Properties

Label 63.2.f.b.43.2
Level $63$
Weight $2$
Character 63.43
Analytic conductor $0.503$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 63.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.503057532734\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Defining polynomial: \(x^{6} - 3 x^{5} + 10 x^{4} - 15 x^{3} + 19 x^{2} - 12 x + 3\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 43.2
Root \(0.500000 - 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 63.43
Dual form 63.2.f.b.22.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.119562 - 0.207087i) q^{2} +(-0.619562 + 1.61745i) q^{3} +(0.971410 + 1.68253i) q^{4} +(-0.590972 - 1.02359i) q^{5} +(0.260877 + 0.321688i) q^{6} +(0.500000 - 0.866025i) q^{7} +0.942820 q^{8} +(-2.23229 - 2.00422i) q^{9} +O(q^{10})\) \(q+(0.119562 - 0.207087i) q^{2} +(-0.619562 + 1.61745i) q^{3} +(0.971410 + 1.68253i) q^{4} +(-0.590972 - 1.02359i) q^{5} +(0.260877 + 0.321688i) q^{6} +(0.500000 - 0.866025i) q^{7} +0.942820 q^{8} +(-2.23229 - 2.00422i) q^{9} -0.282630 q^{10} +(1.85185 - 3.20750i) q^{11} +(-3.32326 + 0.528775i) q^{12} +(-0.500000 - 0.866025i) q^{13} +(-0.119562 - 0.207087i) q^{14} +(2.02175 - 0.321688i) q^{15} +(-1.83009 + 3.16982i) q^{16} -6.94282 q^{17} +(-0.681943 + 0.222649i) q^{18} +1.94282 q^{19} +(1.14815 - 1.98866i) q^{20} +(1.09097 + 1.34528i) q^{21} +(-0.442820 - 0.766987i) q^{22} +(2.80150 + 4.85235i) q^{23} +(-0.584135 + 1.52496i) q^{24} +(1.80150 - 3.12030i) q^{25} -0.239123 q^{26} +(4.62476 - 2.36887i) q^{27} +1.94282 q^{28} +(-0.119562 + 0.207087i) q^{29} +(0.175107 - 0.457140i) q^{30} +(-0.830095 - 1.43777i) q^{31} +(1.38044 + 2.39099i) q^{32} +(4.04063 + 4.98251i) q^{33} +(-0.830095 + 1.43777i) q^{34} -1.18194 q^{35} +(1.20370 - 5.70281i) q^{36} -9.54583 q^{37} +(0.232287 - 0.402332i) q^{38} +(1.71053 - 0.272169i) q^{39} +(-0.557180 - 0.965064i) q^{40} +(5.09097 + 8.81782i) q^{41} +(0.409028 - 0.0650819i) q^{42} +(-1.11273 + 1.92730i) q^{43} +7.19562 q^{44} +(-0.732287 + 3.46939i) q^{45} +1.33981 q^{46} +(-2.91423 + 5.04759i) q^{47} +(-3.99316 - 4.92398i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(-0.430782 - 0.746136i) q^{50} +(4.30150 - 11.2297i) q^{51} +(0.971410 - 1.68253i) q^{52} -11.6030 q^{53} +(0.0623817 - 1.24095i) q^{54} -4.37756 q^{55} +(0.471410 - 0.816506i) q^{56} +(-1.20370 + 3.14241i) q^{57} +(0.0285900 + 0.0495193i) q^{58} +(-1.30150 - 2.25427i) q^{59} +(2.50520 + 3.08917i) q^{60} +(3.80150 - 6.58440i) q^{61} -0.396990 q^{62} +(-2.85185 + 0.931107i) q^{63} -6.66019 q^{64} +(-0.590972 + 1.02359i) q^{65} +(1.51492 - 0.241044i) q^{66} +(-1.75404 - 3.03809i) q^{67} +(-6.74433 - 11.6815i) q^{68} +(-9.58414 + 1.52496i) q^{69} +(-0.141315 + 0.244765i) q^{70} +8.60301 q^{71} +(-2.10464 - 1.88962i) q^{72} +15.1488 q^{73} +(-1.14132 + 1.97682i) q^{74} +(3.93078 + 4.84706i) q^{75} +(1.88727 + 3.26886i) q^{76} +(-1.85185 - 3.20750i) q^{77} +(0.148152 - 0.386770i) q^{78} +(-3.68878 + 6.38915i) q^{79} +4.32614 q^{80} +(0.966208 + 8.94799i) q^{81} +2.43474 q^{82} +(3.47141 - 6.01266i) q^{83} +(-1.20370 + 3.14241i) q^{84} +(4.10301 + 7.10662i) q^{85} +(0.266078 + 0.460861i) q^{86} +(-0.260877 - 0.321688i) q^{87} +(1.74596 - 3.02409i) q^{88} +2.74720 q^{89} +(0.630912 + 0.566453i) q^{90} -1.00000 q^{91} +(-5.44282 + 9.42724i) q^{92} +(2.83981 - 0.451852i) q^{93} +(0.696860 + 1.20700i) q^{94} +(-1.14815 - 1.98866i) q^{95} +(-4.72257 + 0.751424i) q^{96} +(-3.58414 + 6.20790i) q^{97} -0.239123 q^{98} +(-10.5624 + 3.44854i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + q^{2} - 4q^{3} - 3q^{4} + 5q^{5} + q^{6} + 3q^{7} - 12q^{8} - 4q^{9} + O(q^{10}) \) \( 6q + q^{2} - 4q^{3} - 3q^{4} + 5q^{5} + q^{6} + 3q^{7} - 12q^{8} - 4q^{9} + 2q^{11} - 2q^{12} - 3q^{13} - q^{14} + 11q^{15} - 3q^{16} - 24q^{17} + 13q^{18} - 6q^{19} + 16q^{20} - 2q^{21} + 15q^{22} + 15q^{24} - 6q^{25} - 2q^{26} - 7q^{27} - 6q^{28} - q^{29} - 26q^{30} + 3q^{31} + 8q^{32} + 8q^{33} + 3q^{34} + 10q^{35} - 11q^{36} - 6q^{37} - 8q^{38} + 2q^{39} - 21q^{40} + 22q^{41} + 11q^{42} + 3q^{43} + 46q^{44} + 5q^{45} + 24q^{46} + 9q^{47} - 14q^{48} - 3q^{49} - 10q^{50} + 9q^{51} - 3q^{52} - 36q^{53} - 17q^{54} - 12q^{55} - 6q^{56} + 11q^{57} + 9q^{58} + 9q^{59} - 20q^{60} + 6q^{61} - 36q^{62} - 8q^{63} - 24q^{64} + 5q^{65} - 2q^{66} - 6q^{68} - 39q^{69} + 18q^{71} - 24q^{72} + 6q^{73} - 6q^{74} + 31q^{75} + 21q^{76} - 2q^{77} + 10q^{78} - 15q^{79} + 22q^{80} + 32q^{81} + 18q^{82} + 12q^{83} + 11q^{84} - 9q^{85} - 34q^{86} - q^{87} + 21q^{88} - 4q^{89} + 73q^{90} - 6q^{91} - 15q^{92} + 33q^{93} - 24q^{94} - 16q^{95} + 5q^{96} - 3q^{97} - 2q^{98} - 46q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.119562 0.207087i 0.0845428 0.146433i −0.820653 0.571426i \(-0.806390\pi\)
0.905196 + 0.424994i \(0.139724\pi\)
\(3\) −0.619562 + 1.61745i −0.357704 + 0.933835i
\(4\) 0.971410 + 1.68253i 0.485705 + 0.841266i
\(5\) −0.590972 1.02359i −0.264291 0.457765i 0.703087 0.711104i \(-0.251804\pi\)
−0.967378 + 0.253339i \(0.918471\pi\)
\(6\) 0.260877 + 0.321688i 0.106502 + 0.131329i
\(7\) 0.500000 0.866025i 0.188982 0.327327i
\(8\) 0.942820 0.333337
\(9\) −2.23229 2.00422i −0.744096 0.668073i
\(10\) −0.282630 −0.0893755
\(11\) 1.85185 3.20750i 0.558353 0.967096i −0.439281 0.898350i \(-0.644767\pi\)
0.997634 0.0687465i \(-0.0219000\pi\)
\(12\) −3.32326 + 0.528775i −0.959342 + 0.152644i
\(13\) −0.500000 0.866025i −0.138675 0.240192i 0.788320 0.615265i \(-0.210951\pi\)
−0.926995 + 0.375073i \(0.877618\pi\)
\(14\) −0.119562 0.207087i −0.0319542 0.0553463i
\(15\) 2.02175 0.321688i 0.522014 0.0830595i
\(16\) −1.83009 + 3.16982i −0.457524 + 0.792454i
\(17\) −6.94282 −1.68388 −0.841941 0.539570i \(-0.818587\pi\)
−0.841941 + 0.539570i \(0.818587\pi\)
\(18\) −0.681943 + 0.222649i −0.160736 + 0.0524790i
\(19\) 1.94282 0.445713 0.222857 0.974851i \(-0.428462\pi\)
0.222857 + 0.974851i \(0.428462\pi\)
\(20\) 1.14815 1.98866i 0.256735 0.444677i
\(21\) 1.09097 + 1.34528i 0.238070 + 0.293564i
\(22\) −0.442820 0.766987i −0.0944096 0.163522i
