Properties

Label 63.2.i
Level $63$
Weight $2$
Character orbit 63.i
Rep. character $\chi_{63}(5,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $12$
Newform subspaces $2$
Sturm bound $16$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 63.i (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(16\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(63, [\chi])\).

Total New Old
Modular forms 20 20 0
Cusp forms 12 12 0
Eisenstein series 8 8 0

Trace form

\( 12 q - 3 q^{3} - 10 q^{4} - 3 q^{5} + 6 q^{6} - 2 q^{7} - 3 q^{9} + O(q^{10}) \) \( 12 q - 3 q^{3} - 10 q^{4} - 3 q^{5} + 6 q^{6} - 2 q^{7} - 3 q^{9} - 6 q^{10} - 9 q^{11} - 12 q^{12} - 3 q^{13} + 18 q^{14} + 6 q^{15} + 2 q^{16} + 9 q^{17} + 24 q^{18} - 6 q^{19} + 6 q^{20} - 3 q^{21} + 2 q^{22} - 6 q^{23} - 6 q^{24} + 3 q^{25} - 6 q^{26} - 27 q^{27} - 2 q^{28} - 24 q^{29} + 15 q^{30} - 3 q^{33} + 6 q^{34} - 12 q^{36} - q^{37} + 27 q^{38} + 15 q^{39} + 24 q^{40} + 6 q^{41} - 24 q^{42} + 2 q^{43} - 27 q^{44} + 39 q^{45} - 4 q^{46} + 30 q^{47} + 15 q^{48} + 6 q^{49} - 9 q^{50} + 30 q^{51} - 15 q^{52} + 24 q^{53} + 27 q^{54} - 24 q^{56} - 27 q^{57} - q^{58} - 36 q^{59} - 57 q^{60} - 24 q^{62} - 27 q^{63} + 4 q^{64} - 48 q^{66} + 12 q^{67} - 24 q^{68} + 12 q^{69} + 15 q^{70} - 30 q^{72} - 6 q^{73} - 51 q^{74} - 6 q^{75} + 48 q^{77} + 15 q^{78} - 24 q^{79} + 45 q^{80} + 33 q^{81} + 30 q^{83} + 87 q^{84} + 9 q^{85} + 57 q^{86} - 3 q^{87} - 11 q^{88} - 27 q^{89} - 51 q^{90} - 15 q^{91} + 30 q^{92} + 24 q^{93} + 51 q^{96} - 3 q^{97} - 21 q^{98} + 12 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(63, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
63.2.i.a $2$ $0.503$ \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(-3\) \(4\) \(q+(1-2\zeta_{6})q^{2}+(1-2\zeta_{6})q^{3}-q^{4}+\cdots\)
63.2.i.b $10$ $0.503$ 10.0.\(\cdots\).1 None \(0\) \(-3\) \(0\) \(-6\) \(q+(-\beta _{3}-\beta _{5})q^{2}+(\beta _{1}-\beta _{7})q^{3}+(-1+\cdots)q^{4}+\cdots\)