Defining parameters
| Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) | 
| Weight: | \( k \) | \(=\) | \( 2 \) | 
| Character orbit: | \([\chi]\) | \(=\) | 63.i (of order \(6\) and degree \(2\)) | 
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) | 
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(16\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) | 
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(63, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 20 | 20 | 0 | 
| Cusp forms | 12 | 12 | 0 | 
| Eisenstein series | 8 | 8 | 0 | 
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(63, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 63.2.i.a | $2$ | $0.503$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(-3\) | \(4\) | \(q+(1-2\zeta_{6})q^{2}+(1-2\zeta_{6})q^{3}-q^{4}+\cdots\) | 
| 63.2.i.b | $10$ | $0.503$ | 10.0.\(\cdots\).1 | None | \(0\) | \(-3\) | \(0\) | \(-6\) | \(q+(-\beta _{3}-\beta _{5})q^{2}+(\beta _{1}-\beta _{7})q^{3}+(-1+\cdots)q^{4}+\cdots\) | 
