Properties

Label 63.2.i
Level $63$
Weight $2$
Character orbit 63.i
Rep. character $\chi_{63}(5,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $12$
Newform subspaces $2$
Sturm bound $16$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 63.i (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(16\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(63, [\chi])\).

Total New Old
Modular forms 20 20 0
Cusp forms 12 12 0
Eisenstein series 8 8 0

Trace form

\( 12 q - 3 q^{3} - 10 q^{4} - 3 q^{5} + 6 q^{6} - 2 q^{7} - 3 q^{9} - 6 q^{10} - 9 q^{11} - 12 q^{12} - 3 q^{13} + 18 q^{14} + 6 q^{15} + 2 q^{16} + 9 q^{17} + 24 q^{18} - 6 q^{19} + 6 q^{20} - 3 q^{21} + 2 q^{22}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(63, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
63.2.i.a 63.i 63.i $2$ $0.503$ \(\Q(\sqrt{-3}) \) None 63.2.i.a \(0\) \(0\) \(-3\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1-2\zeta_{6})q^{2}+(1-2\zeta_{6})q^{3}-q^{4}+\cdots\)
63.2.i.b 63.i 63.i $10$ $0.503$ 10.0.\(\cdots\).1 None 63.2.i.b \(0\) \(-3\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{3}-\beta _{5})q^{2}+(\beta _{1}-\beta _{7})q^{3}+(-1+\cdots)q^{4}+\cdots\)