\(23\) 2.80150 + 4.85235i 0.584154 + 1.01178i 0.994980 + 0.100071i \(0.0319070\pi\)
−0.410826 + 0.911714i \(0.634760\pi\)
\(24\) −0.584135 + 1.52496i −0.119236 + 0.311282i
\(25\) 1.80150 3.12030i 0.360301 0.624060i
\(26\) −0.239123 −0.0468959
\(27\) 4.62476 2.36887i 0.890036 0.455890i
\(28\) 1.94282 0.367158
\(29\) −0.119562 + 0.207087i −0.0222020 + 0.0384551i −0.876913 0.480649i \(-0.840401\pi\)
0.854711 + 0.519104i \(0.173734\pi\)
\(30\) 0.175107 0.457140i 0.0319700 0.0834620i
\(31\) −0.830095 1.43777i −0.149089 0.258231i 0.781802 0.623527i \(-0.214301\pi\)
−0.930891 + 0.365297i \(0.880968\pi\)
\(32\) 1.38044 + 2.39099i 0.244029 + 0.422671i
\(33\) 4.04063 + 4.98251i 0.703383 + 0.867344i
\(34\) −0.830095 + 1.43777i −0.142360 + 0.246575i
\(35\) −1.18194 −0.199785
\(36\) 1.20370 5.70281i 0.200616 0.950469i
\(37\) −9.54583 −1.56932 −0.784662 0.619923i \(-0.787164\pi\)
−0.784662 + 0.619923i \(0.787164\pi\)
\(38\) 0.232287 0.402332i 0.0376819 0.0652669i
\(39\) 1.71053 0.272169i 0.273905 0.0435819i
\(40\) −0.557180 0.965064i −0.0880979 0.152590i
\(41\) 5.09097 + 8.81782i 0.795076 + 1.37711i 0.922791 + 0.385301i \(0.125903\pi\)
−0.127715 + 0.991811i \(0.540764\pi\)
\(42\) 0.409028 0.0650819i 0.0631144 0.0100424i
\(43\) −1.11273 + 1.92730i −0.169689 + 0.293910i −0.938311 0.345794i \(-0.887610\pi\)
0.768622 + 0.639704i \(0.220943\pi\)
\(44\) 7.19562 1.08478
\(45\) −0.732287 + 3.46939i −0.109163 + 0.517186i
\(46\) 1.33981 0.197544
\(47\) −2.91423 + 5.04759i −0.425084 + 0.736267i −0.996428 0.0844432i \(-0.973089\pi\)
0.571344 + 0.820711i \(0.306422\pi\)
\(48\) −3.99316 4.92398i −0.576364 0.710716i
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) −0.430782 0.746136i −0.0609217 0.105520i
\(51\) 4.30150 11.2297i 0.602331 1.57247i
\(52\) 0.971410 1.68253i 0.134710 0.233325i
\(53\) −11.6030 −1.59380 −0.796898 0.604114i \(-0.793527\pi\)
−0.796898 + 0.604114i \(0.793527\pi\)
\(54\) 0.0623817 1.24095i 0.00848907 0.168872i
\(55\) −4.37756 −0.590270
\(56\) 0.471410 0.816506i 0.0629948 0.109110i
\(57\) −1.20370 + 3.14241i −0.159434 + 0.416223i
\(58\) 0.0285900 + 0.0495193i 0.00375405 + 0.00650220i
\(59\) −1.30150 2.25427i −0.169442 0.293481i 0.768782 0.639511i \(-0.220863\pi\)
−0.938224 + 0.346029i \(0.887530\pi\)
\(60\) 2.50520 + 3.08917i 0.323420 + 0.398811i
\(61\) 3.80150 6.58440i 0.486733 0.843046i −0.513151 0.858298i \(-0.671522\pi\)
0.999884 + 0.0152524i \(0.00485519\pi\)
\(62\) −0.396990 −0.0504178
\(63\) −2.85185 + 0.931107i −0.359299 + 0.117308i
\(64\) −6.66019 −0.832524
\(65\) −0.590972 + 1.02359i −0.0733010 + 0.126961i
\(66\) 1.51492 0.241044i 0.186473 0.0296704i
\(67\) −1.75404 3.03809i −0.214290 0.371161i 0.738763 0.673966i \(-0.235410\pi\)
−0.953053 + 0.302804i \(0.902077\pi\)
\(68\) −6.74433 11.6815i −0.817870 1.41659i
\(69\) −9.58414 + 1.52496i −1.15379 + 0.183584i
\(70\) −0.141315 + 0.244765i −0.0168904 + 0.0292550i
\(71\) 8.60301 1.02099 0.510495 0.859881i \(-0.329462\pi\)
0.510495 + 0.859881i \(0.329462\pi\)
\(72\) −2.10464 1.88962i −0.248035 0.222694i
\(73\) 15.1488 1.77304 0.886519 0.462693i \(-0.153117\pi\)
0.886519 + 0.462693i \(0.153117\pi\)
\(74\) −1.14132 + 1.97682i −0.132675 + 0.229800i
\(75\) 3.93078 + 4.84706i 0.453888 + 0.559690i
\(76\) 1.88727 + 3.26886i 0.216485 + 0.374963i
\(77\) −1.85185 3.20750i −0.211038 0.365528i
\(78\) 0.148152 0.386770i 0.0167749 0.0437931i
\(79\) −3.68878 + 6.38915i −0.415020 + 0.718836i −0.995431 0.0954881i \(-0.969559\pi\)
0.580410 + 0.814324i \(0.302892\pi\)
\(80\) 4.32614 0.483677
\(81\) 0.966208 + 8.94799i 0.107356 + 0.994221i
\(82\) 2.43474 0.268872
\(83\) 3.47141 6.01266i 0.381037 0.659975i −0.610174 0.792267i \(-0.708900\pi\)
0.991211 + 0.132292i \(0.0422338\pi\)
\(84\) −1.20370 + 3.14241i −0.131334 + 0.342865i
\(85\) 4.10301 + 7.10662i 0.445034 + 0.770821i
\(86\) 0.266078 + 0.460861i 0.0286920 + 0.0496960i
\(87\) −0.260877 0.321688i −0.0279689 0.0344886i
\(88\) 1.74596 3.02409i 0.186120 0.322369i
\(89\) 2.74720 0.291203 0.145602 0.989343i \(-0.453488\pi\)
0.145602 + 0.989343i \(0.453488\pi\)
\(90\) 0.630912 + 0.566453i 0.0665039 + 0.0597094i
\(91\) −1.00000 −0.104828
\(92\) −5.44282 + 9.42724i −0.567453 + 0.982858i
\(93\) 2.83981 0.451852i 0.294475 0.0468548i
\(94\) 0.696860 + 1.20700i 0.0718756 + 0.124492i
\(95\) −1.14815 1.98866i −0.117798 0.204032i
\(96\) −4.72257 + 0.751424i −0.481995 + 0.0766919i
\(97\) −3.58414 + 6.20790i −0.363914 + 0.630317i −0.988601 0.150558i \(-0.951893\pi\)
0.624687 + 0.780875i \(0.285226\pi\)
\(98\) −0.239123 −0.0241551
\(99\) −10.5624 + 3.44854i −1.06156 + 0.346591i
\(100\) 7.00000 0.700000
\(101\) 6.39248 11.0721i 0.636075 1.10171i −0.350211 0.936671i \(-0.613890\pi\)
0.986286 0.165044i \(-0.0527765\pi\)
\(102\) −1.81122 2.23342i −0.179338 0.221142i
\(103\) 2.19850 + 3.80791i 0.216624 + 0.375204i 0.953774 0.300526i \(-0.0971621\pi\)
−0.737150 + 0.675730i \(0.763829\pi\)
\(104\) −0.471410 0.816506i −0.0462256 0.0800650i
\(105\) 0.732287 1.91173i 0.0714639 0.186566i
\(106\) −1.38727 + 2.40283i −0.134744 + 0.233384i
\(107\) 13.7278 1.32711 0.663557 0.748126i \(-0.269046\pi\)
0.663557 + 0.748126i \(0.269046\pi\)
\(108\) 8.47825 + 5.48016i 0.815820 + 0.527329i
\(109\) 1.26320 0.120993 0.0604963 0.998168i \(-0.480732\pi\)
0.0604963 + 0.998168i \(0.480732\pi\)
\(110\) −0.523388 + 0.906535i −0.0499031 + 0.0864347i
\(111\) 5.91423 15.4399i 0.561354 1.46549i
\(112\) 1.83009 + 3.16982i 0.172928 + 0.299520i
\(113\) −6.08126 10.5330i −0.572076 0.990866i −0.996353 0.0853326i \(-0.972805\pi\)
0.424276 0.905533i \(-0.360529\pi\)
\(114\) 0.506837 + 0.624982i 0.0474696 + 0.0585349i
\(115\) 3.31122 5.73520i 0.308773 0.534810i
\(116\) −0.464574 −0.0431346
\(117\) −0.619562 + 2.93533i −0.0572785 + 0.271371i
\(118\) −0.622440 −0.0573003
\(119\) −3.47141 + 6.01266i −0.318224 + 0.551180i
\(120\) 1.90615 0.303294i 0.174007 0.0276868i
\(121\) −1.35868 2.35331i −0.123517 0.213937i
\(122\) −0.909028 1.57448i −0.0822996 0.142547i
\(123\) −17.4166 + 2.77121i −1.57040 + 0.249871i
\(124\) 1.61273 2.79332i 0.144827 0.250848i
\(125\) −10.1683 −0.909478
