Properties

Label 63.2.f.b.43.3
Level $63$
Weight $2$
Character 63.43
Analytic conductor $0.503$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 63.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.503057532734\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Defining polynomial: \(x^{6} - 3 x^{5} + 10 x^{4} - 15 x^{3} + 19 x^{2} - 12 x + 3\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 43.3
Root \(0.500000 + 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 63.43
Dual form 63.2.f.b.22.3

$q$-expansion

\(f(q)\) \(=\) \(q+(1.23025 - 2.13086i) q^{2} +(-1.73025 + 0.0789082i) q^{3} +(-2.02704 - 3.51094i) q^{4} +(1.29679 + 2.24611i) q^{5} +(-1.96050 + 3.78400i) q^{6} +(0.500000 - 0.866025i) q^{7} -5.05408 q^{8} +(2.98755 - 0.273062i) q^{9} +O(q^{10})\) \(q+(1.23025 - 2.13086i) q^{2} +(-1.73025 + 0.0789082i) q^{3} +(-2.02704 - 3.51094i) q^{4} +(1.29679 + 2.24611i) q^{5} +(-1.96050 + 3.78400i) q^{6} +(0.500000 - 0.866025i) q^{7} -5.05408 q^{8} +(2.98755 - 0.273062i) q^{9} +6.38151 q^{10} +(-2.25729 + 3.90975i) q^{11} +(3.78434 + 5.91486i) q^{12} +(-0.500000 - 0.866025i) q^{13} +(-1.23025 - 2.13086i) q^{14} +(-2.42101 - 3.78400i) q^{15} +(-2.16372 + 3.74766i) q^{16} -0.945916 q^{17} +(3.09358 - 6.70198i) q^{18} -4.05408 q^{19} +(5.25729 - 9.10590i) q^{20} +(-0.796790 + 1.53790i) q^{21} +(5.55408 + 9.61996i) q^{22} +(0.136673 + 0.236725i) q^{23} +(8.74484 - 0.398809i) q^{24} +(-0.863327 + 1.49533i) q^{25} -2.46050 q^{26} +(-5.14766 + 0.708209i) q^{27} -4.05408 q^{28} +(-1.23025 + 2.13086i) q^{29} +(-11.0416 + 0.503554i) q^{30} +(-1.16372 - 2.01561i) q^{31} +(0.269748 + 0.467216i) q^{32} +(3.59718 - 6.94297i) q^{33} +(-1.16372 + 2.01561i) q^{34} +2.59358 q^{35} +(-7.01459 - 9.93559i) q^{36} +1.78074 q^{37} +(-4.98755 + 8.63868i) q^{38} +(0.933463 + 1.45899i) q^{39} +(-6.55408 - 11.3520i) q^{40} +(3.20321 + 5.54812i) q^{41} +(2.29679 + 3.58985i) q^{42} +(5.21780 - 9.03749i) q^{43} +18.3025 q^{44} +(4.48755 + 6.35624i) q^{45} +0.672570 q^{46} +(6.08113 - 10.5328i) q^{47} +(3.44805 - 6.65514i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(2.12422 + 3.67926i) q^{50} +(1.63667 - 0.0746406i) q^{51} +(-2.02704 + 3.51094i) q^{52} -6.27335 q^{53} +(-4.82383 + 11.8402i) q^{54} -11.7089 q^{55} +(-2.52704 + 4.37697i) q^{56} +(7.01459 - 0.319901i) q^{57} +(3.02704 + 5.24299i) q^{58} +(1.36333 + 2.36135i) q^{59} +(-8.37792 + 16.1704i) q^{60} +(1.13667 - 1.96878i) q^{61} -5.72665 q^{62} +(1.25729 - 2.72382i) q^{63} -7.32743 q^{64} +(1.29679 - 2.24611i) q^{65} +(-10.3691 - 16.2067i) q^{66} +(7.90856 + 13.6980i) q^{67} +(1.91741 + 3.32105i) q^{68} +(-0.255158 - 0.398809i) q^{69} +(3.19076 - 5.52655i) q^{70} +3.27335 q^{71} +(-15.0993 + 1.38008i) q^{72} -1.50739 q^{73} +(2.19076 - 3.79450i) q^{74} +(1.37578 - 2.65542i) q^{75} +(8.21780 + 14.2336i) q^{76} +(2.25729 + 3.90975i) q^{77} +(4.25729 - 0.194154i) q^{78} +(-7.35447 + 12.7383i) q^{79} -11.2235 q^{80} +(8.85087 - 1.63157i) q^{81} +15.7630 q^{82} +(0.472958 - 0.819187i) q^{83} +(7.01459 - 0.319901i) q^{84} +(-1.22665 - 2.12463i) q^{85} +(-12.8384 - 22.2368i) q^{86} +(1.96050 - 3.78400i) q^{87} +(11.4086 - 19.7602i) q^{88} -14.3566 q^{89} +(19.0651 - 1.74255i) q^{90} -1.00000 q^{91} +(0.554084 - 0.959702i) q^{92} +(2.17257 + 3.39569i) q^{93} +(-14.9626 - 25.9161i) q^{94} +(-5.25729 - 9.10590i) q^{95} +(-0.503599 - 0.787117i) q^{96} +(5.74484 - 9.95036i) q^{97} -2.46050 q^{98} +(-5.67617 + 12.2969i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + q^{2} - 4q^{3} - 3q^{4} + 5q^{5} + q^{6} + 3q^{7} - 12q^{8} - 4q^{9} + O(q^{10}) \) \( 6q + q^{2} - 4q^{3} - 3q^{4} + 5q^{5} + q^{6} + 3q^{7} - 12q^{8} - 4q^{9} + 2q^{11} - 2q^{12} - 3q^{13} - q^{14} + 11q^{15} - 3q^{16} - 24q^{17} + 13q^{18} - 6q^{19} + 16q^{20} - 2q^{21} + 15q^{22} + 15q^{24} - 6q^{25} - 2q^{26} - 7q^{27} - 6q^{28} - q^{29} - 26q^{30} + 3q^{31} + 8q^{32} + 8q^{33} + 3q^{34} + 10q^{35} - 11q^{36} - 6q^{37} - 8q^{38} + 2q^{39} - 21q^{40} + 22q^{41} + 11q^{42} + 3q^{43} + 46q^{44} + 5q^{45} + 24q^{46} + 9q^{47} - 14q^{48} - 3q^{49} - 10q^{50} + 9q^{51} - 3q^{52} - 36q^{53} - 17q^{54} - 12q^{55} - 6q^{56} + 11q^{57} + 9q^{58} + 9q^{59} - 20q^{60} + 6q^{61} - 36q^{62} - 8q^{63} - 24q^{64} + 5q^{65} - 2q^{66} - 6q^{68} - 39q^{69} + 18q^{71} - 24q^{72} + 6q^{73} - 6q^{74} + 31q^{75} + 21q^{76} - 2q^{77} + 10q^{78} - 15q^{79} + 22q^{80} + 32q^{81} + 18q^{82} + 12q^{83} + 11q^{84} - 9q^{85} - 34q^{86} - q^{87} + 21q^{88} - 4q^{89} + 73q^{90} - 6q^{91} - 15q^{92} + 33q^{93} - 24q^{94} - 16q^{95} + 5q^{96} - 3q^{97} - 2q^{98} - 46q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.23025 2.13086i 0.869920 1.50675i 0.00784213 0.999969i \(-0.497504\pi\)
0.862078 0.506776i \(-0.169163\pi\)
\(3\) −1.73025 + 0.0789082i −0.998962 + 0.0455577i
\(4\) −2.02704 3.51094i −1.01352 1.75547i
\(5\) 1.29679 + 2.24611i 0.579942 + 1.00449i 0.995485 + 0.0949156i \(0.0302581\pi\)
−0.415543 + 0.909573i \(0.636409\pi\)
\(6\) −1.96050 + 3.78400i −0.800373 + 1.54481i
\(7\) 0.500000 0.866025i 0.188982 0.327327i
\(8\) −5.05408 −1.78689
\(9\) 2.98755 0.273062i 0.995849 0.0910208i
\(10\) 6.38151 2.01801
\(11\) −2.25729 + 3.90975i −0.680600 + 1.17883i 0.294198 + 0.955744i \(0.404947\pi\)
−0.974798 + 0.223089i \(0.928386\pi\)
\(12\) 3.78434 + 5.91486i 1.09244 + 1.70747i
\(13\) −0.500000 0.866025i −0.138675 0.240192i 0.788320 0.615265i \(-0.210951\pi\)
−0.926995 + 0.375073i \(0.877618\pi\)
\(14\) −1.23025 2.13086i −0.328799 0.569496i
\(15\) −2.42101 3.78400i −0.625102 0.977025i
\(16\) −2.16372 + 3.74766i −0.540929 + 0.936916i
\(17\) −0.945916 −0.229418 −0.114709 0.993399i \(-0.536594\pi\)
−0.114709 + 0.993399i \(0.536594\pi\)
\(18\) 3.09358 6.70198i 0.729164 1.57967i
\(19\) −4.05408 −0.930071 −0.465035 0.885292i \(-0.653958\pi\)
−0.465035 + 0.885292i \(0.653958\pi\)
\(20\) 5.25729 9.10590i 1.17557 2.03614i
\(21\) −0.796790 + 1.53790i −0.173874 + 0.335597i
\(22\) 5.55408 + 9.61996i 1.18413 + 2.05098i
