1 336.3.bh.d 2
84.j odd 6 1 2352.3.f.a 2
84.n even 6 1 2352.3.f.a 2
105.p even 6 1 525.3.o.h 2
105.w odd 12 2 525.3.s.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.3.f.a 2 3.b odd 2 1
21.3.f.a 2 21.g even 6 1
63.3.m.d 2 1.a even 1 1 trivial
63.3.m.d 2 7.d odd 6 1 inner
147.3.d.c 2 21.g even 6 1
147.3.d.c 2 21.h odd 6 1
147.3.f.a 2 21.c even 2 1
147.3.f.a 2 21.h odd 6 1
336.3.bh.d 2 12.b even 2 1
336.3.bh.d 2 84.j odd 6 1
441.3.d.a 2 7.c even 3 1
441.3.d.a 2 7.d odd 6 1
441.3.m.g 2 7.b odd 2 1
441.3.m.g 2 7.c even 3 1
525.3.o.h 2 15.d odd 2 1
525.3.o.h 2 105.p even 6 1
525.3.s.e 4 15.e even 4 2
525.3.s.e 4 105.w odd 12 2
1008.3.cg.a 2 4.b odd 2 1
1008.3.cg.a 2 28.f even 6 1
2352.3.f.a 2 84.j odd 6 1
2352.3.f.a 2 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 3T_{2} + 9 \) acting on \(S_{3}^{\mathrm{new}}(63, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$7$ \( T^{2} - 13T + 49 \) Copy content Toggle raw display
$11$ \( T^{2} - 15T + 225 \) Copy content Toggle raw display
$13$ \( T^{2} + 192 \) Copy content Toggle raw display
$17$ \( T^{2} + 18T + 108 \) Copy content Toggle raw display
$19$ \( T^{2} + 18T + 108 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 9)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 21T + 147 \) Copy content Toggle raw display
$37$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$41$ \( T^{2} + 108 \) Copy content Toggle raw display
$43$ \( (T + 74)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 33T + 1089 \) Copy content Toggle raw display
$59$ \( T^{2} + 27T + 243 \) Copy content Toggle raw display
$61$ \( T^{2} - 156T + 8112 \) Copy content Toggle raw display
$67$ \( T^{2} - 76T + 5776 \) Copy content Toggle raw display
$71$ \( (T + 84)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 108T + 3888 \) Copy content Toggle raw display
$79$ \( T^{2} - 43T + 1849 \) Copy content Toggle raw display
$83$ \( T^{2} + 14283 \) Copy content Toggle raw display
$89$ \( T^{2} - 126T + 5292 \) Copy content Toggle raw display
$97$ \( T^{2} + 34347 \) Copy content Toggle raw display
show more
show less