\(126\) −0.148152 + 0.701905i −0.0131984 + 0.0625307i
\(127\) 1.33981 0.118889 0.0594445 0.998232i \(-0.481067\pi\)
0.0594445 + 0.998232i \(0.481067\pi\)
\(128\) −3.55718 + 6.16122i −0.314413 + 0.544580i
\(129\) −2.42790 2.99386i −0.213765 0.263594i
\(130\) 0.141315 + 0.244765i 0.0123942 + 0.0214673i
\(131\) 2.48345 + 4.30146i 0.216980 + 0.375820i 0.953883 0.300178i \(-0.0970461\pi\)
−0.736903 + 0.675998i \(0.763713\pi\)
\(132\) −4.45813 + 11.6385i −0.388030 + 1.01301i
\(133\) 0.971410 1.68253i 0.0842319 0.145894i
\(134\) −0.838864 −0.0724668
\(135\) −5.15787 3.33394i −0.443918 0.286940i
\(136\) −6.54583 −0.561300
\(137\) 2.16991 3.75839i 0.185387 0.321101i −0.758320 0.651883i \(-0.773979\pi\)
0.943707 + 0.330782i \(0.107313\pi\)
\(138\) −0.830095 + 2.16708i −0.0706624 + 0.184474i
\(139\) −1.97141 3.41458i −0.167213 0.289621i 0.770226 0.637771i \(-0.220143\pi\)
−0.937439 + 0.348150i \(0.886810\pi\)
\(140\) −1.14815 1.98866i −0.0970365 0.168072i
\(141\) −6.35868 7.84092i −0.535498 0.660324i
\(142\) 1.02859 1.78157i 0.0863174 0.149506i
\(143\) −3.70370 −0.309719
\(144\) 10.4383 3.40803i 0.869859 0.284002i
\(145\) 0.282630 0.0234712
\(146\) 1.81122 3.13713i 0.149898 0.259630i
\(147\) 1.71053 0.272169i 0.141082 0.0224481i
\(148\) −9.27292 16.0612i −0.762229 1.32022i
\(149\) −5.55555 9.62249i −0.455128 0.788305i 0.543568 0.839365i \(-0.317073\pi\)
−0.998696 + 0.0510606i \(0.983740\pi\)
\(150\) 1.47373 0.234491i 0.120330 0.0191461i
\(151\) −6.96169 + 12.0580i −0.566535 + 0.981267i 0.430370 + 0.902652i \(0.358383\pi\)
−0.996905 + 0.0786145i \(0.974950\pi\)
\(152\) 1.83173 0.148573
\(153\) 15.4984 + 13.9149i 1.25297 + 1.12496i
\(154\) −0.885640 −0.0713669
\(155\) −0.981125 + 1.69936i −0.0788059 + 0.136496i
\(156\) 2.11956 + 2.61364i 0.169701 + 0.209259i
\(157\) −0.0285900 0.0495193i −0.00228173 0.00395207i 0.864882 0.501975i \(-0.167393\pi\)
−0.867164 + 0.498023i \(0.834060\pi\)
\(158\) 0.882073 + 1.52780i 0.0701740 + 0.121545i
\(159\) 7.18878 18.7673i 0.570107 1.48834i
\(160\) 1.63160 2.82601i 0.128989 0.223416i
\(161\) 5.60301 0.441579
\(162\) 1.96853 + 0.869747i 0.154662 + 0.0683338i
\(163\) −1.50808 −0.118122 −0.0590610 0.998254i \(-0.518811\pi\)
−0.0590610 + 0.998254i \(0.518811\pi\)
\(164\) −9.89084 + 17.1314i −0.772345 + 1.33774i
\(165\) 2.71217 7.08048i 0.211142 0.551215i
\(166\) −0.830095 1.43777i −0.0644279 0.111592i
\(167\) 7.34213 + 12.7169i 0.568151 + 0.984067i 0.996749 + 0.0805714i \(0.0256745\pi\)
−0.428598 + 0.903496i \(0.640992\pi\)
\(168\) 1.02859 + 1.26836i 0.0793574 + 0.0978559i
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) 1.96225 0.150498
\(171\) −4.33693 3.89384i −0.331653 0.297769i
\(172\) −4.32365 −0.329675
\(173\) −0.126398 + 0.218928i −0.00960987 + 0.0166448i −0.870790 0.491655i \(-0.836392\pi\)
0.861180 + 0.508299i \(0.169726\pi\)
\(174\) −0.0978082 + 0.0155626i −0.00741482 + 0.00117980i
\(175\) −1.80150 3.12030i −0.136181 0.235872i
\(176\) 6.77812 + 11.7400i 0.510920 + 0.884939i
\(177\) 4.45254 0.708458i 0.334673 0.0532510i
\(178\) 0.328460 0.568910i 0.0246191 0.0426416i
\(179\) 14.1923 1.06079 0.530393 0.847752i \(-0.322044\pi\)
0.530393 + 0.847752i \(0.322044\pi\)
\(180\) −6.54871 + 2.13810i −0.488112 + 0.159365i
\(181\) −1.43147 −0.106400 −0.0532002 0.998584i \(-0.516942\pi\)
−0.0532002 + 0.998584i \(0.516942\pi\)
\(182\) −0.119562 + 0.207087i −0.00886250 + 0.0153503i
\(183\) 8.29467 + 10.2282i 0.613160 + 0.756089i
\(184\) 2.64132 + 4.57489i 0.194720 + 0.337266i
\(185\) 5.64132 + 9.77104i 0.414758 + 0.718381i
\(186\) 0.245960 0.642111i 0.0180346 0.0470819i
\(187\) −12.8571 + 22.2691i −0.940201 + 1.62848i
\(188\) −11.3236 −0.825862
\(189\) 0.260877 5.18960i 0.0189760 0.377488i
\(190\) −0.549100 −0.0398359
\(191\) −7.53379 + 13.0489i −0.545126 + 0.944186i 0.453473 + 0.891270i \(0.350185\pi\)
−0.998599 + 0.0529159i \(0.983148\pi\)
\(192\) 4.12640 10.7725i 0.297797 0.777440i
\(193\) 3.92395 + 6.79647i 0.282452 + 0.489221i 0.971988 0.235030i \(-0.0755190\pi\)
−0.689536 + 0.724251i \(0.742186\pi\)
\(194\) 0.857050 + 1.48445i 0.0615326 + 0.106578i
\(195\) −1.28947 1.59005i −0.0923406 0.113866i
\(196\) 0.971410 1.68253i 0.0693864 0.120181i
\(197\) 6.69002 0.476644 0.238322 0.971186i \(-0.423403\pi\)
0.238322 + 0.971186i \(0.423403\pi\)
\(198\) −0.548709 + 2.59964i −0.0389950 + 0.184749i
\(199\) −19.9396 −1.41348 −0.706739 0.707475i \(-0.749834\pi\)
−0.706739 + 0.707475i \(0.749834\pi\)
\(200\) 1.69850 2.94188i 0.120102 0.208022i
\(201\) 6.00069 0.954790i 0.423256 0.0673457i
\(202\) −1.52859 2.64760i −0.107551 0.186284i
\(203\) 0.119562 + 0.207087i 0.00839158 + 0.0145346i
\(204\) 23.0728 3.67119i 1.61542 0.257035i
\(205\) 6.01724 10.4222i 0.420262 0.727916i
\(206\) 1.05142 0.0732561
\(207\) 3.47141 16.4467i 0.241280 1.14312i
\(208\) 3.66019 0.253789
\(209\) 3.59781 6.23159i 0.248866 0.431048i
\(210\) −0.308342 0.380217i −0.0212776 0.0262375i
\(211\) 9.04583 + 15.6678i 0.622741 + 1.07862i 0.988973 + 0.148095i \(0.0473141\pi\)
−0.366233 + 0.930523i \(0.619353\pi\)
\(212\) −11.2713 19.5224i −0.774115 1.34081i
\(213\) −5.33009 + 13.9149i −0.365212 + 0.953436i
\(214\) 1.64132 2.84284i 0.112198 0.194333i
\(215\) 2.63036 0.179389
\(216\) 4.36032 2.23342i 0.296682 0.151965i
\(217\) −1.66019 −0.112701
\(218\) 0.151030 0.261592i 0.0102291 0.0177172i
\(219\) −9.38564 + 24.5025i −0.634223 + 1.65572i
\(220\) −4.25241 7.36538i −0.286697 0.496574i
\(221\) 3.47141 + 6.01266i 0.233512 + 0.404455i
\(222\) −2.49028 3.07078i −0.167137 0.206097i
\(223\) 11.3285 19.6215i 0.758610 1.31395i −0.184950 0.982748i \(-0.559212\pi\)
0.943560 0.331203i \(-0.107454\pi\)
\(224\) 2.76088 0.184469
\(225\) −10.2752 + 3.35479i −0.685016 + 0.223653i
\(226\) −2.90834 −0.193460
\(227\) 2.64132 4.57489i 0.175310 0.303646i −0.764958 0.644080i \(-0.777240\pi\)
0.940269 + 0.340433i \(0.110574\pi\)
\(228\) −6.45649 + 1.02731i −0.427592 + 0.0680356i
\(229\) −9.66827 16.7459i −0.638897 1.10660i −0.985675 0.168655i \(-0.946058\pi\)
0.346778 0.937947i \(-0.387276\pi\)
\(230\) −0.791790 1.37142i −0.0522091 0.0904288i
