# Properties

 Label 63.2.f.b.22.3 Level $63$ Weight $2$ Character 63.22 Analytic conductor $0.503$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [63,2,Mod(22,63)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(63, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([2, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("63.22");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$63 = 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 63.f (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$0.503057532734$$ Analytic rank: $$0$$ Dimension: $$6$$ Relative dimension: $$3$$ over $$\Q(\zeta_{3})$$ Coefficient field: 6.0.309123.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3$$ x^6 - 3*x^5 + 10*x^4 - 15*x^3 + 19*x^2 - 12*x + 3 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 22.3 Root $$0.500000 - 2.05195i$$ of defining polynomial Character $$\chi$$ $$=$$ 63.22 Dual form 63.2.f.b.43.3

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(1.23025 + 2.13086i) q^{2} +(-1.73025 - 0.0789082i) q^{3} +(-2.02704 + 3.51094i) q^{4} +(1.29679 - 2.24611i) q^{5} +(-1.96050 - 3.78400i) q^{6} +(0.500000 + 0.866025i) q^{7} -5.05408 q^{8} +(2.98755 + 0.273062i) q^{9} +O(q^{10})$$ $$q+(1.23025 + 2.13086i) q^{2} +(-1.73025 - 0.0789082i) q^{3} +(-2.02704 + 3.51094i) q^{4} +(1.29679 - 2.24611i) q^{5} +(-1.96050 - 3.78400i) q^{6} +(0.500000 + 0.866025i) q^{7} -5.05408 q^{8} +(2.98755 + 0.273062i) q^{9} +6.38151 q^{10} +(-2.25729 - 3.90975i) q^{11} +(3.78434 - 5.91486i) q^{12} +(-0.500000 + 0.866025i) q^{13} +(-1.23025 + 2.13086i) q^{14} +(-2.42101 + 3.78400i) q^{15} +(-2.16372 - 3.74766i) q^{16} -0.945916 q^{17} +(3.09358 + 6.70198i) q^{18} -4.05408 q^{19} +(5.25729 + 9.10590i) q^{20} +(-0.796790 - 1.53790i) q^{21} +(5.55408 - 9.61996i) q^{22} +(0.136673 - 0.236725i) q^{23} +(8.74484 + 0.398809i) q^{24} +(-0.863327 - 1.49533i) q^{25} -2.46050 q^{26} +(-5.14766 - 0.708209i) q^{27} -4.05408 q^{28} +(-1.23025 - 2.13086i) q^{29} +(-11.0416 - 0.503554i) q^{30} +(-1.16372 + 2.01561i) q^{31} +(0.269748 - 0.467216i) q^{32} +(3.59718 + 6.94297i) q^{33} +(-1.16372 - 2.01561i) q^{34} +2.59358 q^{35} +(-7.01459 + 9.93559i) q^{36} +1.78074 q^{37} +(-4.98755 - 8.63868i) q^{38} +(0.933463 - 1.45899i) q^{39} +(-6.55408 + 11.3520i) q^{40} +(3.20321 - 5.54812i) q^{41} +(2.29679 - 3.58985i) q^{42} +(5.21780 + 9.03749i) q^{43} +18.3025 q^{44} +(4.48755 - 6.35624i) q^{45} +0.672570 q^{46} +(6.08113 + 10.5328i) q^{47} +(3.44805 + 6.65514i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(2.12422 - 3.67926i) q^{50} +(1.63667 + 0.0746406i) q^{51} +(-2.02704 - 3.51094i) q^{52} -6.27335 q^{53} +(-4.82383 - 11.8402i) q^{54} -11.7089 q^{55} +(-2.52704 - 4.37697i) q^{56} +(7.01459 + 0.319901i) q^{57} +(3.02704 - 5.24299i) q^{58} +(1.36333 - 2.36135i) q^{59} +(-8.37792 - 16.1704i) q^{60} +(1.13667 + 1.96878i) q^{61} -5.72665 q^{62} +(1.25729 + 2.72382i) q^{63} -7.32743 q^{64} +(1.29679 + 2.24611i) q^{65} +(-10.3691 + 16.2067i) q^{66} +(7.90856 - 13.6980i) q^{67} +(1.91741 - 3.32105i) q^{68} +(-0.255158 + 0.398809i) q^{69} +(3.19076 + 5.52655i) q^{70} +3.27335 q^{71} +(-15.0993 - 1.38008i) q^{72} -1.50739 q^{73} +(2.19076 + 3.79450i) q^{74} +(1.37578 + 2.65542i) q^{75} +(8.21780 - 14.2336i) q^{76} +(2.25729 - 3.90975i) q^{77} +(4.25729 + 0.194154i) q^{78} +(-7.35447 - 12.7383i) q^{79} -11.2235 q^{80} +(8.85087 + 1.63157i) q^{81} +15.7630 q^{82} +(0.472958 + 0.819187i) q^{83} +(7.01459 + 0.319901i) q^{84} +(-1.22665 + 2.12463i) q^{85} +(-12.8384 + 22.2368i) q^{86} +(1.96050 + 3.78400i) q^{87} +(11.4086 + 19.7602i) q^{88} -14.3566 q^{89} +(19.0651 + 1.74255i) q^{90} -1.00000 q^{91} +(0.554084 + 0.959702i) q^{92} +(2.17257 - 3.39569i) q^{93} +(-14.9626 + 25.9161i) q^{94} +(-5.25729 + 9.10590i) q^{95} +(-0.503599 + 0.787117i) q^{96} +(5.74484 + 9.95036i) q^{97} -2.46050 q^{98} +(-5.67617 - 12.2969i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q + q^{2} - 4 q^{3} - 3 q^{4} + 5 q^{5} + q^{6} + 3 q^{7} - 12 q^{8} - 4 q^{9}+O(q^{10})$$ 6 * q + q^2 - 4 * q^3 - 3 * q^4 + 5 * q^5 + q^6 + 3 * q^7 - 12 * q^8 - 4 * q^9 $$6 q + q^{2} - 4 q^{3} - 3 q^{4} + 5 q^{5} + q^{6} + 3 q^{7} - 12 q^{8} - 4 q^{9} + 2 q^{11} - 2 q^{12} - 3 q^{13} - q^{14} + 11 q^{15} - 3 q^{16} - 24 q^{17} + 13 q^{18} - 6 q^{19} + 16 q^{20} - 2 q^{21} + 15 q^{22} + 15 q^{24} - 6 q^{25} - 2 q^{26} - 7 q^{27} - 6 q^{28} - q^{29} - 26 q^{30} + 3 q^{31} + 8 q^{32} + 8 q^{33} + 3 q^{34} + 10 q^{35} - 11 q^{36} - 6 q^{37} - 8 q^{38} + 2 q^{39} - 21 q^{40} + 22 q^{41} + 11 q^{42} + 3 q^{43} + 46 q^{44} + 5 q^{45} + 24 q^{46} + 9 q^{47} - 14 q^{48} - 3 q^{49} - 10 q^{50} + 9 q^{51} - 3 q^{52} - 36 q^{53} - 17 q^{54} - 12 q^{55} - 6 q^{56} + 11 q^{57} + 9 q^{58} + 9 q^{59} - 20 q^{60} + 6 q^{61} - 36 q^{62} - 8 q^{63} - 24 q^{64} + 5 q^{65} - 2 q^{66} - 6 q^{68} - 39 q^{69} + 18 q^{71} - 24 q^{72} + 6 q^{73} - 6 q^{74} + 31 q^{75} + 21 q^{76} - 2 q^{77} + 10 q^{78} - 15 q^{79} + 22 q^{80} + 32 q^{81} + 18 q^{82} + 12 q^{83} + 11 q^{84} - 9 q^{85} - 34 q^{86} - q^{87} + 21 q^{88} - 4 q^{89} + 73 q^{90} - 6 q^{91} - 15 q^{92} + 33 q^{93} - 24 q^{94} - 16 q^{95} + 5 q^{96} - 3 q^{97} - 2 q^{98} - 46 q^{99}+O(q^{100})$$ 6 * q + q^2 - 4 * q^3 - 3 * q^4 + 5 * q^5 + q^6 + 3 * q^7 - 12 * q^8 - 4 * q^9 + 2 * q^11 - 2 * q^12 - 3 * q^13 - q^14 + 11 * q^15 - 3 * q^16 - 24 * q^17 + 13 * q^18 - 6 * q^19 + 16 * q^20 - 2 * q^21 + 15 * q^22 + 15 * q^24 - 6 * q^25 - 2 * q^26 - 7 * q^27 - 6 * q^28 - q^29 - 26 * q^30 + 3 * q^31 + 8 * q^32 + 8 * q^33 + 3 * q^34 + 10 * q^35 - 11 * q^36 - 6 * q^37 - 8 * q^38 + 2 * q^39 - 21 * q^40 + 22 * q^41 + 11 * q^42 + 3 * q^43 + 46 * q^44 + 5 * q^45 + 24 * q^46 + 9 * q^47 - 14 * q^48 - 3 * q^49 - 10 * q^50 + 9 * q^51 - 3 * q^52 - 36 * q^53 - 17 * q^54 - 12 * q^55 - 6 * q^56 + 11 * q^57 + 9 * q^58 + 9 * q^59 - 20 * q^60 + 6 * q^61 - 36 * q^62 - 8 * q^63 - 24 * q^64 + 5 * q^65 - 2 * q^66 - 6 * q^68 - 39 * q^69 + 18 * q^71 - 24 * q^72 + 6 * q^73 - 6 * q^74 + 31 * q^75 + 21 * q^76 - 2 * q^77 + 10 * q^78 - 15 * q^79 + 22 * q^80 + 32 * q^81 + 18 * q^82 + 12 * q^83 + 11 * q^84 - 9 * q^85 - 34 * q^86 - q^87 + 21 * q^88 - 4 * q^89 + 73 * q^90 - 6 * q^91 - 15 * q^92 + 33 * q^93 - 24 * q^94 - 16 * q^95 + 5 * q^96 - 3 * q^97 - 2 * q^98 - 46 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/63\mathbb{Z}\right)^\times$$.

 $$n$$ $$10$$ $$29$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.23025 + 2.13086i 0.869920 + 1.50675i 0.862078 + 0.506776i $$0.169163\pi$$
0.00784213 + 0.999969i $$0.497504\pi$$
$$3$$ −1.73025 0.0789082i −0.998962 0.0455577i
$$4$$ −2.02704 + 3.51094i −1.01352 + 1.75547i
$$5$$ 1.29679 2.24611i 0.579942 1.00449i −0.415543 0.909573i $$-0.636409\pi$$
0.995485 0.0949156i $$-0.0302581\pi$$
$$6$$ −1.96050 3.78400i −0.800373 1.54481i
$$7$$ 0.500000 + 0.866025i 0.188982 + 0.327327i
$$8$$ −5.05408 −1.78689
$$9$$ 2.98755 + 0.273062i 0.995849 + 0.0910208i
$$10$$ 6.38151 2.01801
$$11$$ −2.25729 3.90975i −0.680600 1.17883i −0.974798 0.223089i $$-0.928386\pi$$
0.294198 0.955744i $$-0.404947\pi$$
$$12$$ 3.78434 5.91486i 1.09244 1.70747i
$$13$$ −0.500000 + 0.866025i −0.138675 + 0.240192i −0.926995 0.375073i $$-0.877618\pi$$
0.788320 + 0.615265i $$0.210951\pi$$
$$14$$ −1.23025 + 2.13086i −0.328799 + 0.569496i
$$15$$ −2.42101 + 3.78400i −0.625102 + 0.977025i
$$16$$ −2.16372 3.74766i −0.540929 0.936916i
$$17$$ −0.945916 −0.229418 −0.114709 0.993399i $$-0.536594\pi$$
−0.114709 + 0.993399i $$0.536594\pi$$
$$18$$ 3.09358 + 6.70198i 0.729164 + 1.57967i
$$19$$ −4.05408 −0.930071 −0.465035 0.885292i $$-0.653958\pi$$
−0.465035 + 0.885292i $$0.653958\pi$$
$$20$$ 5.25729 + 9.10590i 1.17557 + 2.03614i
$$21$$ −0.796790 1.53790i −0.173874 0.335597i
$$22$$ 5.55408 9.61996i 1.18413 2.05098i
$$23$$ 0.136673 0.236725i 0.0284983 0.0493605i −0.851425 0.524477i $$-0.824261\pi$$