\(23\) 0.136673 + 0.236725i 0.0284983 + 0.0493605i 0.879923 0.475117i \(-0.157594\pi\)
−0.851425 + 0.524477i \(0.824261\pi\)
\(24\) 8.74484 0.398809i 1.78503 0.0814065i
\(25\) −0.863327 + 1.49533i −0.172665 + 0.299065i
\(26\) −2.46050 −0.482545
\(27\) −5.14766 + 0.708209i −0.990668 + 0.136295i
\(28\) −4.05408 −0.766150
\(29\) −1.23025 + 2.13086i −0.228452 + 0.395691i −0.957350 0.288932i \(-0.906700\pi\)
0.728897 + 0.684623i \(0.240033\pi\)
\(30\) −11.0416 + 0.503554i −2.01592 + 0.0919360i
\(31\) −1.16372 2.01561i −0.209009 0.362015i 0.742393 0.669964i \(-0.233691\pi\)
−0.951403 + 0.307949i \(0.900357\pi\)
\(32\) 0.269748 + 0.467216i 0.0476851 + 0.0825930i
\(33\) 3.59718 6.94297i 0.626188 1.20862i
\(34\) −1.16372 + 2.01561i −0.199576 + 0.345675i
\(35\) 2.59358 0.438395
\(36\) −7.01459 9.93559i −1.16910 1.65593i
\(37\) 1.78074 0.292752 0.146376 0.989229i \(-0.453239\pi\)
0.146376 + 0.989229i \(0.453239\pi\)
\(38\) −4.98755 + 8.63868i −0.809087 + 1.40138i
\(39\) 0.933463 + 1.45899i 0.149474 + 0.233625i
\(40\) −6.55408 11.3520i −1.03629 1.79491i
\(41\) 3.20321 + 5.54812i 0.500257 + 0.866471i 1.00000 0.000297253i \(9.46187e-5\pi\)
−0.499743 + 0.866174i \(0.666572\pi\)
\(42\) 2.29679 + 3.58985i 0.354402 + 0.553926i
\(43\) 5.21780 9.03749i 0.795707 1.37820i −0.126682 0.991943i \(-0.540433\pi\)
0.922389 0.386262i \(-0.126234\pi\)
\(44\) 18.3025 2.75921
\(45\) 4.48755 + 6.35624i 0.668964 + 0.947533i
\(46\) 0.672570 0.0991650
\(47\) 6.08113 10.5328i 0.887023 1.53637i 0.0436467 0.999047i \(-0.486102\pi\)
0.843377 0.537323i \(-0.180564\pi\)
\(48\) 3.44805 6.65514i 0.497683 0.960587i
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 2.12422 + 3.67926i 0.300410 + 0.520326i
\(51\) 1.63667 0.0746406i 0.229180 0.0104518i
\(52\) −2.02704 + 3.51094i −0.281100 + 0.486880i
\(53\) −6.27335 −0.861710 −0.430855 0.902421i \(-0.641788\pi\)
−0.430855 + 0.902421i \(0.641788\pi\)
\(54\) −4.82383 + 11.8402i −0.656440 + 1.61125i
\(55\) −11.7089 −1.57883
\(56\) −2.52704 + 4.37697i −0.337690 + 0.584897i
\(57\) 7.01459 0.319901i 0.929105 0.0423719i
\(58\) 3.02704 + 5.24299i 0.397470 + 0.688438i
\(59\) 1.36333 + 2.36135i 0.177490 + 0.307422i 0.941020 0.338350i \(-0.109869\pi\)
−0.763530 + 0.645772i \(0.776536\pi\)
\(60\) −8.37792 + 16.1704i −1.08158 + 2.08758i
\(61\) 1.13667 1.96878i 0.145536 0.252076i −0.784037 0.620714i \(-0.786843\pi\)
0.929573 + 0.368639i \(0.120176\pi\)
\(62\) −5.72665 −0.727286
\(63\) 1.25729 2.72382i 0.158404 0.343169i
\(64\) −7.32743 −0.915929
\(65\) 1.29679 2.24611i 0.160847 0.278595i
\(66\) −10.3691 16.2067i −1.27634 1.99491i
\(67\) 7.90856 + 13.6980i 0.966184 + 1.67348i 0.706400 + 0.707813i \(0.250318\pi\)
0.259784 + 0.965667i \(0.416349\pi\)
\(68\) 1.91741 + 3.32105i 0.232520 + 0.402737i
\(69\) −0.255158 0.398809i −0.0307175 0.0480110i
\(70\) 3.19076 5.52655i 0.381368 0.660550i
\(71\) 3.27335 0.388475 0.194237 0.980955i \(-0.437777\pi\)
0.194237 + 0.980955i \(0.437777\pi\)
\(72\) −15.0993 + 1.38008i −1.77947 + 0.162644i
\(73\) −1.50739 −0.176427 −0.0882134 0.996102i \(-0.528116\pi\)
−0.0882134 + 0.996102i \(0.528116\pi\)
\(74\) 2.19076 3.79450i 0.254670 0.441102i
\(75\) 1.37578 2.65542i 0.158861 0.306621i
\(76\) 8.21780 + 14.2336i 0.942646 + 1.63271i
\(77\) 2.25729 + 3.90975i 0.257243 + 0.445557i
\(78\) 4.25729 0.194154i 0.482044 0.0219836i
\(79\) −7.35447 + 12.7383i −0.827443 + 1.43317i 0.0725952 + 0.997361i \(0.476872\pi\)
−0.900038 + 0.435811i \(0.856461\pi\)
\(80\) −11.2235 −1.25483
\(81\) 8.85087 1.63157i 0.983430 0.181286i
\(82\) 15.7630 1.74074
\(83\) 0.472958 0.819187i 0.0519139 0.0899175i −0.838901 0.544285i \(-0.816801\pi\)
0.890815 + 0.454367i \(0.150135\pi\)
\(84\) 7.01459 0.319901i 0.765354 0.0349040i
\(85\) −1.22665 2.12463i −0.133049 0.230448i
\(86\) −12.8384 22.2368i −1.38440 2.39786i
\(87\) 1.96050 3.78400i 0.210188 0.405688i
\(88\) 11.4086 19.7602i 1.21616 2.10644i
\(89\) −14.3566 −1.52180 −0.760899 0.648871i \(-0.775242\pi\)
−0.760899 + 0.648871i \(0.775242\pi\)
\(90\) 19.0651 1.74255i 2.00964 0.183681i
\(91\) −1.00000 −0.104828
\(92\) 0.554084 0.959702i 0.0577673 0.100056i
\(93\) 2.17257 + 3.39569i 0.225285 + 0.352117i
\(94\) −14.9626 25.9161i −1.54328 2.67304i
\(95\) −5.25729 9.10590i −0.539387 0.934246i
\(96\) −0.503599 0.787117i −0.0513983 0.0803348i
\(97\) 5.74484 9.95036i 0.583300 1.01031i −0.411785 0.911281i \(-0.635094\pi\)
0.995085 0.0990246i \(-0.0315722\pi\)
\(98\) −2.46050 −0.248549
\(99\) −5.67617 + 12.2969i −0.570476 + 1.23589i
\(100\) 7.00000 0.700000
\(101\) 1.83988 3.18677i 0.183075 0.317096i −0.759851 0.650097i \(-0.774728\pi\)
0.942926 + 0.333002i \(0.108061\pi\)
\(102\) 1.85447 3.57935i 0.183620 0.354408i
\(103\) 4.86333 + 8.42353i 0.479198 + 0.829995i 0.999715 0.0238560i \(-0.00759431\pi\)
−0.520518 + 0.853851i \(0.674261\pi\)
\(104\) 2.52704 + 4.37697i 0.247797 + 0.429197i
\(105\) −4.48755 + 0.204655i −0.437940 + 0.0199723i
\(106\) −7.71780 + 13.3676i −0.749619 + 1.29838i
\(107\) −1.37432 −0.132860 −0.0664301 0.997791i \(-0.521161\pi\)
−0.0664301 + 0.997791i \(0.521161\pi\)
\(108\) 12.9210 + 16.6376i 1.24332 + 1.60095i
\(109\) −3.39922 −0.325587 −0.162793 0.986660i \(-0.552050\pi\)
−0.162793 + 0.986660i \(0.552050\pi\)
\(110\) −14.4050 + 24.9501i −1.37346 + 2.37890i
\(111\) −3.08113 + 0.140515i −0.292448 + 0.0133371i
\(112\) 2.16372 + 3.74766i 0.204452 + 0.354121i
\(113\) −5.19436 8.99689i −0.488644 0.846356i 0.511271 0.859420i \(-0.329175\pi\)
−0.999915 + 0.0130636i \(0.995842\pi\)
\(114\) 7.94805 15.3407i 0.744403 1.43678i
\(115\) −0.354473 + 0.613964i −0.0330547 + 0.0572525i
\(116\) 9.97509 0.926164
\(117\) −1.73025 2.45076i −0.159962 0.226573i
\(118\) 6.70895 0.617608
\(119\) −0.472958 + 0.819187i −0.0433560 + 0.0750948i
\(120\) 12.2360 + 19.1247i 1.11699 + 1.74584i
\(121\) −4.69076 8.12463i −0.426432 0.738603i
\(122\) −2.79679 4.84418i −0.253209 0.438572i
\(123\) −5.98016 9.34689i −0.539212 0.842781i
\(124\) −4.71780 + 8.17147i −0.423671 + 0.733820i
\(125\) 8.48968 0.759340