\(231\) 6.33530 1.00803i 0.416832 0.0663235i
\(232\) −0.112725 + 0.195246i −0.00740077 + 0.0128185i
\(233\) −16.9806 −1.11243 −0.556217 0.831037i \(-0.687748\pi\)
−0.556217 + 0.831037i \(0.687748\pi\)
\(234\) 0.533792 + 0.479256i 0.0348951 + 0.0313299i
\(235\) 6.88891 0.449383
\(236\) 2.52859 4.37965i 0.164597 0.285091i
\(237\) −8.04871 9.92489i −0.522820 0.644691i
\(238\) 0.830095 + 1.43777i 0.0538071 + 0.0931966i
\(239\) −8.44282 14.6234i −0.546121 0.945909i −0.998535 0.0541011i \(-0.982771\pi\)
0.452415 0.891808i \(-0.350563\pi\)
\(240\) −2.68031 + 6.99731i −0.173013 + 0.451674i
\(241\) −13.5728 + 23.5088i −0.874300 + 1.51433i −0.0167933 + 0.999859i \(0.505346\pi\)
−0.857507 + 0.514473i \(0.827988\pi\)
\(242\) −0.649786 −0.0417699
\(243\) −15.0715 3.98104i −0.966840 0.255384i
\(244\) 14.7713 0.945634
\(245\) −0.590972 + 1.02359i −0.0377558 + 0.0653950i
\(246\) −1.50847 + 3.93807i −0.0961766 + 0.251082i
\(247\) −0.971410 1.68253i −0.0618093 0.107057i
\(248\) −0.782630 1.35556i −0.0496971 0.0860778i
\(249\) 7.57442 + 9.34004i 0.480009 + 0.591901i
\(250\) −1.21574 + 2.10571i −0.0768898 + 0.133177i
\(251\) −19.0780 −1.20419 −0.602096 0.798424i \(-0.705668\pi\)
−0.602096 + 0.798424i \(0.705668\pi\)
\(252\) −4.33693 3.89384i −0.273201 0.245289i
\(253\) 20.7518 1.30466
\(254\) 0.160190 0.277457i 0.0100512 0.0174092i
\(255\) −14.0367 + 2.23342i −0.879010 + 0.139862i
\(256\) −5.80959 10.0625i −0.363099 0.628906i
\(257\) 7.42107 + 12.8537i 0.462913 + 0.801790i 0.999105 0.0423070i \(-0.0134707\pi\)
−0.536191 + 0.844097i \(0.680137\pi\)
\(258\) −0.910272 + 0.144836i −0.0566711 + 0.00901712i
\(259\) −4.77292 + 8.26693i −0.296575 + 0.513682i
\(260\) −2.29630 −0.142411
\(261\) 0.681943 0.222649i 0.0422112 0.0137817i
\(262\) 1.18770 0.0733764
\(263\) 3.87072 6.70429i 0.238679 0.413404i −0.721656 0.692251i \(-0.756619\pi\)
0.960335 + 0.278847i \(0.0899523\pi\)
\(264\) 3.80959 + 4.69761i 0.234464 + 0.289118i
\(265\) 6.85705 + 11.8768i 0.421225 + 0.729584i
\(266\) −0.232287 0.402332i −0.0142424 0.0246686i
\(267\) −1.70206 + 4.44346i −0.104165 + 0.271936i
\(268\) 3.40778 5.90246i 0.208164 0.360550i
\(269\) −1.51135 −0.0921486 −0.0460743 0.998938i \(-0.514671\pi\)
−0.0460743 + 0.998938i \(0.514671\pi\)
\(270\) −1.30710 + 0.669515i −0.0795474 + 0.0407454i
\(271\) −21.9806 −1.33522 −0.667612 0.744509i \(-0.732684\pi\)
−0.667612 + 0.744509i \(0.732684\pi\)
\(272\) 12.7060 22.0075i 0.770416 1.33440i
\(273\) 0.619562 1.61745i 0.0374976 0.0978925i
\(274\) −0.518875 0.898718i −0.0313464 0.0542935i
\(275\) −6.67223 11.5566i −0.402350 0.696892i
\(276\) −11.8759 14.6442i −0.714847 0.881480i
\(277\) 5.41423 9.37772i 0.325310 0.563453i −0.656265 0.754530i \(-0.727865\pi\)
0.981575 + 0.191077i \(0.0611982\pi\)
\(278\) −0.942820 −0.0565466
\(279\) −1.02859 + 4.87320i −0.0615801 + 0.291751i
\(280\) −1.11436 −0.0665957
\(281\) 8.43831 14.6156i 0.503387 0.871892i −0.496605 0.867977i \(-0.665420\pi\)
0.999992 0.00391559i \(-0.00124638\pi\)
\(282\) −2.38401 + 0.379327i −0.141965 + 0.0225886i
\(283\) 7.65856 + 13.2650i 0.455254 + 0.788523i 0.998703 0.0509194i \(-0.0162152\pi\)
−0.543449 + 0.839442i \(0.682882\pi\)
\(284\) 8.35705 + 14.4748i 0.495900 + 0.858923i
\(285\) 3.92790 0.624982i 0.232669 0.0370207i
\(286\) −0.442820 + 0.766987i −0.0261845 + 0.0453529i
\(287\) 10.1819 0.601021
\(288\) 1.71053 8.10408i 0.100794 0.477537i
\(289\) 31.2028 1.83546
\(290\) 0.0337917 0.0585290i 0.00198432 0.00343694i
\(291\) −7.82038 9.64334i −0.458439 0.565302i
\(292\) 14.7157 + 25.4884i 0.861173 + 1.49160i
\(293\) 4.68482 + 8.11435i 0.273690 + 0.474045i 0.969804 0.243886i \(-0.0784224\pi\)
−0.696114 + 0.717932i \(0.745089\pi\)
\(294\) 0.148152 0.386770i 0.00864038 0.0225569i
\(295\) −1.53831 + 2.66442i −0.0895636 + 0.155129i
\(296\) −9.00000 −0.523114
\(297\) 0.966208 19.2207i 0.0560651 1.11530i
\(298\) −2.65692 −0.153911
\(299\) 2.80150 4.85235i 0.162015 0.280619i
\(300\) −4.33693 + 11.3221i −0.250393 + 0.653684i
\(301\) 1.11273 + 1.92730i 0.0641364 + 0.111088i
\(302\) 1.66470 + 2.88335i 0.0957929 + 0.165918i
\(303\) 13.9480 + 17.1994i 0.801293 + 0.988077i
\(304\) −3.55555 + 6.15838i −0.203925 + 0.353208i
\(305\) −8.98633 −0.514556
\(306\) 4.73461 1.54581i 0.270660 0.0883684i
\(307\) 2.71410 0.154902 0.0774509 0.996996i \(-0.475322\pi\)
0.0774509 + 0.996996i \(0.475322\pi\)
\(308\) 3.59781 6.23159i 0.205004 0.355078i
\(309\) −7.52120 + 1.19672i −0.427866 + 0.0680792i
\(310\) 0.234610 + 0.406356i 0.0133249 + 0.0230795i
\(311\) 6.99028 + 12.1075i 0.396383 + 0.686555i 0.993277 0.115765i \(-0.0369320\pi\)
−0.596894 + 0.802320i \(0.703599\pi\)
\(312\) 1.61273 0.256606i 0.0913026 0.0145275i
\(313\) 9.52696 16.5012i 0.538495 0.932701i −0.460490 0.887665i \(-0.652326\pi\)
0.998985 0.0450364i \(-0.0143404\pi\)
\(314\) −0.0136731 −0.000771615
\(315\) 2.63844 + 2.36887i 0.148659 + 0.133471i
\(316\) −14.3333 −0.806309
\(317\) 2.00972 3.48093i 0.112877 0.195508i −0.804052 0.594559i \(-0.797327\pi\)
0.916929 + 0.399050i \(0.130660\pi\)
\(318\) −3.02696 3.73255i −0.169743 0.209311i
\(319\) 0.442820 + 0.766987i 0.0247932 + 0.0429430i
\(320\) 3.93598 + 6.81732i 0.220028 + 0.381100i
\(321\) −8.50520 + 22.2040i −0.474714 + 1.23931i
\(322\) 0.669905 1.16031i 0.0373323 0.0646615i
\(323\) −13.4887 −0.750529
\(324\) −14.1167 + 10.3178i −0.784260 + 0.573213i
\(325\) −3.60301 −0.199859
\(326\) −0.180309 + 0.312304i −0.00998637 + 0.0172969i
\(327\) −0.782630 + 2.04316i −0.0432795 + 0.112987i
\(328\) 4.79987 + 8.31362i 0.265028 + 0.459043i
\(329\) 2.91423 + 5.04759i 0.160667 + 0.278283i
\(330\) −1.14200 1.40821i −0.0628652 0.0775193i
\(331\) 6.18878 10.7193i 0.340166 0.589185i −0.644297 0.764775i \(-0.722850\pi\)
0.984463 + 0.175590i \(0.0561834\pi\)
\(332\) 13.4887 0.740286
\(333\) 21.3090 + 19.1319i 1.16773 + 1.04842i
\(334\) 3.51135 0.192133
\(335\) −2.07318 + 3.59085i −0.113270 + 0.196189i
\(336\) −6.26088 + 0.996189i −0.341559 + 0.0543466i
\(337\) −6.12997 10.6174i −0.333920 0.578367i 0.649356 0.760484i \(-0.275038\pi\)
−0.983277 + 0.182117i \(0.941705\pi\)