0.879923 + 0.475117i $$0.157594\pi$$
$$24$$ 8.74484 + 0.398809i 1.78503 + 0.0814065i
$$25$$ −0.863327 1.49533i −0.172665 0.299065i
$$26$$ −2.46050 −0.482545
$$27$$ −5.14766 0.708209i −0.990668 0.136295i
$$28$$ −4.05408 −0.766150
$$29$$ −1.23025 2.13086i −0.228452 0.395691i 0.728897 0.684623i $$-0.240033\pi$$
−0.957350 + 0.288932i $$0.906700\pi$$
$$30$$ −11.0416 0.503554i −2.01592 0.0919360i
$$31$$ −1.16372 + 2.01561i −0.209009 + 0.362015i −0.951403 0.307949i $$-0.900357\pi$$
0.742393 + 0.669964i $$0.233691\pi$$
$$32$$ 0.269748 0.467216i 0.0476851 0.0825930i
$$33$$ 3.59718 + 6.94297i 0.626188 + 1.20862i
$$34$$ −1.16372 2.01561i −0.199576 0.345675i
$$35$$ 2.59358 0.438395
$$36$$ −7.01459 + 9.93559i −1.16910 + 1.65593i
$$37$$ 1.78074 0.292752 0.146376 0.989229i $$-0.453239\pi$$
0.146376 + 0.989229i $$0.453239\pi$$
$$38$$ −4.98755 8.63868i −0.809087 1.40138i
$$39$$ 0.933463 1.45899i 0.149474 0.233625i
$$40$$ −6.55408 + 11.3520i −1.03629 + 1.79491i
$$41$$ 3.20321 5.54812i 0.500257 0.866471i −0.499743 0.866174i $$-0.666572\pi$$
1.00000 0.000297253i $$-9.46187e-5\pi$$
$$42$$ 2.29679 3.58985i 0.354402 0.553926i
$$43$$ 5.21780 + 9.03749i 0.795707 + 1.37820i 0.922389 + 0.386262i $$0.126234\pi$$
−0.126682 + 0.991943i $$0.540433\pi$$
$$44$$ 18.3025 2.75921
$$45$$ 4.48755 6.35624i 0.668964 0.947533i
$$46$$ 0.672570 0.0991650
$$47$$ 6.08113 + 10.5328i 0.887023 + 1.53637i 0.843377 + 0.537323i $$0.180564\pi$$
0.0436467 + 0.999047i $$0.486102\pi$$
$$48$$ 3.44805 + 6.65514i 0.497683 + 0.960587i
$$49$$ −0.500000 + 0.866025i −0.0714286 + 0.123718i
$$50$$ 2.12422 3.67926i 0.300410 0.520326i
$$51$$ 1.63667 + 0.0746406i 0.229180 + 0.0104518i
$$52$$ −2.02704 3.51094i −0.281100 0.486880i
$$53$$ −6.27335 −0.861710 −0.430855 0.902421i $$-0.641788\pi$$
−0.430855 + 0.902421i $$0.641788\pi$$
$$54$$ −4.82383 11.8402i −0.656440 1.61125i
$$55$$ −11.7089 −1.57883
$$56$$ −2.52704 4.37697i −0.337690 0.584897i
$$57$$ 7.01459 + 0.319901i 0.929105 + 0.0423719i
$$58$$ 3.02704 5.24299i 0.397470 0.688438i
$$59$$ 1.36333 2.36135i 0.177490 0.307422i −0.763530 0.645772i $$-0.776536\pi$$
0.941020 + 0.338350i $$0.109869\pi$$
$$60$$ −8.37792 16.1704i −1.08158 2.08758i
$$61$$ 1.13667 + 1.96878i 0.145536 + 0.252076i 0.929573 0.368639i $$-0.120176\pi$$
−0.784037 + 0.620714i $$0.786843\pi$$
$$62$$ −5.72665 −0.727286
$$63$$ 1.25729 + 2.72382i 0.158404 + 0.343169i
$$64$$ −7.32743 −0.915929
$$65$$ 1.29679 + 2.24611i 0.160847 + 0.278595i
$$66$$ −10.3691 + 16.2067i −1.27634 + 1.99491i
$$67$$ 7.90856 13.6980i 0.966184 1.67348i 0.259784 0.965667i $$-0.416349\pi$$
