Properties

Label 63.3.d.a
Level $63$
Weight $3$
Character orbit 63.d
Self dual yes
Analytic conductor $1.717$
Analytic rank $0$
Dimension $1$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,3,Mod(55,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.55");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 63.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.71662566547\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{2} + 5 q^{4} - 7 q^{7} + 3 q^{8} + 6 q^{11} - 21 q^{14} - 11 q^{16} + 18 q^{22} - 18 q^{23} + 25 q^{25} - 35 q^{28} + 54 q^{29} - 45 q^{32} - 38 q^{37} + 58 q^{43} + 30 q^{44} - 54 q^{46} + 49 q^{49}+ \cdots + 147 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
0
3.00000 0 5.00000 0 0 −7.00000 3.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.3.d.a 1
3.b odd 2 1 7.3.b.a 1
4.b odd 2 1 1008.3.f.a 1
7.b odd 2 1 CM 63.3.d.a 1
7.c even 3 2 441.3.m.a 2
7.d odd 6 2 441.3.m.a 2
12.b even 2 1 112.3.c.a 1
15.d odd 2 1 175.3.d.a 1
15.e even 4 2 175.3.c.a 2
21.c even 2 1 7.3.b.a 1
21.g even 6 2 49.3.d.a 2
21.h odd 6 2 49.3.d.a 2
24.f even 2 1 448.3.c.b 1
24.h odd 2 1 448.3.c.a 1
28.d even 2 1 1008.3.f.a 1
84.h odd 2 1 112.3.c.a 1
84.j odd 6 2 784.3.s.a 2
84.n even 6 2 784.3.s.a 2
105.g even 2 1 175.3.d.a 1
105.k odd 4 2 175.3.c.a 2
168.e odd 2 1 448.3.c.b 1
168.i even 2 1 448.3.c.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.3.b.a 1 3.b odd 2 1
7.3.b.a 1 21.c even 2 1
49.3.d.a 2 21.g even 6 2
49.3.d.a 2 21.h odd 6 2
63.3.d.a 1 1.a even 1 1 trivial
63.3.d.a 1 7.b odd 2 1 CM
112.3.c.a 1 12.b even 2 1
112.3.c.a 1 84.h odd 2 1
175.3.c.a 2 15.e even 4 2
175.3.c.a 2 105.k odd 4 2
175.3.d.a 1 15.d odd 2 1
175.3.d.a 1 105.g even 2 1
441.3.m.a 2 7.c even 3 2
441.3.m.a 2 7.d odd 6 2
448.3.c.a 1 24.h odd 2 1
448.3.c.a 1 168.i even 2 1
448.3.c.b 1 24.f even 2 1
448.3.c.b 1 168.e odd 2 1
784.3.s.a 2 84.j odd 6 2
784.3.s.a 2 84.n even 6 2
1008.3.f.a 1 4.b odd 2 1
1008.3.f.a 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 3 \) acting on \(S_{3}^{\mathrm{new}}(63, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 3 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 7 \) Copy content Toggle raw display
$11$ \( T - 6 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 18 \) Copy content Toggle raw display
$29$ \( T - 54 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T + 38 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T - 58 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T + 118 \) Copy content Toggle raw display
$71$ \( T + 114 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T + 94 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less