\(338\) −1.43474 2.48504i −0.0780395 0.135168i
\(339\) 20.8044 3.31026i 1.12994 0.179788i
\(340\) −7.97141 + 13.8069i −0.432310 + 0.748784i
\(341\) −6.14884 −0.332978
\(342\) −1.32489 + 0.432568i −0.0716420 + 0.0233906i
\(343\) −1.00000 −0.0539949
\(344\) −1.04910 + 1.81709i −0.0565637 + 0.0979711i
\(345\) 7.22489 + 8.90904i 0.388975 + 0.479647i
\(346\) 0.0302247 + 0.0523508i 0.00162489 + 0.00281440i
\(347\) −3.32489 5.75888i −0.178490 0.309153i 0.762874 0.646547i \(-0.223788\pi\)
−0.941363 + 0.337394i \(0.890454\pi\)
\(348\) 0.287832 0.751424i 0.0154294 0.0402806i
\(349\) −5.71737 + 9.90278i −0.306044 + 0.530083i −0.977493 0.210967i \(-0.932339\pi\)
0.671449 + 0.741050i \(0.265672\pi\)
\(350\) −0.861564 −0.0460525
\(351\) −4.36389 2.82073i −0.232927 0.150559i
\(352\) 10.2255 0.545018
\(353\) 11.0978 19.2220i 0.590677 1.02308i −0.403465 0.914995i \(-0.632194\pi\)
0.994141 0.108087i \(-0.0344725\pi\)
\(354\) 0.385640 1.00677i 0.0204965 0.0535090i
\(355\) −5.08414 8.80598i −0.269838 0.467373i
\(356\) 2.66866 + 4.62226i 0.141439 + 0.244979i
\(357\) −7.57442 9.34004i −0.400881 0.494328i
\(358\) 1.69686 2.93905i 0.0896819 0.155334i
\(359\) −7.55623 −0.398803 −0.199401 0.979918i \(-0.563900\pi\)
−0.199401 + 0.979918i \(0.563900\pi\)
\(360\) −0.690415 + 3.27101i −0.0363880 + 0.172397i
\(361\) −15.2255 −0.801339
\(362\) −0.171149 + 0.296439i −0.00899539 + 0.0155805i
\(363\) 4.64815 0.739583i 0.243965 0.0388180i
\(364\) −0.971410 1.68253i −0.0509157 0.0881886i
\(365\) −8.95254 15.5062i −0.468597 0.811634i
\(366\) 3.10985 0.494818i 0.162554 0.0258646i
\(367\) 9.26157 16.0415i 0.483450 0.837360i −0.516370 0.856366i \(-0.672717\pi\)
0.999819 + 0.0190063i \(0.00605025\pi\)
\(368\) −20.5081 −1.06906
\(369\) 6.30834 29.8873i 0.328399 1.55587i
\(370\) 2.69794 0.140259
\(371\) −5.80150 + 10.0485i −0.301199 + 0.521692i
\(372\) 3.51887 + 4.33914i 0.182445 + 0.224974i
\(373\) −7.83009 13.5621i −0.405427 0.702220i 0.588944 0.808174i \(-0.299544\pi\)
−0.994371 + 0.105954i \(0.966210\pi\)
\(374\) 3.07442 + 5.32505i 0.158974 + 0.275352i
\(375\) 6.29987 16.4467i 0.325324 0.849302i
\(376\) −2.74759 + 4.75897i −0.141696 + 0.245425i
\(377\) 0.239123 0.0123155
\(378\) −1.04351 0.674501i −0.0536722 0.0346926i
\(379\) 4.03775 0.207405 0.103703 0.994608i \(-0.466931\pi\)
0.103703 + 0.994608i \(0.466931\pi\)
\(380\) 2.23065 3.86360i 0.114430 0.198199i
\(381\) −0.830095 + 2.16708i −0.0425271 + 0.111023i
\(382\) 1.80150 + 3.12030i 0.0921730 + 0.159648i
\(383\) −0.112725 0.195246i −0.00575998 0.00997659i 0.863131 0.504980i \(-0.168500\pi\)
−0.868891 + 0.495003i \(0.835167\pi\)
\(384\) −7.76157 9.57081i −0.396081 0.488408i
\(385\) −2.18878 + 3.79108i −0.111551 + 0.193211i
\(386\) 1.87661 0.0955171
\(387\) 6.34665 2.07213i 0.322618 0.105332i
\(388\) −13.9267 −0.707019
\(389\) −12.6316 + 21.8786i −0.640448 + 1.10929i 0.344885 + 0.938645i \(0.387918\pi\)
−0.985333 + 0.170643i \(0.945416\pi\)
\(390\) −0.483448 + 0.0769231i −0.0244804 + 0.00389515i
\(391\) −19.4503 33.6890i −0.983646 1.70373i
\(392\) −0.471410 0.816506i −0.0238098 0.0412398i
\(393\) −8.49604 + 1.35183i −0.428569 + 0.0681910i
\(394\) 0.799870 1.38542i 0.0402969 0.0697962i
\(395\) 8.71986 0.438744
\(396\) −16.0627 14.4216i −0.807180 0.724712i
\(397\) −20.3009 −1.01888 −0.509438 0.860508i \(-0.670147\pi\)
−0.509438 + 0.860508i \(0.670147\pi\)
\(398\) −2.38401 + 4.12922i −0.119499 + 0.206979i
\(399\) 2.11956 + 2.61364i 0.106111 + 0.130846i
\(400\) 6.59385 + 11.4209i 0.329693 + 0.571044i
\(401\) 7.61273 + 13.1856i 0.380161 + 0.658459i 0.991085 0.133231i \(-0.0425351\pi\)
−0.610924 + 0.791689i \(0.709202\pi\)
\(402\) 0.519728 1.35682i 0.0259217 0.0676720i
\(403\) −0.830095 + 1.43777i −0.0413500 + 0.0716203i
\(404\) 24.8389 1.23578
\(405\) 8.58809 6.27701i 0.426746 0.311907i
\(406\) 0.0571799 0.00283779
\(407\) −17.6774 + 30.6182i −0.876238 + 1.51769i
\(408\) 4.05555 10.5876i 0.200779 0.524162i
\(409\) −0.828460 1.43494i −0.0409647 0.0709530i 0.844816 0.535057i \(-0.179710\pi\)
−0.885781 + 0.464104i \(0.846376\pi\)
\(410\) −1.43886 2.49218i −0.0710603 0.123080i
\(411\) 4.73461 + 5.83826i 0.233541 + 0.287980i
\(412\) −4.27128 + 7.39807i −0.210431 + 0.364477i
\(413\) −2.60301 −0.128086
\(414\) −2.99084 2.68527i −0.146992 0.131974i
\(415\) −8.20602 −0.402818
\(416\) 1.38044 2.39099i 0.0676816 0.117228i
\(417\) 6.74433 1.07311i 0.330271 0.0525505i
\(418\) −0.860320 1.49012i −0.0420796 0.0728840i
\(419\) −16.6871 28.9030i −0.815220 1.41200i −0.909170 0.416426i \(-0.863282\pi\)
0.0939492 0.995577i \(-0.470051\pi\)
\(420\) 3.92790 0.624982i 0.191662 0.0304960i
\(421\) −9.12025 + 15.7967i −0.444494 + 0.769886i −0.998017 0.0629481i \(-0.979950\pi\)
0.553523 + 0.832834i \(0.313283\pi\)
\(422\) 4.32614 0.210593
\(423\) 16.6219 5.42692i 0.808184 0.263866i
\(424\) −10.9396 −0.531272
\(425\) −12.5075 + 21.6637i −0.606704 + 1.05084i
\(426\) 2.24433 + 2.76748i 0.108738 + 0.134085i
\(427\) −3.80150 6.58440i −0.183968 0.318641i
\(428\) 13.3353 + 23.0974i 0.644586 + 1.11646i
\(429\) 2.29467 5.99054i 0.110788 0.289226i
\(430\) 0.314490 0.544712i 0.0151660 0.0262684i
\(431\) 29.2826 1.41049 0.705247 0.708961i \(-0.250836\pi\)
0.705247 + 0.708961i \(0.250836\pi\)
\(432\) −0.954858 + 18.9949i −0.0459406 + 0.913894i
\(433\) −12.2449 −0.588451 −0.294226 0.955736i \(-0.595062\pi\)
−0.294226 + 0.955736i \(0.595062\pi\)
\(434\) −0.198495 + 0.343803i −0.00952807 + 0.0165031i
\(435\) −0.175107 + 0.457140i −0.00839573 + 0.0219182i
\(436\) 1.22708 + 2.12537i 0.0587667 + 0.101787i
\(437\) 5.44282 + 9.42724i 0.260365 + 0.450966i
\(438\) 3.95198 + 4.87320i 0.188833 + 0.232850i
\(439\) 2.41586 4.18440i 0.115303 0.199711i −0.802598 0.596520i \(-0.796549\pi\)
0.917901 + 0.396810i \(0.129883\pi\)
\(440\) −4.12725 −0.196759
\(441\) −0.619562 + 2.93533i −0.0295029 + 0.139777i
\(442\) 1.66019 0.0789672
\(443\) −0.622440 + 1.07810i −0.0295730 + 0.0512220i −0.880433 0.474170i \(-0.842748\pi\)
0.850860 + 0.525392i \(0.176081\pi\)
\(444\) 31.7233 5.04759i 1.50552 0.239548i
\(445\) −1.62352 2.81202i −0.0769622 0.133302i