0.706400 0.707813i $$-0.250318\pi$$
$$68$$ 1.91741 3.32105i 0.232520 0.402737i
$$69$$ −0.255158 + 0.398809i −0.0307175 + 0.0480110i
$$70$$ 3.19076 + 5.52655i 0.381368 + 0.660550i
$$71$$ 3.27335 0.388475 0.194237 0.980955i $$-0.437777\pi$$
0.194237 + 0.980955i $$0.437777\pi$$
$$72$$ −15.0993 1.38008i −1.77947 0.162644i
$$73$$ −1.50739 −0.176427 −0.0882134 0.996102i $$-0.528116\pi$$
−0.0882134 + 0.996102i $$0.528116\pi$$
$$74$$ 2.19076 + 3.79450i 0.254670 + 0.441102i
$$75$$ 1.37578 + 2.65542i 0.158861 + 0.306621i
$$76$$ 8.21780 14.2336i 0.942646 1.63271i
$$77$$ 2.25729 3.90975i 0.257243 0.445557i
$$78$$ 4.25729 + 0.194154i 0.482044 + 0.0219836i
$$79$$ −7.35447 12.7383i −0.827443 1.43317i −0.900038 0.435811i $$-0.856461\pi$$
0.0725952 0.997361i $$-0.476872\pi$$
$$80$$ −11.2235 −1.25483
$$81$$ 8.85087 + 1.63157i 0.983430 + 0.181286i
$$82$$ 15.7630 1.74074
$$83$$ 0.472958 + 0.819187i 0.0519139 + 0.0899175i 0.890815 0.454367i $$-0.150135\pi$$
−0.838901 + 0.544285i $$0.816801\pi$$
$$84$$ 7.01459 + 0.319901i 0.765354 + 0.0349040i
$$85$$ −1.22665 + 2.12463i −0.133049 + 0.230448i
$$86$$ −12.8384 + 22.2368i −1.38440 + 2.39786i
$$87$$ 1.96050 + 3.78400i 0.210188 + 0.405688i
$$88$$ 11.4086 + 19.7602i 1.21616 + 2.10644i
$$89$$ −14.3566 −1.52180 −0.760899 0.648871i $$-0.775242\pi$$
−0.760899 + 0.648871i $$0.775242\pi$$
$$90$$ 19.0651 + 1.74255i 2.00964 + 0.183681i
$$91$$ −1.00000 −0.104828
$$92$$ 0.554084 + 0.959702i 0.0577673 + 0.100056i
$$93$$ 2.17257 3.39569i 0.225285 0.352117i
$$94$$ −14.9626 + 25.9161i −1.54328 + 2.67304i
$$95$$ −5.25729 + 9.10590i −0.539387 + 0.934246i
$$96$$ −0.503599 + 0.787117i −0.0513983 + 0.0803348i
$$97$$ 5.74484 + 9.95036i 0.583300 + 1.01031i 0.995085 + 0.0990246i $$0.0315722\pi$$
−0.411785 + 0.911281i $$0.635094\pi$$
$$98$$ −2.46050 −0.248549
$$99$$ −5.67617 12.2969i −0.570476 1.23589i
$$100$$ 7.00000 0.700000
$$101$$ 1.83988 + 3.18677i 0.183075 + 0.317096i 0.942926 0.333002i $$-0.108061\pi$$
−0.759851 + 0.650097i $$0.774728\pi$$
$$102$$ 1.85447 + 3.57935i 0.183620 + 0.354408i
$$103$$ 4.86333 8.42353i 0.479198 0.829995i −0.520518 0.853851i $$-0.674261\pi$$
0.999715 + 0.0238560i $$0.00759431\pi$$
$$104$$ 2.52704 4.37697i 0.247797 0.429197i
$$105$$ −4.48755 0.204655i −0.437940 0.0199723i
$$106$$ −7.71780 13.3676i −0.749619 1.29838i
$$107$$ −1.37432 −0.132860 −0.0664301 0.997791i $$-0.521161\pi$$
−0.0664301 + 0.997791i $$0.521161\pi$$
$$108$$ 12.9210 16.6376i 1.24332 1.60095i
$$109$$ −3.39922 −0.325587 −0.162793 0.986660i $$-0.552050\pi$$
−0.162793 + 0.986660i $$0.552050\pi$$
$$110$$ −14.4050 24.9501i −1.37346 2.37890i
