# Properties

 Label 63.2.i.a Level 63 Weight 2 Character orbit 63.i Analytic conductor 0.503 Analytic rank 0 Dimension 2 CM No Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ = $$63 = 3^{2} \cdot 7$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 63.i (of order $$6$$ and degree $$2$$)

## Newform invariants

 Self dual: No Analytic conductor: $$0.503057532734$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 1 - 2 \zeta_{6} ) q^{2} + ( 1 - 2 \zeta_{6} ) q^{3} - q^{4} + ( -3 + 3 \zeta_{6} ) q^{5} -3 q^{6} + ( 1 + 2 \zeta_{6} ) q^{7} + ( 1 - 2 \zeta_{6} ) q^{8} -3 q^{9} +O(q^{10})$$ $$q + ( 1 - 2 \zeta_{6} ) q^{2} + ( 1 - 2 \zeta_{6} ) q^{3} - q^{4} + ( -3 + 3 \zeta_{6} ) q^{5} -3 q^{6} + ( 1 + 2 \zeta_{6} ) q^{7} + ( 1 - 2 \zeta_{6} ) q^{8} -3 q^{9} + ( 3 + 3 \zeta_{6} ) q^{10} + ( 2 - \zeta_{6} ) q^{11} + ( -1 + 2 \zeta_{6} ) q^{12} + ( 2 - \zeta_{6} ) q^{13} + ( 5 - 4 \zeta_{6} ) q^{14} + ( 3 + 3 \zeta_{6} ) q^{15} -5 q^{16} + ( -3 + 3 \zeta_{6} ) q^{17} + ( -3 + 6 \zeta_{6} ) q^{18} + ( -6 + 3 \zeta_{6} ) q^{19} + ( 3 - 3 \zeta_{6} ) q^{20} + ( 5 - 4 \zeta_{6} ) q^{21} -3 \zeta_{6} q^{22} + ( 3 + 3 \zeta_{6} ) q^{23} -3 q^{24} -4 \zeta_{6} q^{25} -3 \zeta_{6} q^{26} + ( -3 + 6 \zeta_{6} ) q^{27} + ( -1 - 2 \zeta_{6} ) q^{28} + ( -3 - 3 \zeta_{6} ) q^{29} + ( 9 - 9 \zeta_{6} ) q^{30} + ( 2 - 4 \zeta_{6} ) q^{31} + ( -3 + 6 \zeta_{6} ) q^{32} -3 \zeta_{6} q^{33} + ( 3 + 3 \zeta_{6} ) q^{34} + ( -9 + 3 \zeta_{6} ) q^{35} + 3 q^{36} -7 \zeta_{6} q^{37} + 9 \zeta_{6} q^{38} -3 \zeta_{6} q^{39} + ( 3 + 3 \zeta_{6} ) q^{40} -3 \zeta_{6} q^{41} + ( -3 - 6 \zeta_{6} ) q^{42} + ( -1 + \zeta_{6} ) q^{43} + ( -2 + \zeta_{6} ) q^{44} + ( 9 - 9 \zeta_{6} ) q^{45} + ( 9 - 9 \zeta_{6} ) q^{46} + ( -5 + 10 \zeta_{6} ) q^{48} + ( -3 + 8 \zeta_{6} ) q^{49} + ( -8 + 4 \zeta_{6} ) q^{50} + ( 3 + 3 \zeta_{6} ) q^{51} + ( -2 + \zeta_{6} ) q^{52} + ( 5 + 5 \zeta_{6} ) q^{53} + 9 q^{54} + ( -3 + 6 \zeta_{6} ) q^{55} + ( 5 - 4 \zeta_{6} ) q^{56} + 9 \zeta_{6} q^{57} + ( -9 + 9 \zeta_{6} ) q^{58} + ( -3 - 3 \zeta_{6} ) q^{60} + ( 8 - 16 \zeta_{6} ) q^{61} -6 q^{62} + ( -3 - 6 \zeta_{6} ) q^{63} - q^{64} + ( -3 + 6 \zeta_{6} ) q^{65} + ( -6 + 3 \zeta_{6} ) q^{66} -4 q^{67} + ( 3 - 3 \zeta_{6} ) q^{68} + ( 9 - 9 \zeta_{6} ) q^{69} + ( -3 + 15 \zeta_{6} ) q^{70} + ( -2 + 4 \zeta_{6} ) q^{71} + ( -3 + 6 \zeta_{6} ) q^{72} + ( -3 - 3 \zeta_{6} ) q^{73} + ( -14 + 7 \zeta_{6} ) q^{74} + ( -8 + 4 \zeta_{6} ) q^{75} + ( 6 - 3 \zeta_{6} ) q^{76} + ( 4 + \zeta_{6} ) q^{77} + ( -6 + 3 \zeta_{6} ) q^{78} + 8 q^{79} + ( 15 - 15 \zeta_{6} ) q^{80} + 9 q^{81} + ( -6 + 3 \zeta_{6} ) q^{82} + ( 15 - 15 \zeta_{6} ) q^{83} + ( -5 + 4 \zeta_{6} ) q^{84} -9 \zeta_{6} q^{85} + ( 1 + \zeta_{6} ) q^{86} + ( -9 + 9 \zeta_{6} ) q^{87} -3 \zeta_{6} q^{88} -3 \zeta_{6} q^{89} + ( -9 - 9 \zeta_{6} ) q^{90} + ( 4 + \zeta_{6} ) q^{91} + ( -3 - 3 \zeta_{6} ) q^{92} -6 q^{93} + ( 9 - 18 \zeta_{6} ) q^{95} + 9 q^{96} + ( 1 + \zeta_{6} ) q^{97} + ( 13 - 2 \zeta_{6} ) q^{98} + ( -6 + 3 \zeta_{6} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{4} - 3q^{5} - 6q^{6} + 4q^{7} - 6q^{9} + O(q^{10})$$ $$2q - 2q^{4} - 3q^{5} - 6q^{6} + 4q^{7} - 6q^{9} + 9q^{10} + 3q^{11} + 3q^{13} + 6q^{14} + 9q^{15} - 10q^{16} - 3q^{17} - 9q^{19} + 3q^{20} + 6q^{21} - 3q^{22} + 9q^{23} - 6q^{24} - 4q^{25} - 3q^{26} - 4q^{28} - 9q^{29} + 9q^{30} - 3q^{33} + 9q^{34} - 15q^{35} + 6q^{36} - 7q^{37} + 9q^{38} - 3q^{39} + 9q^{40} - 3q^{41} - 12q^{42} - q^{43} - 3q^{44} + 9q^{45} + 9q^{46} + 2q^{49} - 12q^{50} + 9q^{51} - 3q^{52} + 15q^{53} + 18q^{54} + 6q^{56} + 9q^{57} - 9q^{58} - 9q^{60} - 12q^{62} - 12q^{63} - 2q^{64} - 9q^{66} - 8q^{67} + 3q^{68} + 9q^{69} + 9q^{70} - 9q^{73} - 21q^{74} - 12q^{75} + 9q^{76} + 9q^{77} - 9q^{78} + 16q^{79} + 15q^{80} + 18q^{81} - 9q^{82} + 15q^{83} - 6q^{84} - 9q^{85} + 3q^{86} - 9q^{87} - 3q^{88} - 3q^{89} - 27q^{90} + 9q^{91} - 9q^{92} - 12q^{93} + 18q^{96} + 3q^{97} + 24q^{98} - 9q^{99} + O(q^{100})$$

## Character Values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/63\mathbb{Z}\right)^\times$$.

 $$n$$ $$10$$ $$29$$ $$\chi(n)$$ $$\zeta_{6}$$ $$\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
5.1
 0.5 − 0.866025i 0.5 + 0.866025i
1.73205i 1.73205i −1.00000 −1.50000 2.59808i −3.00000 2.00000 1.73205i 1.73205i −3.00000 4.50000 2.59808i
38.1 1.73205i 1.73205i −1.00000 −1.50000 + 2.59808i −3.00000 2.00000 + 1.73205i 1.73205i −3.00000 4.50000 + 2.59808i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
63.i Even 1 yes

## Hecke kernels

This newform can be constructed as the kernel of the linear operator $$T_{2}^{2} + 3$$ acting on $$S_{2}^{\mathrm{new}}(63, [\chi])$$.