Properties

Label 63.3.d.a
Level $63$
Weight $3$
Character orbit 63.d
Self dual yes
Analytic conductor $1.717$
Analytic rank $0$
Dimension $1$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 63.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(1.71662566547\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

\(f(q)\) \(=\) \( q + 3q^{2} + 5q^{4} - 7q^{7} + 3q^{8} + O(q^{10}) \) \( q + 3q^{2} + 5q^{4} - 7q^{7} + 3q^{8} + 6q^{11} - 21q^{14} - 11q^{16} + 18q^{22} - 18q^{23} + 25q^{25} - 35q^{28} + 54q^{29} - 45q^{32} - 38q^{37} + 58q^{43} + 30q^{44} - 54q^{46} + 49q^{49} + 75q^{50} + 6q^{53} - 21q^{56} + 162q^{58} - 91q^{64} - 118q^{67} - 114q^{71} - 114q^{74} - 42q^{77} - 94q^{79} + 174q^{86} + 18q^{88} - 90q^{92} + 147q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
0
3.00000 0 5.00000 0 0 −7.00000 3.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.3.d.a 1
3.b odd 2 1 7.3.b.a 1
4.b odd 2 1 1008.3.f.a 1
7.b odd 2 1 CM 63.3.d.a 1
7.c even 3 2 441.3.m.a 2
7.d odd 6 2 441.3.m.a 2
12.b even 2 1 112.3.c.a 1
15.d odd 2 1 175.3.d.a 1
15.e even 4 2 175.3.c.a 2
21.c even 2 1 7.3.b.a 1
21.g even 6 2 49.3.d.a 2
21.h odd 6 2 49.3.d.a 2
24.f even 2 1 448.3.c.b 1
24.h odd 2 1 448.3.c.a 1
28.d even 2 1 1008.3.f.a 1
84.h odd 2 1 112.3.c.a 1
84.j odd 6 2 784.3.s.a 2
84.n even 6 2 784.3.s.a 2
105.g even 2 1 175.3.d.a 1
105.k odd 4 2 175.3.c.a 2
168.e odd 2 1 448.3.c.b 1
168.i even 2 1 448.3.c.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.3.b.a 1 3.b odd 2 1
7.3.b.a 1 21.c even 2 1
49.3.d.a 2 21.g even 6 2
49.3.d.a 2 21.h odd 6 2
63.3.d.a 1 1.a even 1 1 trivial
63.3.d.a 1 7.b odd 2 1 CM
112.3.c.a 1 12.b even 2 1
112.3.c.a 1 84.h odd 2 1
175.3.c.a 2 15.e even 4 2
175.3.c.a 2 105.k odd 4 2
175.3.d.a 1 15.d odd 2 1
175.3.d.a 1 105.g even 2 1
441.3.m.a 2 7.c even 3 2
441.3.m.a 2 7.d odd 6 2
448.3.c.a 1 24.h odd 2 1
448.3.c.a 1 168.i even 2 1
448.3.c.b 1 24.f even 2 1
448.3.c.b 1 168.e odd 2 1
784.3.s.a 2 84.j odd 6 2
784.3.s.a 2 84.n even 6 2
1008.3.f.a 1 4.b odd 2 1
1008.3.f.a 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 3 \) acting on \(S_{3}^{\mathrm{new}}(63, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - 3 T + 4 T^{2} \)
$3$ 1
$5$ \( ( 1 - 5 T )( 1 + 5 T ) \)
$7$ \( 1 + 7 T \)
$11$ \( 1 - 6 T + 121 T^{2} \)
$13$ \( ( 1 - 13 T )( 1 + 13 T ) \)
$17$ \( ( 1 - 17 T )( 1 + 17 T ) \)
$19$ \( ( 1 - 19 T )( 1 + 19 T ) \)
$23$ \( 1 + 18 T + 529 T^{2} \)
$29$ \( 1 - 54 T + 841 T^{2} \)
$31$ \( ( 1 - 31 T )( 1 + 31 T ) \)
$37$ \( 1 + 38 T + 1369 T^{2} \)
$41$ \( ( 1 - 41 T )( 1 + 41 T ) \)
$43$ \( 1 - 58 T + 1849 T^{2} \)
$47$ \( ( 1 - 47 T )( 1 + 47 T ) \)
$53$ \( 1 - 6 T + 2809 T^{2} \)
$59$ \( ( 1 - 59 T )( 1 + 59 T ) \)
$61$ \( ( 1 - 61 T )( 1 + 61 T ) \)
$67$ \( 1 + 118 T + 4489 T^{2} \)
$71$ \( 1 + 114 T + 5041 T^{2} \)
$73$ \( ( 1 - 73 T )( 1 + 73 T ) \)
$79$ \( 1 + 94 T + 6241 T^{2} \)
$83$ \( ( 1 - 83 T )( 1 + 83 T ) \)
$89$ \( ( 1 - 89 T )( 1 + 89 T ) \)
$97$ \( ( 1 - 97 T )( 1 + 97 T ) \)
show more
show less