Properties

Label 63.2.o
Level $63$
Weight $2$
Character orbit 63.o
Rep. character $\chi_{63}(20,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $12$
Newform subspaces $1$
Sturm bound $16$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 63.o (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(63, [\chi])\).

Total New Old
Modular forms 20 20 0
Cusp forms 12 12 0
Eisenstein series 8 8 0

Trace form

\( 12 q - 6 q^{2} + 2 q^{4} - 2 q^{7} - 12 q^{9} - 12 q^{14} + 6 q^{15} + 2 q^{16} - 6 q^{18} - 24 q^{21} - 10 q^{22} + 24 q^{23} - 8 q^{28} + 30 q^{29} + 48 q^{30} - 12 q^{32} + 18 q^{36} - 4 q^{37} + 36 q^{42}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(63, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
63.2.o.a 63.o 63.o $12$ $0.503$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 63.2.o.a \(-6\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{1}q^{2}-\beta _{2}q^{3}+(\beta _{1}+\beta _{4}+\beta _{7})q^{4}+\cdots\)