\(446\) −2.70890 4.69195i −0.128270 0.222170i
\(447\) 19.0059 3.02409i 0.898948 0.143035i
\(448\) −3.33009 + 5.76789i −0.157332 + 0.272507i
\(449\) 8.82846 0.416641 0.208320 0.978061i \(-0.433200\pi\)
0.208320 + 0.978061i \(0.433200\pi\)
\(450\) −0.533792 + 2.52897i −0.0251632 + 0.119217i
\(451\) 37.7108 1.77573
\(452\) 11.8148 20.4638i 0.555721 0.962537i
\(453\) −15.1900 18.7309i −0.713690 0.880053i
\(454\) −0.631600 1.09396i −0.0296425 0.0513422i
\(455\) 0.590972 + 1.02359i 0.0277052 + 0.0479868i
\(456\) −1.13487 + 2.96273i −0.0531451 + 0.138743i
\(457\) 5.25404 9.10026i 0.245774 0.425692i −0.716575 0.697510i \(-0.754291\pi\)
0.962349 + 0.271817i \(0.0876247\pi\)
\(458\) −4.62382 −0.216057
\(459\) −32.1089 + 16.4467i −1.49872 + 0.767665i
\(460\) 12.8662 0.599890
\(461\) −11.2758 + 19.5302i −0.525166 + 0.909614i 0.474404 + 0.880307i \(0.342663\pi\)
−0.999570 + 0.0293073i \(0.990670\pi\)
\(462\) 0.548709 1.43248i 0.0255282 0.0666449i
\(463\) −5.19850 9.00406i −0.241595 0.418454i 0.719574 0.694416i \(-0.244337\pi\)
−0.961169 + 0.275962i \(0.911004\pi\)
\(464\) −0.437618 0.757977i −0.0203159 0.0351882i
\(465\) −2.14076 2.63978i −0.0992753 0.122417i
\(466\) −2.03022 + 3.51645i −0.0940483 + 0.162897i
\(467\) 13.3171 0.616242 0.308121 0.951347i \(-0.400300\pi\)
0.308121 + 0.951347i \(0.400300\pi\)
\(468\) −5.54063 + 1.80897i −0.256116 + 0.0836198i
\(469\) −3.50808 −0.161988
\(470\) 0.823649 1.42660i 0.0379921 0.0658043i
\(471\) 0.0978082 0.0155626i 0.00450676 0.000717086i
\(472\) −1.22708 2.12537i −0.0564812 0.0978282i
\(473\) 4.12120 + 7.13812i 0.189493 + 0.328211i
\(474\) −3.01763 + 0.480145i −0.138604 + 0.0220538i
\(475\) 3.50000 6.06218i 0.160591 0.278152i
\(476\) −13.4887 −0.618251
\(477\) 25.9012 + 23.2550i 1.18594 + 1.06477i
\(478\) −4.03775 −0.184682
\(479\) −7.26771 + 12.5880i −0.332070 + 0.575163i −0.982918 0.184046i \(-0.941080\pi\)
0.650847 + 0.759209i \(0.274414\pi\)
\(480\) 3.56006 + 4.38992i 0.162494 + 0.200372i
\(481\) 4.77292 + 8.26693i 0.217626 + 0.376940i
\(482\) 3.24557 + 5.62149i 0.147832 + 0.256052i
\(483\) −3.47141 + 9.06259i −0.157955 + 0.412362i
\(484\) 2.63968 4.57206i 0.119985 0.207821i
\(485\) 8.47249 0.384716
\(486\) −2.62640 + 2.64514i −0.119136 + 0.119986i
\(487\) 13.0539 0.591529 0.295765 0.955261i \(-0.404426\pi\)
0.295765 + 0.955261i \(0.404426\pi\)
\(488\) 3.58414 6.20790i 0.162246 0.281019i
\(489\) 0.934349 2.43924i 0.0422527 0.110306i
\(490\) 0.141315 + 0.244765i 0.00638396 + 0.0110574i
\(491\) −9.67223 16.7528i −0.436502 0.756043i 0.560915 0.827873i \(-0.310449\pi\)
−0.997417 + 0.0718303i \(0.977116\pi\)
\(492\) −21.5813 26.6119i −0.972958 1.19976i
\(493\) 0.830095 1.43777i 0.0373856 0.0647538i
\(494\) −0.464574 −0.0209022
\(495\) 9.77197 + 8.77359i 0.439217 + 0.394344i
\(496\) 6.07661 0.272848
\(497\) 4.30150 7.45043i 0.192949 0.334197i
\(498\) 2.83981 0.451852i 0.127255 0.0202480i
\(499\) 18.1111 + 31.3693i 0.810764 + 1.40428i 0.912330 + 0.409455i \(0.134281\pi\)
−0.101566 + 0.994829i \(0.532385\pi\)
\(500\) −9.87756 17.1084i −0.441738 0.765112i
\(501\) −25.1179 + 3.99660i −1.12219 + 0.178555i
\(502\) −2.28100 + 3.95080i −0.101806 + 0.176333i
\(503\) 15.6764 0.698974 0.349487 0.936941i \(-0.386356\pi\)
0.349487 + 0.936941i \(0.386356\pi\)
\(504\) −2.68878 + 0.877867i −0.119768 + 0.0391033i
\(505\) −15.1111 −0.672435
\(506\) 2.48113 4.29743i 0.110299 0.191044i
\(507\) 13.0917 + 16.1434i 0.581421 + 0.716952i
\(508\) 1.30150 + 2.25427i 0.0577449 + 0.100017i
\(509\) −17.1517 29.7076i −0.760237 1.31677i −0.942729 0.333561i \(-0.891750\pi\)
0.182492 0.983207i \(-0.441584\pi\)
\(510\) −1.21574 + 3.17384i −0.0538337 + 0.140540i
\(511\) 7.57442 13.1193i 0.335073 0.580363i
\(512\) −17.0071 −0.751616
\(513\) 8.98508 4.60230i 0.396701 0.203196i
\(514\) 3.54910 0.156544
\(515\) 2.59850 4.50073i 0.114503 0.198326i
\(516\) 2.67877 6.99329i 0.117926 0.307862i
\(517\) 10.7934 + 18.6948i 0.474694 + 0.822195i
\(518\) 1.14132 + 1.97682i 0.0501465 + 0.0868563i
\(519\) −0.275794 0.340082i −0.0121060 0.0149279i
\(520\) −0.557180 + 0.965064i −0.0244340 + 0.0423209i
\(521\) −10.2449 −0.448836 −0.224418 0.974493i \(-0.572048\pi\)
−0.224418 + 0.974493i \(0.572048\pi\)
\(522\) 0.0354265 0.167842i 0.00155058 0.00734624i
\(523\) 30.6030 1.33818 0.669088 0.743183i \(-0.266685\pi\)
0.669088 + 0.743183i \(0.266685\pi\)
\(524\) −4.82489 + 8.35696i −0.210776 + 0.365075i
\(525\) 6.16307 0.980627i 0.268978 0.0427981i
\(526\) −0.925580 1.60315i −0.0403572 0.0699007i
\(527\) 5.76320 + 9.98215i 0.251049 + 0.434829i
\(528\) −23.1884 + 3.68958i −1.00915 + 0.160568i
\(529\) −4.19686 + 7.26918i −0.182472 + 0.316051i
\(530\) 3.27936 0.142446
\(531\) −1.61273 + 7.64068i −0.0699863 + 0.331577i
\(532\) 3.77455 0.163647
\(533\) 5.09097 8.81782i 0.220514 0.381942i
\(534\) 0.716681 + 0.883742i 0.0310138 + 0.0382433i
\(535\) −8.11273 14.0517i −0.350744 0.607506i
\(536\) −1.65374 2.86437i −0.0714309 0.123722i
\(537\) −8.79303 + 22.9554i −0.379447 + 0.990599i
\(538\) −0.180699 + 0.312981i −0.00779051 + 0.0134936i
\(539\) −3.70370 −0.159530
\(540\) 0.599052 11.9169i 0.0257791 0.512821i
\(541\) −26.0917 −1.12177 −0.560884 0.827894i \(-0.689539\pi\)
−0.560884 + 0.827894i \(0.689539\pi\)
\(542\) −2.62803 + 4.55189i −0.112884 + 0.195520i
\(543\) 0.886884 2.31533i 0.0380598 0.0993604i
\(544\) −9.58414 16.6002i −0.410916 0.711728i
\(545\) −0.746515 1.29300i −0.0319772 0.0553861i
\(546\) −0.260877 0.321688i −0.0111645 0.0137670i
\(547\) 5.46169 9.45993i 0.233525 0.404478i −0.725318 0.688414i \(-0.758307\pi\)
0.958843 + 0.283937i \(0.0916405\pi\)
\(548\) 8.43147 0.360175
\(549\) −21.6826 + 7.07922i −0.925392 + 0.302134i
\(550\) −3.19097 −0.136063
\(551\) −0.232287 + 0.402332i −0.00989575 + 0.0171399i
\(552\) −9.03611 + 1.43777i −0.384603 + 0.0611954i
\(553\) 3.68878 + 6.38915i 0.156863 + 0.271694i
\(554\) −1.29467 2.24243i −0.0550052 0.0952718i
\(555\) −19.2993 + 3.07078i −0.819210 + 0.130347i
\(556\) 3.83009 6.63392i 0.162432 0.281341i
\(557\) −13.9442 −0.590835 −0.295417 0.955368i \(-0.595459\pi\)