$$111$$ −3.08113 0.140515i −0.292448 0.0133371i
$$112$$ 2.16372 3.74766i 0.204452 0.354121i
$$113$$ −5.19436 + 8.99689i −0.488644 + 0.846356i −0.999915 0.0130636i $$-0.995842\pi$$
0.511271 + 0.859420i $$0.329175\pi$$
$$114$$ 7.94805 + 15.3407i 0.744403 + 1.43678i
$$115$$ −0.354473 0.613964i −0.0330547 0.0572525i
$$116$$ 9.97509 0.926164
$$117$$ −1.73025 + 2.45076i −0.159962 + 0.226573i
$$118$$ 6.70895 0.617608
$$119$$ −0.472958 0.819187i −0.0433560 0.0750948i
$$120$$ 12.2360 19.1247i 1.11699 1.74584i
$$121$$ −4.69076 + 8.12463i −0.426432 + 0.738603i
$$122$$ −2.79679 + 4.84418i −0.253209 + 0.438572i
$$123$$ −5.98016 + 9.34689i −0.539212 + 0.842781i
$$124$$ −4.71780 8.17147i −0.423671 0.733820i
$$125$$ 8.48968 0.759340
$$126$$ −4.25729 + 6.03011i −0.379270 + 0.537205i
$$127$$ 0.672570 0.0596809 0.0298405 0.999555i $$-0.490500\pi$$
0.0298405 + 0.999555i $$0.490500\pi$$
$$128$$ −9.55408 16.5482i −0.844470 1.46266i
$$129$$ −8.31498 16.0489i −0.732093 1.41302i
$$130$$ −3.19076 + 5.52655i −0.279848 + 0.484711i
$$131$$ −3.95691 + 6.85356i −0.345717 + 0.598799i −0.985484 0.169770i $$-0.945697\pi$$
0.639767 + 0.768569i $$0.279031\pi$$
$$132$$ −31.6680 1.44422i −2.75634 0.125703i
$$133$$ −2.02704 3.51094i −0.175767 0.304437i
$$134$$ 38.9181 3.36201
$$135$$ −8.26615 + 10.6438i −0.711437 + 0.916072i
$$136$$ 4.78074 0.409945
$$137$$ 1.83628 + 3.18054i 0.156884 + 0.271732i 0.933744 0.357943i $$-0.116522\pi$$
−0.776859 + 0.629674i $$0.783188\pi$$
$$138$$ −1.16372 0.0530713i −0.0990620 0.00451773i
$$139$$ 1.02704 1.77889i 0.0871126 0.150883i −0.819177 0.573541i $$-0.805569\pi$$
0.906289 + 0.422658i $$0.138903\pi$$
$$140$$ −5.25729 + 9.10590i −0.444322 + 0.769589i
$$141$$ −9.69076 18.7043i −0.816109 1.57519i
$$142$$ 4.02704 + 6.97504i 0.337942 + 0.585332i
$$143$$ 4.51459 0.377529
$$144$$ −5.44085 11.7872i −0.453405 0.982263i
$$145$$ −6.38151 −0.529956
$$146$$ −1.85447 3.21204i −0.153477 0.265830i
$$147$$ 0.933463 1.45899i 0.0769907 0.120335i
$$148$$ −3.60963 + 6.25206i −0.296710 + 0.513917i
$$149$$ 6.77188 11.7292i 0.554774 0.960897i −0.443147 0.896449i $$-0.646138\pi$$
0.997921 0.0644482i $$-0.0205287\pi$$
$$150$$ −3.96576 + 6.19843i −0.323803 + 0.506099i
$$151$$ −4.96410 8.59808i −0.403973 0.699702i 0.590228 0.807236i $$-0.299038\pi$$
−0.994201 + 0.107535i $$0.965704\pi$$
$$152$$ 20.4897 1.66193
$$153$$ −2.82597 0.258294i −0.228466 0.0208818i
$$154$$ 11.1082 0.895122
$$155$$ 3.01819 + 5.22765i 0.242427 + 0.419895i
$$156$$ 3.23025 + 6.23476i 0.258627 + 0.499181i
$$157$$ −3.02704 + 5.24299i −0.241584 + 0.418436i −0.961166 0.275972i $$-0.911000\pi$$