\(126\) −4.25729 6.03011i −0.379270 0.537205i
\(127\) 0.672570 0.0596809 0.0298405 0.999555i \(-0.490500\pi\)
0.0298405 + 0.999555i \(0.490500\pi\)
\(128\) −9.55408 + 16.5482i −0.844470 + 1.46266i
\(129\) −8.31498 + 16.0489i −0.732093 + 1.41302i
\(130\) −3.19076 5.52655i −0.279848 0.484711i
\(131\) −3.95691 6.85356i −0.345717 0.598799i 0.639767 0.768569i \(-0.279031\pi\)
−0.985484 + 0.169770i \(0.945697\pi\)
\(132\) −31.6680 + 1.44422i −2.75634 + 0.125703i
\(133\) −2.02704 + 3.51094i −0.175767 + 0.304437i
\(134\) 38.9181 3.36201
\(135\) −8.26615 10.6438i −0.711437 0.916072i
\(136\) 4.78074 0.409945
\(137\) 1.83628 3.18054i 0.156884 0.271732i −0.776859 0.629674i \(-0.783188\pi\)
0.933744 + 0.357943i \(0.116522\pi\)
\(138\) −1.16372 + 0.0530713i −0.0990620 + 0.00451773i
\(139\) 1.02704 + 1.77889i 0.0871126 + 0.150883i 0.906289 0.422658i \(-0.138903\pi\)
−0.819177 + 0.573541i \(0.805569\pi\)
\(140\) −5.25729 9.10590i −0.444322 0.769589i
\(141\) −9.69076 + 18.7043i −0.816109 + 1.57519i
\(142\) 4.02704 6.97504i 0.337942 0.585332i
\(143\) 4.51459 0.377529
\(144\) −5.44085 + 11.7872i −0.453405 + 0.982263i
\(145\) −6.38151 −0.529956
\(146\) −1.85447 + 3.21204i −0.153477 + 0.265830i
\(147\) 0.933463 + 1.45899i 0.0769907 + 0.120335i
\(148\) −3.60963 6.25206i −0.296710 0.513917i
\(149\) 6.77188 + 11.7292i 0.554774 + 0.960897i 0.997921 + 0.0644482i \(0.0205287\pi\)
−0.443147 + 0.896449i \(0.646138\pi\)
\(150\) −3.96576 6.19843i −0.323803 0.506099i
\(151\) −4.96410 + 8.59808i −0.403973 + 0.699702i −0.994201 0.107535i \(-0.965704\pi\)
0.590228 + 0.807236i \(0.299038\pi\)
\(152\) 20.4897 1.66193
\(153\) −2.82597 + 0.258294i −0.228466 + 0.0208818i
\(154\) 11.1082 0.895122
\(155\) 3.01819 5.22765i 0.242427 0.419895i
\(156\) 3.23025 6.23476i 0.258627 0.499181i
\(157\) −3.02704 5.24299i −0.241584 0.418436i 0.719581 0.694408i \(-0.244334\pi\)
−0.961166 + 0.275972i \(0.911000\pi\)
\(158\) 18.0957 + 31.3427i 1.43962 + 2.49349i
\(159\) 10.8545 0.495019i 0.860816 0.0392575i
\(160\) −0.699612 + 1.21176i −0.0553092 + 0.0957983i
\(161\) 0.273346 0.0215427
\(162\) 7.41216 20.8672i 0.582354 1.63948i
\(163\) 17.8171 1.39554 0.697772 0.716320i \(-0.254175\pi\)
0.697772 + 0.716320i \(0.254175\pi\)
\(164\) 12.9861 22.4926i 1.01404 1.75637i
\(165\) 20.2594 0.923932i 1.57719 0.0719280i
\(166\) −1.16372 2.01561i −0.0903218 0.156442i
\(167\) 4.23385 + 7.33325i 0.327625 + 0.567464i 0.982040 0.188672i \(-0.0604183\pi\)
−0.654415 + 0.756136i \(0.727085\pi\)
\(168\) 4.02704 7.77266i 0.310693 0.599674i
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) −6.03638 −0.462969
\(171\) −12.1118 + 1.10702i −0.926210 + 0.0846558i
\(172\) −42.3068 −3.22586
\(173\) −8.67830 + 15.0313i −0.659799 + 1.14281i 0.320868 + 0.947124i \(0.396025\pi\)
−0.980667 + 0.195682i \(0.937308\pi\)
\(174\) −5.65126 8.83284i −0.428421 0.669616i
\(175\) 0.863327 + 1.49533i 0.0652614 + 0.113036i
\(176\) −9.76829 16.9192i −0.736312 1.27533i
\(177\) −2.54523 3.97816i −0.191311 0.299017i
\(178\) −17.6623 + 30.5919i −1.32384 + 2.29296i
\(179\) −11.3494 −0.848295 −0.424147 0.905593i \(-0.639426\pi\)
−0.424147 + 0.905593i \(0.639426\pi\)
\(180\) 13.2199 28.6399i 0.985356 2.13469i
\(181\) 21.8889 1.62699 0.813495 0.581572i \(-0.197562\pi\)
0.813495 + 0.581572i \(0.197562\pi\)
\(182\) −1.23025 + 2.13086i −0.0911924 + 0.157950i
\(183\) −1.81138 + 3.49617i −0.133901 + 0.258444i
\(184\) −0.690757 1.19643i −0.0509233 0.0882018i
\(185\) 2.30924 + 3.99973i 0.169779 + 0.294066i
\(186\) 9.90856 0.451880i 0.726531 0.0331335i
\(187\) 2.13521 3.69829i 0.156142 0.270446i
\(188\) −49.3068 −3.59607
\(189\) −1.96050 + 4.81211i −0.142606 + 0.350030i
\(190\) −25.8712 −1.87689
\(191\) 0.350874 0.607731i 0.0253883 0.0439739i −0.853052 0.521826i \(-0.825251\pi\)
0.878440 + 0.477852i \(0.158584\pi\)
\(192\) 12.6783 0.578195i 0.914978 0.0417276i
\(193\) −6.07227 10.5175i −0.437092 0.757065i 0.560372 0.828241i \(-0.310658\pi\)
−0.997464 + 0.0711760i \(0.977325\pi\)
\(194\) −14.1352 24.4829i −1.01485 1.75777i
\(195\) −2.06654 + 3.98866i −0.147988 + 0.285634i
\(196\) −2.02704 + 3.51094i −0.144789 + 0.250781i
\(197\) −16.4107 −1.16921 −0.584607 0.811317i \(-0.698751\pi\)
−0.584607 + 0.811317i \(0.698751\pi\)
\(198\) 19.2199 + 27.2235i 1.36590 + 1.93469i
\(199\) 22.7060 1.60959 0.804794 0.593555i \(-0.202276\pi\)
0.804794 + 0.593555i \(0.202276\pi\)
\(200\) 4.36333 7.55750i 0.308534 0.534396i
\(201\) −14.7647 23.0770i −1.04142 1.62773i
\(202\) −4.52704 7.84107i −0.318522 0.551696i
\(203\) 1.23025 + 2.13086i 0.0863468 + 0.149557i
\(204\) −3.57966 5.59496i −0.250627 0.391726i
\(205\) −8.30778 + 14.3895i −0.580241 + 1.00501i
\(206\) 23.9325 1.66745
\(207\) 0.472958 + 0.669906i 0.0328728 + 0.0465617i
\(208\) 4.32743 0.300053
\(209\) 9.15126 15.8505i 0.633006 1.09640i
\(210\) −5.08472 + 9.81411i −0.350879 + 0.677238i
\(211\) −2.28074 3.95035i −0.157012 0.271954i 0.776778 0.629775i \(-0.216853\pi\)
−0.933790 + 0.357822i \(0.883520\pi\)
\(212\) 12.7163 + 22.0253i 0.873362 + 1.51271i
\(213\) −5.66372 + 0.258294i −0.388071 + 0.0176980i
\(214\) −1.69076 + 2.92848i −0.115578 + 0.200187i
\(215\) 27.0656 1.84586
\(216\) 26.0167 3.57935i 1.77021 0.243544i
\(217\) −2.32743 −0.157996
\(218\) −4.18190 + 7.24327i −0.283234 + 0.490576i
\(219\) 2.60817 0.118946i 0.176244 0.00803760i
\(220\) 23.7345 + 41.1094i 1.60018 + 2.77160i
\(221\) 0.472958 + 0.819187i 0.0318146 + 0.0551045i
\(222\) −3.49115 + 6.73832i −0.234310 + 0.452246i
\(223\) −6.66225 + 11.5394i −0.446137 + 0.772733i −0.998131 0.0611159i \(-0.980534\pi\)
0.551993 + 0.833849i \(0.313867\pi\)
\(224\) 0.539495 0.0360465
\(225\) −2.17091 + 4.70310i −0.144727 + 0.313540i
\(226\) −25.5615 −1.70032
\(227\) −0.690757 + 1.19643i −0.0458472 + 0.0794096i −0.888038 0.459769i \(-0.847932\pi\)
0.842191 + 0.539179i \(0.181265\pi\)
\(228\) −15.3420 23.9793i −1.01605 1.58807i
\(229\) 8.98968 + 15.5706i 0.594055 + 1.02893i 0.993679 + 0.112254i \(0.0358072\pi\)
−0.399625 + 0.916679i \(0.630859\pi\)