−0.295417 + 0.955368i \(0.595459\pi\)
\(558\) 0.886196 + 0.795655i 0.0375157 + 0.0336828i
\(559\) 2.22545 0.0941265
\(560\) 2.16307 3.74654i 0.0914063 0.158320i
\(561\) −28.0534 34.5927i −1.18441 1.46050i
\(562\) −2.01780 3.49492i −0.0851156 0.147424i
\(563\) −15.1287 26.2037i −0.637600 1.10435i −0.985958 0.166993i \(-0.946594\pi\)
0.348358 0.937361i \(-0.386739\pi\)
\(564\) 7.01570 18.3154i 0.295414 0.771219i
\(565\) −7.18770 + 12.4495i −0.302389 + 0.523753i
\(566\) 3.66268 0.153954
\(567\) 8.23229 + 3.63723i 0.345724 + 0.152749i
\(568\) 8.11109 0.340334
\(569\) 10.5676 18.3036i 0.443016 0.767326i −0.554896 0.831920i \(-0.687242\pi\)
0.997912 + 0.0645936i \(0.0205751\pi\)
\(570\) 0.340201 0.888141i 0.0142495 0.0372001i
\(571\) 16.3932 + 28.3938i 0.686033 + 1.18824i 0.973111 + 0.230336i \(0.0739826\pi\)
−0.287078 + 0.957907i \(0.592684\pi\)
\(572\) −3.59781 6.23159i −0.150432 0.260556i
\(573\) −16.4383 20.2701i −0.686720 0.846797i
\(574\) 1.21737 2.10855i 0.0508120 0.0880090i
\(575\) 20.1877 0.841885
\(576\) 14.8675 + 13.3485i 0.619477 + 0.556187i
\(577\) −17.3743 −0.723301 −0.361651 0.932314i \(-0.617787\pi\)
−0.361651 + 0.932314i \(0.617787\pi\)
\(578\) 3.73065 6.46168i 0.155175 0.268770i
\(579\) −13.4241 + 2.13595i −0.557886 + 0.0887671i
\(580\) 0.274550 + 0.475534i 0.0114001 + 0.0197455i
\(581\) −3.47141 6.01266i −0.144018 0.249447i
\(582\) −2.93203 + 0.466524i −0.121536 + 0.0193381i
\(583\) −21.4870 + 37.2166i −0.889901 + 1.54135i
\(584\) 14.2826 0.591019
\(585\) 3.37072 1.10052i 0.139362 0.0455007i
\(586\) 2.24050 0.0925542
\(587\) −8.48796 + 14.7016i −0.350336 + 0.606799i −0.986308 0.164913i \(-0.947266\pi\)
0.635973 + 0.771712i \(0.280599\pi\)
\(588\) 2.11956 + 2.61364i 0.0874092 + 0.107785i
\(589\) −1.61273 2.79332i −0.0664512 0.115097i
\(590\) 0.367845 + 0.637125i 0.0151439 + 0.0262300i
\(591\) −4.14488 + 10.8208i −0.170498 + 0.445107i
\(592\) 17.4698 30.2585i 0.718003 1.24362i
\(593\) −13.0733 −0.536858 −0.268429 0.963300i \(-0.586504\pi\)
−0.268429 + 0.963300i \(0.586504\pi\)
\(594\) −3.86483 2.49815i −0.158576 0.102500i
\(595\) 8.20602 0.336414
\(596\) 10.7934 18.6948i 0.442116 0.765767i
\(597\) 12.3538 32.2512i 0.505607 1.31995i
\(598\) −0.669905 1.16031i −0.0273945 0.0474486i
\(599\) −14.6030 25.2932i −0.596663 1.03345i −0.993310 0.115479i \(-0.963160\pi\)
0.396647 0.917971i \(-0.370174\pi\)
\(600\) 3.70602 + 4.56991i 0.151298 + 0.186566i
\(601\) −3.89536 + 6.74695i −0.158895 + 0.275214i −0.934470 0.356041i \(-0.884126\pi\)
0.775576 + 0.631255i \(0.217460\pi\)
\(602\) 0.532157 0.0216891
\(603\) −2.17347 + 10.2974i −0.0885106 + 0.419341i
\(604\) −27.0506 −1.10067
\(605\) −1.60589 + 2.78148i −0.0652887 + 0.113083i
\(606\) 5.22941 0.832069i 0.212430 0.0338005i
\(607\) 9.82038 + 17.0094i 0.398597 + 0.690390i 0.993553 0.113368i \(-0.0361639\pi\)
−0.594956 + 0.803758i \(0.702831\pi\)
\(608\) 2.68194 + 4.64526i 0.108767 + 0.188390i
\(609\) −0.409028 + 0.0650819i −0.0165747 + 0.00263725i
\(610\) −1.07442 + 1.86095i −0.0435020 + 0.0753477i
\(611\) 5.82846 0.235794
\(612\) −8.35705 + 39.5936i −0.337814 + 1.60048i
\(613\) 23.5653 0.951792 0.475896 0.879502i \(-0.342124\pi\)
0.475896 + 0.879502i \(0.342124\pi\)
\(614\) 0.324502 0.562054i 0.0130958 0.0226827i
\(615\) 13.1293 + 16.1898i 0.529424 + 0.652834i
\(616\) −1.74596 3.02409i −0.0703467 0.121844i
\(617\) 5.33009 + 9.23200i 0.214582 + 0.371666i 0.953143 0.302520i \(-0.0978279\pi\)
−0.738562 + 0.674186i \(0.764495\pi\)
\(618\) −0.651421 + 1.70062i −0.0262040 + 0.0684091i
\(619\) 9.00752 15.6015i 0.362043 0.627077i −0.626254 0.779619i \(-0.715413\pi\)
0.988297 + 0.152542i \(0.0487460\pi\)
\(620\) −3.81230 −0.153106
\(621\) 24.4509 + 15.8046i 0.981181 + 0.634215i
\(622\) 3.34308 0.134045
\(623\) 1.37360 2.37915i 0.0550322 0.0953186i
\(624\) −2.26771 + 5.92017i −0.0907812 + 0.236997i
\(625\) −2.99837 5.19332i −0.119935 0.207733i
\(626\) −2.27812 3.94581i −0.0910519 0.157706i
\(627\) 7.85021 + 9.68013i 0.313507 + 0.386587i
\(628\) 0.0555452 0.0962071i 0.00221649 0.00383908i
\(629\) 66.2750 2.64256
\(630\) 0.806018 0.263159i 0.0321125 0.0104845i
\(631\) 12.4703 0.496436 0.248218 0.968704i \(-0.420155\pi\)
0.248218 + 0.968704i \(0.420155\pi\)
\(632\) −3.47786 + 6.02382i −0.138342 + 0.239615i
\(633\) −30.9464 + 4.92398i −1.23001 + 0.195711i
\(634\) −0.480570 0.832371i −0.0190859 0.0330577i
\(635\) −0.791790 1.37142i −0.0314212 0.0544232i
\(636\) 38.5598 6.13538i 1.52900 0.243284i
\(637\) −0.500000 + 0.866025i −0.0198107 + 0.0343132i
\(638\) 0.211777 0.00838434
\(639\) −19.2044 17.2423i −0.759714 0.682096i
\(640\) 8.40877 0.332386
\(641\) −9.57279 + 16.5806i −0.378102 + 0.654892i −0.990786 0.135436i \(-0.956757\pi\)
0.612684 + 0.790328i \(0.290090\pi\)
\(642\) 3.58126 + 4.41606i 0.141341 + 0.174288i
\(643\) −3.24433 5.61934i −0.127944 0.221605i 0.794936 0.606693i \(-0.207504\pi\)
−0.922880 + 0.385088i \(0.874171\pi\)
\(644\) 5.44282 + 9.42724i 0.214477 + 0.371485i
\(645\) −1.62967 + 4.25447i −0.0641681 + 0.167520i
\(646\) −1.61273 + 2.79332i −0.0634518 + 0.109902i
\(647\) −48.0988 −1.89096 −0.945479 0.325682i \(-0.894406\pi\)
−0.945479 + 0.325682i \(0.894406\pi\)
\(648\) 0.910961 + 8.43634i 0.0357859 + 0.331411i
\(649\) −9.64076 −0.378433
\(650\) −0.430782 + 0.746136i −0.0168967 + 0.0292659i
\(651\) 1.02859 2.68527i 0.0403136 0.105244i
\(652\) −1.46496 2.53739i −0.0573724 0.0993720i
\(653\) 21.6202 + 37.4474i 0.846066 + 1.46543i 0.884692 + 0.466175i \(0.154368\pi\)
−0.0386267 + 0.999254i \(0.512298\pi\)
\(654\) 0.329539 + 0.406356i 0.0128860 + 0.0158898i
\(655\) 2.93530 5.08408i 0.114691 0.198651i
\(656\) −37.2678 −1.45506
\(657\) −33.8166 30.3616i −1.31931 1.18452i
\(658\) 1.39372 0.0543329
\(659\) 1.25404 2.17206i 0.0488505 0.0846115i −0.840566 0.541709i \(-0.817778\pi\)
0.889417 + 0.457097i \(0.151111\pi\)
\(660\) 14.5478 2.31474i 0.566271 0.0901013i
\(661\) 21.1677 + 36.6636i 0.823329 + 1.42605i 0.903190 + 0.429241i \(0.141219\pi\)
−0.0798613 + 0.996806i \(0.525448\pi\)
\(662\) −1.47988 2.56323i −0.0575172 0.0996227i
