Properties

Label 63.2.p
Level $63$
Weight $2$
Character orbit 63.p
Rep. character $\chi_{63}(17,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $1$
Sturm bound $16$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 63.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(63, [\chi])\).

Total New Old
Modular forms 24 4 20
Cusp forms 8 4 4
Eisenstein series 16 0 16

Trace form

\( 4q - 2q^{7} + O(q^{10}) \) \( 4q - 2q^{7} - 12q^{10} + 8q^{16} + 6q^{19} - 8q^{22} - 2q^{25} + 6q^{31} + 2q^{37} + 24q^{40} - 4q^{43} + 16q^{46} - 26q^{49} - 8q^{58} - 12q^{61} - 32q^{64} - 22q^{67} + 24q^{70} + 6q^{73} - 10q^{79} - 36q^{82} + 48q^{85} + 8q^{88} + 54q^{91} + 60q^{94} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(63, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
63.2.p.a \(4\) \(0.503\) \(\Q(\sqrt{-2}, \sqrt{-3})\) None \(0\) \(0\) \(0\) \(-2\) \(q+\beta _{1}q^{2}+(-\beta _{1}+2\beta _{3})q^{5}+(1-3\beta _{2}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(63, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(63, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)