\(230\) 0.872181 + 1.51066i 0.0575099 + 0.0996101i
\(231\) −4.21420 6.58673i −0.277274 0.433375i
\(232\) 6.21780 10.7695i 0.408219 0.707055i
\(233\) −18.9823 −1.24357 −0.621786 0.783187i \(-0.713592\pi\)
−0.621786 + 0.783187i \(0.713592\pi\)
\(234\) −7.35087 + 0.671871i −0.480542 + 0.0439216i
\(235\) 31.5438 2.05769
\(236\) 5.52704 9.57312i 0.359780 0.623157i
\(237\) 11.7199 22.6208i 0.761292 1.46938i
\(238\) 1.16372 + 2.01561i 0.0754325 + 0.130653i
\(239\) −2.44592 4.23645i −0.158213 0.274033i 0.776011 0.630719i \(-0.217240\pi\)
−0.934224 + 0.356686i \(0.883907\pi\)
\(240\) 19.4195 0.885629i 1.25353 0.0571671i
\(241\) 13.0797 22.6546i 0.842535 1.45931i −0.0452094 0.998978i \(-0.514396\pi\)
0.887745 0.460336i \(-0.152271\pi\)
\(242\) −23.0833 −1.48385
\(243\) −15.1855 + 3.52144i −0.974150 + 0.225901i
\(244\) −9.21634 −0.590016
\(245\) 1.29679 2.24611i 0.0828489 0.143498i
\(246\) −27.2740 + 1.24383i −1.73893 + 0.0793039i
\(247\) 2.02704 + 3.51094i 0.128978 + 0.223396i
\(248\) 5.88151 + 10.1871i 0.373477 + 0.646880i
\(249\) −0.753696 + 1.45472i −0.0477635 + 0.0921892i
\(250\) 10.4445 18.0903i 0.660565 1.14413i
\(251\) 18.4576 1.16503 0.582516 0.812819i \(-0.302068\pi\)
0.582516 + 0.812819i \(0.302068\pi\)
\(252\) −12.1118 + 1.10702i −0.762970 + 0.0697356i
\(253\) −1.23405 −0.0775838
\(254\) 0.827430 1.43315i 0.0519176 0.0899239i
\(255\) 2.29007 + 3.57935i 0.143410 + 0.224147i
\(256\) 16.1804 + 28.0253i 1.01128 + 1.75158i
\(257\) 5.86693 + 10.1618i 0.365969 + 0.633876i 0.988931 0.148375i \(-0.0474044\pi\)
−0.622962 + 0.782252i \(0.714071\pi\)
\(258\) 23.9684 + 37.4622i 1.49221 + 2.33230i
\(259\) 0.890369 1.54216i 0.0553248 0.0958254i
\(260\) −10.5146 −0.652087
\(261\) −3.09358 + 6.70198i −0.191488 + 0.414842i
\(262\) −19.4720 −1.20298
\(263\) 3.76089 6.51406i 0.231907 0.401674i −0.726463 0.687206i \(-0.758837\pi\)
0.958369 + 0.285532i \(0.0921703\pi\)
\(264\) −18.1804 + 35.0904i −1.11893 + 2.15966i
\(265\) −8.13521 14.0906i −0.499742 0.865579i
\(266\) 4.98755 + 8.63868i 0.305806 + 0.529672i
\(267\) 24.8406 1.13285i 1.52022 0.0693296i
\(268\) 32.0620 55.5329i 1.95850 3.39221i
\(269\) −18.8348 −1.14838 −0.574190 0.818722i \(-0.694683\pi\)
−0.574190 + 0.818722i \(0.694683\pi\)
\(270\) −32.8499 + 4.51945i −1.99918 + 0.275045i
\(271\) −23.9823 −1.45682 −0.728410 0.685141i \(-0.759740\pi\)
−0.728410 + 0.685141i \(0.759740\pi\)
\(272\) 2.04669 3.54498i 0.124099 0.214946i
\(273\) 1.73025 0.0789082i 0.104720 0.00477574i
\(274\) −4.51819 7.82573i −0.272954 0.472770i
\(275\) −3.89757 6.75078i −0.235032 0.407088i
\(276\) −0.882977 + 1.70425i −0.0531490 + 0.102584i
\(277\) −3.58113 + 6.20269i −0.215169 + 0.372684i −0.953325 0.301947i \(-0.902364\pi\)
0.738156 + 0.674630i \(0.235697\pi\)
\(278\) 5.05408 0.303124
\(279\) −4.02704 5.70397i −0.241093 0.341488i
\(280\) −13.1082 −0.783363
\(281\) −7.44085 + 12.8879i −0.443884 + 0.768830i −0.997974 0.0636271i \(-0.979733\pi\)
0.554090 + 0.832457i \(0.313067\pi\)
\(282\) 27.9341 + 43.6606i 1.66345 + 2.59995i
\(283\) −9.99854 17.3180i −0.594351 1.02945i −0.993638 0.112621i \(-0.964076\pi\)
0.399287 0.916826i \(-0.369258\pi\)
\(284\) −6.63521 11.4925i −0.393727 0.681956i
\(285\) 9.81498 + 15.3407i 0.581389 + 0.908703i
\(286\) 5.55408 9.61996i 0.328420 0.568840i
\(287\) 6.40642 0.378159
\(288\) 0.933463 + 1.32217i 0.0550048 + 0.0779098i
\(289\) −16.1052 −0.947367
\(290\) −7.85087 + 13.5981i −0.461019 + 0.798509i
\(291\) −9.15486 + 17.6699i −0.536667 + 1.03583i
\(292\) 3.05555 + 5.29236i 0.178812 + 0.309712i
\(293\) −7.53278 13.0472i −0.440070 0.762223i 0.557625 0.830093i \(-0.311713\pi\)
−0.997694 + 0.0678705i \(0.978380\pi\)
\(294\) 4.25729 0.194154i 0.248290 0.0113233i
\(295\) −3.53590 + 6.12435i −0.205868 + 0.356574i
\(296\) −9.00000 −0.523114
\(297\) 8.85087 21.7247i 0.513580 1.26060i
\(298\) 33.3245 1.93044
\(299\) 0.136673 0.236725i 0.00790401 0.0136901i
\(300\) −12.1118 + 0.552358i −0.699273 + 0.0318904i
\(301\) −5.21780 9.03749i −0.300749 0.520912i
\(302\) 12.2142 + 21.1556i 0.702848 + 1.21737i
\(303\) −2.93200 + 5.65910i −0.168439 + 0.325107i
\(304\) 8.77188 15.1933i 0.503102 0.871398i
\(305\) 5.89610 0.337610
\(306\) −2.92627 + 6.33951i −0.167283 + 0.362406i
\(307\) −27.2704 −1.55641 −0.778203 0.628013i \(-0.783868\pi\)
−0.778203 + 0.628013i \(0.783868\pi\)
\(308\) 9.15126 15.8505i 0.521442 0.903163i
\(309\) −9.07947 14.1911i −0.516513 0.807302i
\(310\) −7.42627 12.8627i −0.421784 0.730551i
\(311\) 7.99115 + 13.8411i 0.453136 + 0.784855i 0.998579 0.0532931i \(-0.0169718\pi\)
−0.545443 + 0.838148i \(0.683638\pi\)
\(312\) −4.71780 7.37385i −0.267093 0.417462i
\(313\) −5.79893 + 10.0440i −0.327775 + 0.567722i −0.982070 0.188517i \(-0.939632\pi\)
0.654295 + 0.756239i \(0.272965\pi\)
\(314\) −14.8961 −0.840636
\(315\) 7.74844 0.708209i 0.436575 0.0399031i
\(316\) 59.6313 3.35452
\(317\) 1.00885 1.74739i 0.0566629 0.0981430i −0.836303 0.548268i \(-0.815287\pi\)
0.892965 + 0.450125i \(0.148621\pi\)
\(318\) 12.2989 23.7384i 0.689690 1.33118i
\(319\) −5.55408 9.61996i −0.310969 0.538614i
\(320\) −9.50214 16.4582i −0.531186 0.920040i
\(321\) 2.37792 0.108445i 0.132722 0.00605281i
\(322\) 0.336285 0.582462i 0.0187404 0.0324594i
\(323\) 3.83482 0.213375
\(324\) −23.6694 27.7676i −1.31497 1.54265i
\(325\) 1.72665 0.0957775
\(326\) 21.9195 37.9658i 1.21401 2.10273i
\(327\) 5.88151 0.268227i 0.325249 0.0148330i
\(328\) −16.1893 28.0407i −0.893904 1.54829i
\(329\) −6.08113 10.5328i −0.335263 0.580693i
\(330\) 22.9554 44.3067i 1.26366 2.43900i
\(331\) 9.85447 17.0684i 0.541651 0.938167i −0.457159 0.889385i \(-0.651133\pi\)
0.998809 0.0487815i \(-0.0155338\pi\)
\(332\) −3.83482 −0.210463
\(333\) 5.32004 0.486253i 0.291536 0.0266465i
\(334\) 20.8348 1.14003
\(335\) −20.5115 + 35.5269i −1.12066 + 1.94104i
\(336\) −4.03950 6.31367i −0.220373 0.344439i
\(337\) 14.5256 + 25.1590i 0.791259 + 1.37050i 0.925188 + 0.379509i \(0.123907\pi\)
−0.133929 + 0.990991i \(0.542759\pi\)