\(663\) −11.8759 + 1.88962i −0.461223 + 0.0733867i
\(664\) 3.27292 5.66886i 0.127014 0.219994i
\(665\) −2.29630 −0.0890468
\(666\) 6.50972 2.12537i 0.252246 0.0823566i
\(667\) −1.33981 −0.0518777
\(668\) −14.2644 + 24.7067i −0.551908 + 0.955933i
\(669\) 24.7181 + 30.4799i 0.955655 + 1.17842i
\(670\) 0.495745 + 0.858655i 0.0191523 + 0.0331727i
\(671\) −14.0796 24.3866i −0.543538 0.941435i
\(672\) −1.71053 + 4.46558i −0.0659853 + 0.172263i
\(673\) −6.70765 + 11.6180i −0.258561 + 0.447841i −0.965857 0.259077i \(-0.916582\pi\)
0.707296 + 0.706918i \(0.249915\pi\)
\(674\) −2.93163 −0.112922
\(675\) 0.939941 18.6982i 0.0361784 0.719693i
\(676\) 23.3138 0.896686
\(677\) −0.981125 + 1.69936i −0.0377077 + 0.0653117i −0.884263 0.466989i \(-0.845339\pi\)
0.846556 + 0.532300i \(0.178672\pi\)
\(678\) 1.80190 4.70409i 0.0692014 0.180660i
\(679\) 3.58414 + 6.20790i 0.137546 + 0.238237i
\(680\) 3.86840 + 6.70027i 0.148346 + 0.256943i
\(681\) 5.76320 + 7.10662i 0.220846 + 0.272326i
\(682\) −0.735165 + 1.27334i −0.0281509 + 0.0487589i
\(683\) 27.1672 1.03952 0.519761 0.854312i \(-0.326021\pi\)
0.519761 + 0.854312i \(0.326021\pi\)
\(684\) 2.33857 11.0795i 0.0894173 0.423637i
\(685\) −5.12941 −0.195985
\(686\) −0.119562 + 0.207087i −0.00456488 + 0.00790661i
\(687\) 33.0758 5.26280i 1.26192 0.200788i
\(688\) −4.07279 7.05427i −0.155273 0.268942i
\(689\) 5.80150 + 10.0485i 0.221020 + 0.382817i
\(690\) 2.70877 0.431001i 0.103121 0.0164079i
\(691\) 25.1586 43.5759i 0.957077 1.65771i 0.227534 0.973770i \(-0.426934\pi\)
0.729543 0.683935i \(-0.239733\pi\)
\(692\) −0.491138 −0.0186703
\(693\) −2.29467 + 10.8716i −0.0871672 + 0.412976i
\(694\) −1.59012 −0.0603601
\(695\) −2.33009 + 4.03584i −0.0883855 + 0.153088i
\(696\) −0.245960 0.303294i −0.00932308 0.0114963i
\(697\) −35.3457 61.2205i −1.33881 2.31889i
\(698\) 1.36716 + 2.36798i 0.0517476 + 0.0896295i
\(699\) 10.5205 27.4652i 0.397922 1.03883i
\(700\) 3.50000 6.06218i 0.132288 0.229129i
\(701\) 45.1672 1.70594 0.852970 0.521960i \(-0.174799\pi\)
0.852970 + 0.521960i \(0.174799\pi\)
\(702\) −1.10589 + 0.566453i −0.0417391 + 0.0213794i
\(703\) −18.5458 −0.699469
\(704\) −12.3337 + 21.3625i −0.464842 + 0.805131i
\(705\) −4.26810 + 11.1425i −0.160746 + 0.419649i
\(706\) −2.65374 4.59642i −0.0998750 0.172989i
\(707\) −6.39248 11.0721i −0.240414 0.416409i
\(708\) 5.51724 + 6.80333i 0.207351 + 0.255685i
\(709\) −19.8090 + 34.3102i −0.743944 + 1.28855i 0.206743 + 0.978395i \(0.433714\pi\)
−0.950687 + 0.310153i \(0.899620\pi\)
\(710\) −2.43147 −0.0912514
\(711\) 21.0397 6.86930i 0.789050 0.257619i
\(712\) 2.59012 0.0970688
\(713\) 4.65103 8.05582i 0.174182 0.301693i
\(714\) −2.83981 + 0.451852i −0.106277 + 0.0169101i
\(715\) 2.18878 + 3.79108i 0.0818557 + 0.141778i
\(716\) 13.7866 + 23.8791i 0.515229 + 0.892403i
\(717\) 28.8834 4.59574i 1.07867 0.171631i
\(718\) −0.903436 + 1.56480i −0.0337159 + 0.0583977i
\(719\) −22.0377 −0.821869 −0.410935 0.911665i \(-0.634798\pi\)
−0.410935 + 0.911665i \(0.634798\pi\)
\(720\) −9.65718 8.67053i −0.359902 0.323132i
\(721\) 4.39699 0.163752
\(722\) −1.82038 + 3.15299i −0.0677475 + 0.117342i
\(723\) −29.6150 36.5184i −1.10140 1.35813i
\(724\) −1.39054 2.40849i −0.0516792 0.0895110i
\(725\) 0.430782 + 0.746136i 0.0159988 + 0.0277108i
\(726\) 0.402583 1.05100i 0.0149412 0.0390061i
\(727\) −14.0555 + 24.3449i −0.521291 + 0.902903i 0.478402 + 0.878141i \(0.341216\pi\)
−0.999693 + 0.0247621i \(0.992117\pi\)
\(728\) −0.942820 −0.0349432
\(729\) 15.7769 21.9110i 0.584329 0.811517i
\(730\) −4.28152 −0.158466
\(731\) 7.72545 13.3809i 0.285736 0.494909i
\(732\) −9.15172 + 23.8918i −0.338257 + 0.883066i
\(733\) −5.93474 10.2793i −0.219205 0.379674i 0.735360 0.677676i \(-0.237013\pi\)
−0.954565 + 0.298003i \(0.903680\pi\)
\(734\) −2.21466 3.83590i −0.0817444 0.141586i
\(735\) −1.28947 1.59005i −0.0475627 0.0586497i
\(736\) −7.73461 + 13.3967i −0.285102 + 0.493810i
\(737\) −12.9929 −0.478598
\(738\) −5.43504 4.87975i −0.200066 0.179626i
\(739\) −12.1844 −0.448212 −0.224106 0.974565i \(-0.571946\pi\)
−0.224106 + 0.974565i \(0.571946\pi\)
\(740\) −10.9601 + 18.9834i −0.402900 + 0.697843i
\(741\) 3.32326 0.528775i 0.122083 0.0194250i
\(742\) 1.38727 + 2.40283i 0.0509285 + 0.0882107i
\(743\) 22.2427 + 38.5255i 0.816005 + 1.41336i 0.908604 + 0.417659i \(0.137149\pi\)
−0.0925987 + 0.995704i \(0.529517\pi\)
\(744\) 2.67743 0.426015i 0.0981593 0.0156185i
\(745\) −6.56634 + 11.3732i −0.240572 + 0.416683i
\(746\) −3.74472 −0.137104
\(747\) −19.7999 + 6.46451i −0.724439 + 0.236524i
\(748\) −49.9579 −1.82664
\(749\) 6.86389 11.8886i 0.250801 0.434400i
\(750\) −2.65267 3.27101i −0.0968616 0.119440i
\(751\) −21.4029 37.0709i −0.781002 1.35274i −0.931358 0.364104i \(-0.881375\pi\)
0.150356 0.988632i \(-0.451958\pi\)
\(752\) −10.6666 18.4752i −0.388972 0.673720i
\(753\) 11.8200 30.8577i 0.430744 1.12452i
\(754\) 0.0285900 0.0495193i 0.00104119 0.00180339i
\(755\) 16.4567 0.598919
\(756\) 8.98508 4.60230i 0.326784 0.167384i
\(757\) −22.4919 −0.817483 −0.408741 0.912650i \(-0.634032\pi\)
−0.408741 + 0.912650i \(0.634032\pi\)
\(758\) 0.482760 0.836165i 0.0175346 0.0303709i
\(759\) −12.8571 + 33.5651i −0.466681 + 1.21833i
\(760\) −1.08250 1.87495i −0.0392664 0.0680114i
\(761\) 7.16827 + 12.4158i 0.259850 + 0.450073i 0.966201 0.257788i \(-0.0829937\pi\)
−0.706352 + 0.707861i \(0.749660\pi\)
\(762\) 0.349525 + 0.431001i 0.0126620 + 0.0156135i
\(763\) 0.631600 1.09396i 0.0228655 0.0396041i
\(764\) −29.2736 −1.05908
\(765\) 5.08414 24.0874i 0.183817 0.870880i
\(766\) −0.0539104 −0.00194786
\(767\) −1.30150 + 2.25427i −0.0469946 + 0.0813971i
\(768\) 19.8750 3.16237i 0.717177 0.114112i
\(769\) 15.6105 + 27.0382i 0.562930 + 0.975024i 0.997239 + 0.0742597i \(0.0236594\pi\)
−0.434309 + 0.900764i \(0.643007\pi\)
\(770\) 0.523388 + 0.906535i 0.0188616 + 0.0326693i
\(771\) −25.3880 + 4.03956i −0.914325 + 0.145481i
\(772\) −7.62352 + 13.2043i −0.274376 + 0.475234i
\(773\) 4.38005 0.157539 0.0787697 0.996893i \(-0.474901\pi\)
0.0787697 + 0.996893i \(0.474901\pi\)
\(774\) 0.329704