Properties

Label 63.2.g
Level $63$
Weight $2$
Character orbit 63.g
Rep. character $\chi_{63}(4,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $12$
Newform subspaces $2$
Sturm bound $16$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 63.g (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(16\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(63, [\chi])\).

Total New Old
Modular forms 20 20 0
Cusp forms 12 12 0
Eisenstein series 8 8 0

Trace form

\( 12 q + q^{2} - q^{3} - 3 q^{4} - 10 q^{5} - 2 q^{6} - 12 q^{8} - q^{9} - 6 q^{10} + 2 q^{11} + 19 q^{12} - 3 q^{13} + 11 q^{14} - 16 q^{15} + 3 q^{16} + 9 q^{17} + q^{18} + 4 q^{20} - 8 q^{21} - 6 q^{22}+ \cdots + 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(63, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
63.2.g.a 63.g 63.g $2$ $0.503$ \(\Q(\sqrt{-3}) \) None 63.2.g.a \(-1\) \(-3\) \(-2\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1-\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
63.2.g.b 63.g 63.g $10$ $0.503$ 10.0.\(\cdots\).1 None 63.2.g.b \(2\) \(2\) \(-8\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(\beta _{2}-\beta _{7})q^{3}+(-1-\beta _{2}+\cdots)q^{4}+\cdots\)