\(338\) −14.7630 25.5703i −0.803003 1.39084i
\(339\) 9.69748 + 15.1570i 0.526695 + 0.823216i
\(340\) −4.97296 + 8.61342i −0.269697 + 0.467128i
\(341\) 10.5074 0.569007
\(342\) −12.5416 + 27.1704i −0.678174 + 1.46921i
\(343\) −1.00000 −0.0539949
\(344\) −26.3712 + 45.6763i −1.42184 + 2.46270i
\(345\) 0.564880 1.09028i 0.0304121 0.0586989i
\(346\) 21.3530 + 36.9845i 1.14794 + 1.98830i
\(347\) −14.5416 25.1868i −0.780636 1.35210i −0.931572 0.363557i \(-0.881562\pi\)
0.150936 0.988544i \(-0.451771\pi\)
\(348\) −17.2594 + 0.787117i −0.925203 + 0.0421939i
\(349\) −12.3815 + 21.4454i −0.662767 + 1.14795i 0.317118 + 0.948386i \(0.397285\pi\)
−0.979885 + 0.199561i \(0.936049\pi\)
\(350\) 4.24844 0.227089
\(351\) 3.18716 + 4.10390i 0.170118 + 0.219050i
\(352\) −2.43560 −0.129818
\(353\) 16.6513 28.8408i 0.886257 1.53504i 0.0419914 0.999118i \(-0.486630\pi\)
0.844266 0.535925i \(-0.180037\pi\)
\(354\) −11.6082 + 0.529391i −0.616967 + 0.0281368i
\(355\) 4.24484 + 7.35228i 0.225293 + 0.390219i
\(356\) 29.1015 + 50.4052i 1.54237 + 2.67147i
\(357\) 0.753696 1.45472i 0.0398898 0.0769920i
\(358\) −13.9626 + 24.1840i −0.737949 + 1.27816i
\(359\) 25.5366 1.34777 0.673884 0.738837i \(-0.264625\pi\)
0.673884 + 0.738837i \(0.264625\pi\)
\(360\) −22.6804 32.1250i −1.19536 1.69314i
\(361\) −2.56440 −0.134968
\(362\) 26.9289 46.6422i 1.41535 2.45146i
\(363\) 8.75729 + 13.6875i 0.459639 + 0.718409i
\(364\) 2.02704 + 3.51094i 0.106246 + 0.184023i
\(365\) −1.95477 3.38576i −0.102317 0.177219i
\(366\) 5.22140 + 8.16097i 0.272927 + 0.426581i
\(367\) −13.7252 + 23.7727i −0.716449 + 1.24093i 0.245949 + 0.969283i \(0.420900\pi\)
−0.962398 + 0.271644i \(0.912433\pi\)
\(368\) −1.18289 −0.0616622
\(369\) 11.0847 + 15.7006i 0.577048 + 0.817341i
\(370\) 11.3638 0.590776
\(371\) −3.13667 + 5.43288i −0.162848 + 0.282061i
\(372\) 7.51819 14.5110i 0.389800 0.752359i
\(373\) −8.16372 14.1400i −0.422701 0.732140i 0.573502 0.819204i \(-0.305585\pi\)
−0.996203 + 0.0870646i \(0.972251\pi\)
\(374\) −5.25370 9.09967i −0.271662 0.470533i
\(375\) −14.6893 + 0.669906i −0.758552 + 0.0345938i
\(376\) −30.7345 + 53.2338i −1.58501 + 2.74532i
\(377\) 2.46050 0.126722
\(378\) 7.84202 + 10.0977i 0.403350 + 0.519368i
\(379\) 12.0364 0.618267 0.309134 0.951019i \(-0.399961\pi\)
0.309134 + 0.951019i \(0.399961\pi\)
\(380\) −21.3135 + 36.9161i −1.09336 + 1.89376i
\(381\) −1.16372 + 0.0530713i −0.0596189 + 0.00271892i
\(382\) −0.863327 1.49533i −0.0441716 0.0765075i
\(383\) 6.21780 + 10.7695i 0.317715 + 0.550298i 0.980011 0.198944i \(-0.0637512\pi\)
−0.662296 + 0.749242i \(0.730418\pi\)
\(384\) 15.2252 29.3864i 0.776957 1.49962i
\(385\) −5.85447 + 10.1402i −0.298372 + 0.516795i
\(386\) −29.8817 −1.52094
\(387\) 13.1206 28.4247i 0.666959 1.44491i
\(388\) −46.5801 −2.36475
\(389\) −10.3004 + 17.8408i −0.522250 + 0.904564i 0.477414 + 0.878678i \(0.341574\pi\)
−0.999665 + 0.0258860i \(0.991759\pi\)
\(390\) 5.95691 + 9.31056i 0.301640 + 0.471458i
\(391\) −0.129281 0.223922i −0.00653803 0.0113242i
\(392\) 2.52704 + 4.37697i 0.127635 + 0.221070i
\(393\) 7.38725 + 11.5462i 0.372637 + 0.582427i
\(394\) −20.1893 + 34.9689i −1.01712 + 1.76171i
\(395\) −38.1488 −1.91948
\(396\) 54.6797 4.99773i 2.74776 0.251145i
\(397\) −23.6372 −1.18631 −0.593157 0.805087i \(-0.702119\pi\)
−0.593157 + 0.805087i \(0.702119\pi\)
\(398\) 27.9341 48.3833i 1.40021 2.42524i
\(399\) 3.23025 6.23476i 0.161715 0.312129i
\(400\) −3.73599 6.47092i −0.186799 0.323546i
\(401\) 1.28220 + 2.22084i 0.0640300 + 0.110903i 0.896263 0.443522i \(-0.146271\pi\)
−0.832233 + 0.554426i \(0.812938\pi\)
\(402\) −67.3381 + 3.07096i −3.35852 + 0.153165i
\(403\) −1.16372 + 2.01561i −0.0579688 + 0.100405i
\(404\) −14.9181 −0.742202
\(405\) 15.1424 + 17.7642i 0.752432 + 0.882710i
\(406\) 6.05408 0.300459
\(407\) −4.01965 + 6.96224i −0.199247 + 0.345105i
\(408\) −8.27188 + 0.377240i −0.409519 + 0.0186761i
\(409\) 17.1623 + 29.7259i 0.848619 + 1.46985i 0.882441 + 0.470423i \(0.155899\pi\)
−0.0338223 + 0.999428i \(0.510768\pi\)
\(410\) 20.4413 + 35.4054i 1.00953 + 1.74855i
\(411\) −2.92627 + 5.64803i −0.144342 + 0.278597i
\(412\) 19.7163 34.1497i 0.971354 1.68243i
\(413\) 2.72665 0.134170
\(414\) 2.00933 0.183653i 0.0987533 0.00902607i
\(415\) 2.45331 0.120428
\(416\) 0.269748 0.467216i 0.0132255 0.0229072i
\(417\) −1.91741 2.99689i −0.0938960 0.146758i
\(418\) −22.5167 39.0001i −1.10133 1.90756i
\(419\) −2.02850 3.51347i −0.0990989 0.171644i 0.812213 0.583361i \(-0.198263\pi\)
−0.911312 + 0.411717i \(0.864929\pi\)
\(420\) 9.81498 + 15.3407i 0.478922 + 0.748548i
\(421\) 10.5344 18.2462i 0.513417 0.889264i −0.486462 0.873702i \(-0.661713\pi\)
0.999879 0.0155624i \(-0.00495387\pi\)
\(422\) −11.2235 −0.546353
\(423\) 15.2915 33.1278i 0.743500 1.61073i
\(424\) 31.7060 1.53978
\(425\) 0.816635 1.41445i 0.0396126 0.0686110i
\(426\) −6.41741 + 12.3863i −0.310925 + 0.600121i
\(427\) −1.13667 1.96878i −0.0550075 0.0952757i
\(428\) 2.78580 + 4.82515i 0.134657 + 0.233232i
\(429\) −7.81138 + 0.356238i −0.377137 + 0.0171993i
\(430\) 33.2975 57.6729i 1.60575 2.78123i
\(431\) 22.6185 1.08949 0.544747 0.838600i \(-0.316626\pi\)
0.544747 + 0.838600i \(0.316626\pi\)
\(432\) 8.48395 20.8241i 0.408184 1.00190i
\(433\) 2.41789 0.116196 0.0580982 0.998311i \(-0.481496\pi\)
0.0580982 + 0.998311i \(0.481496\pi\)
\(434\) −2.86333 + 4.95943i −0.137444 + 0.238060i
\(435\) 11.0416 0.503554i 0.529406 0.0241436i
\(436\) 6.89037 + 11.9345i 0.329989 + 0.571557i
\(437\) −0.554084 0.959702i −0.0265054 0.0459088i
\(438\) 2.95525 5.70397i 0.141207 0.272546i
\(439\) 11.7448 20.3427i 0.560551 0.970902i −0.436898 0.899511i \(-0.643923\pi\)
0.997448 0.0713911i \(-0.0227438\pi\)
\(440\) 59.1780 2.82120
\(441\) −1.73025 2.45076i −0.0823930 0.116703i
\(442\) 2.32743 0.110705
\(443\) 6.70895 11.6202i 0.318752 0.552094i −0.661476 0.749966i \(-0.730070\pi\)
0.980228 + 0.197872i \(0.0634031\pi\)
\(444\) 6.73891 + 10.5328i 0.319815 + 0.499866i
\(445\) −18.6175 32.2465i −0.882554 1.52863i
\(446\) 16.3925 + 28.3927i 0.776208 + 1.34443i
\(447\) −12.6426 19.7602i −0.597975 0.934625i
\(448\) −3.66372 + 6.34574i −0.173094 + 0.299808i
\(449\) −9.16225 −0.432393 −0.216197 0.976350i \(-0.569365\pi\)
−0.216197 + 0.976350i \(0.569365\pi\)
\(450\) 7.35087 + 10.4119i 0.346524 + 0.490822i
\(451\) −28.9224 −1.36190
\(452\) −21.0584 + 36.4741i −0.990502 + 1.71560i
\(453\) 7.91069 15.2686i 0.371677 0.717379i
\(454\) 1.69961 + 2.94381i 0.0797667 + 0.138160i
\(455\) −1.29679 2.24611i −0.0607944 0.105299i
\(456\) −35.4523 + 1.61680i −1.66021 + 0.0757138i
\(457\) −4.40856 + 7.63584i −0.206224 + 0.357190i −0.950522 0.310658i \(-0.899451\pi\)
0.744298 + 0.667847i \(0.232784\pi\)
\(458\) 44.2383 2.06712
\(459\) 4.86926 0.669906i 0.227277 0.0312685i
\(460\) 2.87412 0.134007
\(461\) 2.82957 4.90095i 0.131786 0.228260i −0.792579 0.609769i \(-0.791262\pi\)
0.924365 + 0.381509i \(0.124595\pi\)
\(462\) −19.2199 + 0.876526i −0.894192 + 0.0407797i
\(463\) −7.86333 13.6197i −0.365440 0.632960i 0.623407 0.781898i \(-0.285748\pi\)
−0.988847 + 0.148937i \(0.952415\pi\)
\(464\) −5.32383 9.22115i −0.247153 0.428081i
\(465\) −4.80972 + 9.28332i −0.223045 + 0.430504i
\(466\) −23.3530 + 40.4486i −1.08181 + 1.87375i
\(467\) −21.9971 −1.01790 −0.508952 0.860795i \(-0.669967\pi\)
−0.508952 + 0.860795i \(0.669967\pi\)
\(468\) −5.09718 + 11.0426i −0.235617 + 0.510445i
\(469\) 15.8171 0.730366
\(470\) 38.8068 67.2153i 1.79002 3.10041i
\(471\) 5.65126 + 8.83284i 0.260396 + 0.406996i
\(472\) −6.89037 11.9345i −0.317155 0.549328i
\(473\) 23.5562 + 40.8006i 1.08312 + 1.87601i
\(474\) −33.7834 52.8029i −1.55172 2.42532i
\(475\) 3.50000 6.06218i 0.160591 0.278152i
\(476\) 3.83482 0.175769
\(477\) −18.7419 + 1.71301i −0.858133 + 0.0784336i
\(478\) −12.0364 −0.550531
\(479\) −12.4875 + 21.6291i −0.570571 + 0.988257i 0.425937 + 0.904753i \(0.359945\pi\)
−0.996507 + 0.0835043i \(0.973389\pi\)
\(480\) 1.11489 2.15186i 0.0508874 0.0982186i
\(481\) −0.890369 1.54216i −0.0405973 0.0703166i
\(482\) −32.1826 55.7419i −1.46588 2.53897i
\(483\) −0.472958 + 0.0215693i −0.0215203 + 0.000981436i
\(484\) −19.0167 + 32.9379i −0.864397 + 1.49718i
\(485\) 29.7994 1.35312
\(486\) −11.1783 + 36.6904i −0.507058 + 1.66431i
\(487\) −17.5979 −0.797435 −0.398717 0.917074i \(-0.630545\pi\)
−0.398717 + 0.917074i \(0.630545\pi\)
\(488\) −5.74484 + 9.95036i −0.260057 + 0.450432i
\(489\) −30.8281 + 1.40592i −1.39410 + 0.0635778i
\(490\) −3.19076 5.52655i −0.144144 0.249664i
\(491\) −6.89757 11.9469i −0.311283 0.539158i 0.667358 0.744737i \(-0.267425\pi\)
−0.978640 + 0.205580i \(0.934092\pi\)
\(492\) −20.6944 + 39.9425i −0.932974 + 1.80075i
\(493\) 1.16372 2.01561i 0.0524111 0.0907787i
\(494\) 9.97509 0.448801
\(495\) −34.9810 + 3.19727i −1.57228 + 0.143707i
\(496\) 10.0718 0.452237
\(497\) 1.63667 2.83480i 0.0734148 0.127158i
\(498\) 2.17257 + 3.39569i 0.0973552 + 0.152165i
\(499\) −6.54377 11.3341i −0.292939 0.507386i 0.681564 0.731758i \(-0.261300\pi\)
−0.974503 + 0.224373i \(0.927967\pi\)
\(500\) −17.2089 29.8068i −0.769607 1.33300i
\(501\) −7.90428 12.3543i −0.353137 0.551949i
\(502\) 22.7075 39.3305i 1.01348 1.75541i
\(503\) −22.3068 −0.994611 −0.497305 0.867576i \(-0.665677\pi\)
−0.497305 + 0.867576i \(0.665677\pi\)
\(504\) −6.35447 + 13.7664i −0.283051 + 0.613206i
\(505\) 9.54377 0.424692
\(506\) −1.51819 + 2.62958i −0.0674917 + 0.116899i
\(507\) −9.56148 + 18.4548i −0.424640 + 0.819605i
\(508\) −1.36333 2.36135i −0.0604879 0.104768i
\(509\) 7.94659 + 13.7639i 0.352226 + 0.610074i 0.986639 0.162920i \(-0.0520914\pi\)
−0.634413 + 0.772994i \(0.718758\pi\)
\(510\) 10.4445 0.476320i 0.462488 0.0210918i
\(511\) −0.753696 + 1.30544i −0.0333415 + 0.0577492i
\(512\) 41.4078 1.82998
\(513\) 20.8691 2.87114i 0.921392 0.126764i
\(514\) 28.8712 1.27345
\(515\) −12.6134 + 21.8471i −0.555814 + 0.962698i
\(516\) 73.2014 3.33836i 3.22251 0.146963i
\(517\) 27.4538 + 47.5514i 1.20742 + 2.09131i
\(518\) −2.19076 3.79450i −0.0962563 0.166721i
\(519\) 13.8296 26.6927i 0.607051 1.17168i
\(520\) −6.55408 + 11.3520i −0.287416 + 0.497818i
\(521\) 4.41789 0.193551 0.0967756 0.995306i \(-0.469147\pi\)
0.0967756 + 0.995306i \(0.469147\pi\)
\(522\) 10.4751 + 14.8371i 0.458482 + 0.649403i
\(523\) 25.2733 1.10513 0.552563 0.833471i \(-0.313650\pi\)
0.552563 + 0.833471i \(0.313650\pi\)
\(524\) −16.0416 + 27.7849i −0.700782 + 1.21379i
\(525\) −1.61177 2.51917i −0.0703433 0.109946i
\(526\) −9.25370 16.0279i −0.403480 0.698848i
\(527\) 1.10078 + 1.90660i 0.0479506 + 0.0830528i
\(528\) 18.2367 + 28.5036i 0.793649 + 1.24046i
\(529\) 11.4626 19.8539i 0.498376 0.863212i
\(530\) −40.0335 −1.73894
\(531\) 4.71780 + 6.68238i 0.204735 + 0.289990i
\(532\) 16.4356 0.712574
\(533\) 3.20321 5.54812i 0.138746 0.240316i
\(534\) 28.1462 54.3254i 1.21801 2.35089i
\(535\) −1.78220 3.08686i −0.0770513 0.133457i
\(536\) −39.9705 69.2310i −1.72646 2.99032i
\(537\) 19.6373 0.895562i 0.847414 0.0386464i
\(538\) −23.1716 + 40.1344i −0.998998 + 1.73032i
\(539\) 4.51459 0.194457
\(540\) −20.6139 + 50.5974i −0.887081 + 2.17736i
\(541\) −3.43852 −0.147834 −0.0739168 0.997264i \(-0.523550\pi\)
−0.0739168 + 0.997264i \(0.523550\pi\)
\(542\) −29.5043 + 51.1029i −1.26732 + 2.19506i
\(543\) −37.8733 + 1.72722i −1.62530 + 0.0741219i
\(544\) −0.255158 0.441947i −0.0109398 0.0189483i
\(545\) −4.40808 7.63501i −0.188821 0.327048i
\(546\) 1.96050 3.78400i 0.0839019 0.161940i
\(547\) 3.46410 6.00000i 0.148114 0.256542i −0.782416 0.622756i \(-0.786013\pi\)
0.930531 + 0.366214i \(0.119346\pi\)
\(548\) −14.8889 −0.636023
\(549\) 2.85827 6.19219i 0.121988 0.264276i
\(550\) −19.1800 −0.817836
\(551\) 4.98755 8.63868i 0.212477 0.368020i
\(552\) 1.28959 + 2.01561i 0.0548887 + 0.0857902i
\(553\) 7.35447 + 12.7383i 0.312744 + 0.541688i
\(554\) 8.81138 + 15.2618i 0.374360 + 0.648410i
\(555\) −4.31118 6.73832i −0.183000 0.286026i
\(556\) 4.16372 7.21177i 0.176581 0.305847i
\(557\) 33.5835 1.42298 0.711488 0.702698i \(-0.248021\pi\)
0.711488 + 0.702698i \(0.248021\pi\)
\(558\) −17.1086 + 1.56373i −0.724267 + 0.0661981i
\(559\) −10.4356 −0.441379
\(560\) −5.61177 + 9.71987i −0.237140 + 0.410739i
\(561\) −3.40263 + 6.56747i −0.143659 + 0.277279i
\(562\) 18.3083 + 31.7108i 0.772287 + 1.33764i
\(563\) −21.2396 36.7880i −0.895142 1.55043i −0.833629 0.552325i \(-0.813741\pi\)
−0.0615128 0.998106i \(-0.519593\pi\)
\(564\) 85.3132 3.89071i 3.59233 0.163829i
\(565\) 13.4720 23.3341i 0.566770 0.981675i
\(566\) −49.2029 −2.06815
\(567\) 3.01245 8.48087i 0.126511 0.356163i
\(568\) −16.5438 −0.694161
\(569\) −5.20175 + 9.00969i −0.218069 + 0.377706i −0.954217 0.299114i \(-0.903309\pi\)
0.736149 + 0.676820i \(0.236642\pi\)
\(570\) 44.7637 2.04145i 1.87495 0.0855070i
\(571\) −8.92480 15.4582i −0.373491 0.646906i 0.616609 0.787270i \(-0.288506\pi\)
−0.990100 + 0.140364i \(0.955173\pi\)
\(572\) −9.15126 15.8505i −0.382633 0.662741i
\(573\) −0.559145 + 1.07922i −0.0233586 + 0.0450849i
\(574\) 7.88151 13.6512i 0.328968 0.569789i
\(575\) −0.471974 −0.0196827
\(576\) −21.8910 + 2.00085i −0.912127 + 0.0833686i
\(577\) 11.9430 0.497193 0.248597 0.968607i \(-0.420031\pi\)
0.248597 + 0.968607i \(0.420031\pi\)
\(578\) −19.8135 + 34.3180i −0.824134 + 1.42744i
\(579\) 11.3365 + 17.7187i 0.471128 + 0.736366i
\(580\) 12.9356 + 22.4051i 0.537122 + 0.930322i
\(581\) −0.472958 0.819187i −0.0196216 0.0339856i
\(582\) 26.3894 + 41.2462i 1.09388 + 1.70971i
\(583\) 14.1608 24.5272i 0.586480 1.01581i
\(584\) 7.61849 0.315255
\(585\) 3.26089 7.06445i 0.134821 0.292079i
\(586\) −37.0689 −1.53130
\(587\) −11.9299 + 20.6631i −0.492398 + 0.852859i −0.999962 0.00875568i \(-0.997213\pi\)
0.507563 + 0.861614i \(0.330546\pi\)
\(588\) 3.23025 6.23476i 0.133213 0.257117i
\(589\) 4.71780 + 8.17147i 0.194394 + 0.336699i
\(590\) 8.70009 + 15.0690i 0.358177 + 0.620381i
\(591\) 28.3946 1.29494i 1.16800 0.0532667i
\(592\) −3.85301 + 6.67361i −0.158358 + 0.274284i
\(593\) 19.5801 0.804060 0.402030 0.915626i \(-0.368305\pi\)
0.402030 + 0.915626i \(0.368305\pi\)
\(594\) −35.4035 45.5868i −1.45262 1.87045i
\(595\) −2.45331 −0.100576
\(596\) 27.4538 47.5514i 1.12455 1.94778i
\(597\) −39.2871 + 1.79169i −1.60792 + 0.0733291i
\(598\) −0.336285 0.582462i −0.0137517 0.0238187i
\(599\) −9.27335 16.0619i −0.378899 0.656272i 0.612004 0.790855i \(-0.290364\pi\)
−0.990902 + 0.134583i \(0.957030\pi\)
\(600\) −6.95331 + 13.4207i −0.283868 + 0.547897i
\(601\) 9.09931 15.7605i 0.371169 0.642883i −0.618577 0.785724i \(-0.712290\pi\)
0.989746 + 0.142841i \(0.0456238\pi\)
\(602\) −25.6768 −1.04651
\(603\) 27.3676 + 38.7640i 1.11449 + 1.57859i
\(604\) 40.2498 1.63774
\(605\) 12.1659 21.0719i 0.494612 0.856693i
\(606\) 8.45165 + 13.2098i 0.343325 + 0.536612i
\(607\) 11.1549 + 19.3208i 0.452762 + 0.784206i 0.998556 0.0537125i \(-0.0171055\pi\)
−0.545795 + 0.837919i \(0.683772\pi\)
\(608\) −1.09358 1.89413i −0.0443505 0.0768173i
\(609\) −2.29679 3.58985i −0.0930706 0.145468i
\(610\) 7.25370 12.5638i 0.293694 0.508692i
\(611\) −12.1623 −0.492032
\(612\) 6.63521 + 9.39823i 0.268212 + 0.379901i
\(613\) 10.2370 0.413467 0.206734 0.978397i \(-0.433717\pi\)
0.206734 + 0.978397i \(0.433717\pi\)
\(614\) −33.5495 + 58.1094i −1.35395 + 2.34511i
\(615\) 13.2391 25.5530i 0.533852 1.03040i
\(616\) −11.4086 19.7602i −0.459664 0.796161i
\(617\) 5.66372 + 9.80984i 0.228013 + 0.394929i 0.957219 0.289364i \(-0.0934439\pi\)
−0.729206 + 0.684294i \(0.760111\pi\)
\(618\) −41.4092 + 1.88847i −1.66572 + 0.0759654i
\(619\) −4.31663 + 7.47663i −0.173500 + 0.300511i −0.939641 0.342161i \(-0.888841\pi\)
0.766141 + 0.642672i \(0.222174\pi\)
\(620\) −24.4720 −0.982818
\(621\) −0.871198 1.12179i −0.0349600 0.0450157i
\(622\) 39.3245 1.57677
\(623\) −7.17830 + 12.4332i −0.287593 + 0.498125i
\(624\) −7.48755 + 0.341470i −0.299742 + 0.0136697i
\(625\) 15.3260 + 26.5454i 0.613039 + 1.06181i
\(626\) 14.2683 + 24.7134i 0.570275 + 0.987746i
\(627\) −14.5833 + 28.1474i −0.582399 + 1.12410i
\(628\) −12.2719 + 21.2555i −0.489701 + 0.848188i
\(629\) −1.68443 −0.0671626
\(630\) 8.02344 17.3821i 0.319662 0.692520i
\(631\) −14.8535 −0.591308 −0.295654 0.955295i \(-0.595538\pi\)
−0.295654 + 0.955295i \(0.595538\pi\)
\(632\) 37.1701 64.3805i 1.47855 2.56092i
\(633\) 4.25797 + 6.65514i 0.169239 + 0.264518i
\(634\) −2.48229 4.29945i −0.0985844 0.170753i
\(635\) 0.872181 + 1.51066i 0.0346115 + 0.0599488i
\(636\) −23.7405 37.1060i −0.941370 1.47135i
\(637\) −0.500000 + 0.866025i −0.0198107 + 0.0343132i
\(638\) −27.3317 −1.08207
\(639\) 9.77928 0.893828i 0.386862 0.0353593i
\(640\) −49.5586 −1.95897
\(641\) 17.0797 29.5828i 0.674606 1.16845i −0.301978 0.953315i \(-0.597647\pi\)
0.976584 0.215137i \(-0.0690199\pi\)
\(642\) 2.69436 5.20042i 0.106338 0.205244i
\(643\) 5.41741 + 9.38323i 0.213642 + 0.370039i 0.952852 0.303437i \(-0.0981341\pi\)
−0.739210 + 0.673475i \(0.764801\pi\)
\(644\) −0.554084 0.959702i −0.0218340 0.0378176i
\(645\) −46.8302 + 2.13570i −1.84394 + 0.0840929i
\(646\) 4.71780 8.17147i 0.185619 0.321502i
\(647\) 32.9692 1.29615 0.648077 0.761575i \(-0.275573\pi\)
0.648077 + 0.761575i \(0.275573\pi\)
\(648\) −44.7331 + 8.24611i −1.75728 + 0.323938i
\(649\) −12.3097 −0.483199
\(650\) 2.12422 3.67926i 0.0833188 0.144312i
\(651\) 4.02704 0.183653i 0.157832 0.00719795i
\(652\) −36.1160 62.5548i −1.41441 2.44984i
\(653\) 1.96557 + 3.40446i 0.0769185 + 0.133227i 0.901919 0.431905i \(-0.142159\pi\)
−0.825000 + 0.565132i \(0.808825\pi\)
\(654\) 6.66419 12.8627i 0.260591 0.502970i
\(655\) 10.2626 17.7753i 0.400991 0.694537i
\(656\) −27.7233 −1.08241
\(657\) −4.50340 + 0.411612i −0.175695 + 0.0160585i
\(658\) −29.9253 −1.16661
\(659\) −8.40856 + 14.5640i −0.327551 + 0.567335i −0.982025 0.188749i \(-0.939557\pi\)
0.654474 + 0.756084i \(0.272890\pi\)
\(660\) −44.3106 69.2568i −1.72479 2.69582i
\(661\) 8.51080 + 14.7411i 0.331032 + 0.573364i 0.982714 0.185128i \(-0.0592700\pi\)
−0.651683 + 0.758492i \(0.725937\pi\)
\(662\) −24.2470 41.9970i −0.942386 1.63226i
\(663\) −0.882977 1.38008i −0.0342920 0.0535979i
\(664\) −2.39037 + 4.14024i −0.0927643 + 0.160672i
\(665\) −10.5146 −0.407738
\(666\) 5.50885 11.9345i 0.213464 0.462451i
\(667\) −0.672570 −0.0260420
\(668\) 17.1644 29.7296i 0.664110 1.15027i
\(669\) 10.6168 20.4917i 0.410470 0.792255i
\(670\) 50.4686 + 87.4141i 1.94977 + 3.37710i
\(671\) 5.13161 + 8.88821i 0.198104 + 0.343126i
\(672\) −0.933463 + 0.0425706i −0.0360091 + 0.00164220i
\(673\) −14.3727 + 24.8942i −0.554025 + 0.959600i 0.443953 + 0.896050i \(0.353576\pi\)
−0.997979 + 0.0635501i \(0.979758\pi\)
\(674\) 71.4805 2.75333
\(675\) 3.38511 8.30885i 0.130293 0.319808i
\(676\) −48.6490 −1.87112
\(677\) 3.01819 5.22765i 0.115998 0.200915i −0.802180 0.597082i \(-0.796327\pi\)
0.918178 + 0.396167i \(0.129660\pi\)
\(678\) 44.2278 2.01701i 1.69856 0.0774628i
\(679\) −5.74484 9.95036i −0.220467 0.381860i
\(680\) 6.19961 + 10.7380i 0.237744 + 0.411785i
\(681\) 1.10078 2.12463i 0.0421818 0.0814159i
\(682\) 12.9267 22.3898i 0.494991 0.857349i
\(683\) 20.5113 0.784842 0.392421 0.919786i \(-0.371638\pi\)
0.392421 + 0.919786i \(0.371638\pi\)
\(684\) 28.4377 + 40.2797i 1.08734 + 1.54013i
\(685\) 9.52510 0.363935
\(686\) −1.23025 + 2.13086i −0.0469713 + 0.0813566i
\(687\) −16.7831 26.2317i −0.640314 1.00080i
\(688\) 22.5797 + 39.1091i 0.860842 + 1.49102i
\(689\) 3.13667 + 5.43288i 0.119498 + 0.206976i
\(690\) −1.62830 2.54500i −0.0619882 0.0968867i
\(691\) 7.50146 12.9929i 0.285369 0.494274i −0.687330 0.726346i \(-0.741217\pi\)
0.972699 + 0.232072i \(0.0745505\pi\)
\(692\) 70.3652 2.67488
\(693\) 7.81138 + 11.0642i 0.296730 + 0.420293i
\(694\) −71.5595 −2.71636
\(695\) −2.66372 + 4.61369i −0.101040 + 0.175007i
\(696\) −9.90856 + 19.1247i −0.375583 + 0.724919i
\(697\) −3.02997 5.24806i −0.114768 0.198784i
\(698\) 30.4648 + 52.7665i 1.15311 + 1.99724i
\(699\) 32.8442 1.49786i 1.24228 0.0566542i
\(700\) 3.50000 6.06218i 0.132288 0.229129i
\(701\) 38.5113 1.45455 0.727275 0.686346i \(-0.240786\pi\)
0.727275 + 0.686346i \(0.240786\pi\)
\(702\) 12.6659 1.74255i 0.478042 0.0657684i
\(703\) −7.21926 −0.272280
\(704\) 16.5402 28.6484i 0.623381 1.07973i
\(705\) −54.5787 + 2.48906i −2.05555 + 0.0937435i
\(706\) −40.9705 70.9630i −1.54195 2.67073i
\(707\) −1.83988 3.18677i −0.0691959 0.119851i
\(708\) −8.80778 + 17.0000i −0.331017 + 0.638901i
\(709\) −3.82004 + 6.61650i −0.143465 + 0.248488i −0.928799 0.370584i \(-0.879158\pi\)
0.785334 + 0.619072i \(0.212491\pi\)
\(710\) 20.8889 0.783947
\(711\) −18.4935 + 40.0646i −0.693560 + 1.50254i
\(712\) 72.5595 2.71928
\(713\) 0.318097 0.550960i 0.0119128 0.0206336i
\(714\) −2.17257 3.39569i −0.0813064 0.127081i
\(715\) 5.85447 + 10.1402i 0.218945 + 0.379224i
\(716\) 23.0057 + 39.8471i 0.859765 + 1.48916i
\(717\) 4.56634 + 7.13713i 0.170533 + 0.266541i
\(718\) 31.4164 54.4148i 1.17245 2.03074i
\(719\) −30.0364 −1.12017 −0.560084 0.828436i \(-0.689231\pi\)
−0.560084 + 0.828436i \(0.689231\pi\)
\(720\) −33.5308 + 3.06472i −1.24962 + 0.114216i
\(721\) 9.72665 0.362240
\(722\) −3.15486 + 5.46438i −0.117412 + 0.203363i
\(723\) −20.8435 + 40.2303i −0.775177 + 1.49618i
\(724\) −44.3697 76.8506i −1.64899 2.85613i
\(725\) −2.12422 3.67926i −0.0788916 0.136644i
\(726\) 39.9399 1.82146i 1.48231 0.0676007i
\(727\) −1.72812 + 2.99319i −0.0640923 + 0.111011i −0.896291 0.443466i \(-0.853749\pi\)
0.832199 + 0.554478i \(0.187082\pi\)
\(728\) 5.05408 0.187317
\(729\) 25.9969 7.29124i 0.962847 0.270046i
\(730\) −9.61944 −0.356032
\(731\) −4.93560 + 8.54871i −0.182550 + 0.316185i
\(732\) 15.9466 0.727245i 0.589403 0.0268797i
\(733\) −19.2630 33.3645i −0.711496 1.23235i −0.964295 0.264829i \(-0.914685\pi\)
0.252799 0.967519i \(-0.418649\pi\)
\(734\) 33.7709 + 58.4929i 1.24651 + 2.15901i
\(735\) −2.06654 + 3.98866i −0.0762254 + 0.147124i
\(736\) −0.0737345 + 0.127712i −0.00271789 + 0.00470752i
\(737\) −71.4078 −2.63034
\(738\) 47.0928 4.30429i 1.73351 0.158443i
\(739\) 45.1239 1.65991 0.829955 0.557830i \(-0.188366\pi\)
0.829955 + 0.557830i \(0.188366\pi\)
\(740\) 9.36186 16.2152i 0.344149 0.596084i
\(741\) −3.78434 5.91486i −0.139021 0.217288i
\(742\) 7.71780 + 13.3676i 0.283329 + 0.490741i
\(743\) −4.74338 8.21577i −0.174018 0.301407i 0.765803 0.643075i \(-0.222342\pi\)
−0.939821 + 0.341668i \(0.889008\pi\)
\(744\) −10.9803 17.1621i −0.402559 0.629194i
\(745\) −17.5634 + 30.4207i −0.643474 + 1.11453i
\(746\) −40.1737 −1.47086
\(747\) 1.18929 2.57651i 0.0435140 0.0942695i
\(748\) −17.3126 −0.633013
\(749\) −0.687159 + 1.19019i −0.0251082 + 0.0434887i
\(750\) −16.6441 + 32.1250i −0.607755 + 1.17304i
\(751\) 4.91595 + 8.51467i 0.179386 + 0.310705i 0.941670 0.336537i \(-0.109256\pi\)
−0.762285 + 0.647242i \(0.775922\pi\)
\(752\) 26.3157 + 45.5800i 0.959633 + 1.66213i
\(753\) −31.9363 + 1.45646i −1.16382 + 0.0530762i
\(754\) 3.02704 5.24299i 0.110238 0.190938i
\(755\) −25.7496 −0.937124
\(756\) 20.8691 2.87114i 0.759000 0.104422i
\(757\) −41.8171 −1.51987 −0.759934 0.650000i \(-0.774769\pi\)
−0.759934 + 0.650000i \(0.774769\pi\)
\(758\) 14.8078 25.6478i 0.537843 0.931571i
\(759\) 2.13521 0.0973764i 0.0775032 0.00353454i
\(760\) 26.5708 + 46.0220i 0.963825 + 1.66939i
\(761\) −11.4897 19.9007i −0.416501 0.721400i 0.579084 0.815268i \(-0.303410\pi\)
−0.995585 + 0.0938675i \(0.970077\pi\)
\(762\) −1.31858 + 2.54500i −0.0477670 + 0.0921958i
\(763\) −1.69961 + 2.94381i −0.0615301 + 0.106573i
\(764\) −2.84494 −0.102926
\(765\) −4.24484 6.01247i −0.153473 0.217381i
\(766\) 30.5979 1.10555
\(767\) 1.36333 2.36135i 0.0492269 0.0852635i
\(768\) −30.2077 47.2142i −1.09003 1.70369i
\(769\) −3.04329 5.27113i −0.109744 0.190082i 0.805923 0.592021i \(-0.201670\pi\)
−0.915666 + 0.401939i \(0.868336\pi\)
\(770\) 14.4050 + 24.9501i 0.519119 + 0.899140i
\(771\) −10.9531 17.1196i −0.394467 0.616546i
\(772\) −24.6175 + 42.6388i −0.886003 + 1.53460i
\(773\) −41.8214 −1.50421 −0.752105 0.659043i \(-0.770962\pi\)
−0.752105 + 0.659043i \(0.770962\pi\)
\(774\) −44.4274 62.9278i −1.59691 2.26189i