0.719581 + 0.694408i $$0.244334\pi$$
$$158$$ 18.0957 31.3427i 1.43962 2.49349i
$$159$$ 10.8545 + 0.495019i 0.860816 + 0.0392575i
$$160$$ −0.699612 1.21176i −0.0553092 0.0957983i
$$161$$ 0.273346 0.0215427
$$162$$ 7.41216 + 20.8672i 0.582354 + 1.63948i
$$163$$ 17.8171 1.39554 0.697772 0.716320i $$-0.254175\pi$$
0.697772 + 0.716320i $$0.254175\pi$$
$$164$$ 12.9861 + 22.4926i 1.01404 + 1.75637i
$$165$$ 20.2594 + 0.923932i 1.57719 + 0.0719280i
$$166$$ −1.16372 + 2.01561i −0.0903218 + 0.156442i
$$167$$ 4.23385 7.33325i 0.327625 0.567464i −0.654415 0.756136i $$-0.727085\pi$$
0.982040 + 0.188672i $$0.0604183\pi$$
$$168$$ 4.02704 + 7.77266i 0.310693 + 0.599674i
$$169$$ 6.00000 + 10.3923i 0.461538 + 0.799408i
$$170$$ −6.03638 −0.462969
$$171$$ −12.1118 1.10702i −0.926210 0.0846558i
$$172$$ −42.3068 −3.22586
$$173$$ −8.67830 15.0313i −0.659799 1.14281i −0.980667 0.195682i $$-0.937308\pi$$
0.320868 0.947124i $$-0.396025\pi$$
$$174$$ −5.65126 + 8.83284i −0.428421 + 0.669616i
$$175$$ 0.863327 1.49533i 0.0652614 0.113036i
$$176$$ −9.76829 + 16.9192i −0.736312 + 1.27533i
$$177$$ −2.54523 + 3.97816i −0.191311 + 0.299017i
$$178$$ −17.6623 30.5919i −1.32384 2.29296i
$$179$$ −11.3494 −0.848295 −0.424147 0.905593i $$-0.639426\pi$$
−0.424147 + 0.905593i $$0.639426\pi$$
$$180$$ 13.2199 + 28.6399i 0.985356 + 2.13469i
$$181$$ 21.8889 1.62699 0.813495 0.581572i $$-0.197562\pi$$
0.813495 + 0.581572i $$0.197562\pi$$
$$182$$ −1.23025 2.13086i −0.0911924 0.157950i
$$183$$ −1.81138 3.49617i −0.133901 0.258444i
$$184$$ −0.690757 + 1.19643i −0.0509233 + 0.0882018i
$$185$$ 2.30924 3.99973i 0.169779 0.294066i
$$186$$ 9.90856 + 0.451880i 0.726531 + 0.0331335i
$$187$$ 2.13521 + 3.69829i 0.156142 + 0.270446i
$$188$$ −49.3068 −3.59607
$$189$$ −1.96050 4.81211i −0.142606 0.350030i
$$190$$ −25.8712 −1.87689
$$191$$ 0.350874 + 0.607731i 0.0253883 + 0.0439739i 0.878440 0.477852i $$-0.158584\pi$$
−0.853052 + 0.521826i $$0.825251\pi$$
$$192$$ 12.6783 + 0.578195i 0.914978 + 0.0417276i
$$193$$ −6.07227 + 10.5175i −0.437092 + 0.757065i −0.997464 0.0711760i $$-0.977325\pi$$
0.560372 + 0.828241i $$0.310658\pi$$
$$194$$ −14.1352 + 24.4829i −1.01485 + 1.75777i
$$195$$ −2.06654 3.98866i −0.147988 0.285634i
$$196$$ −2.02704 3.51094i −0.144789 0.250781i
$$197$$ −16.4107 −1.16921 −0.584607 0.811317i $$-0.698751\pi$$
−0.584607 + 0.811317i $$0.698751\pi$$
$$198$$ 19.2199 27.2235i 1.36590 1.93469i
$$199$$ 22.7060 1.60959 0.804794 0.593555i $$-0.202276\pi$$
0.804794 + 0.593555i $$0.202276\pi$$
$$200$$ 4.36333 + 7.55750i 0.308534 + 0.534396i
$$201$$ −14.7647 + 23.0770i −1.04142 + 1.62773i
$$202$$ −4.52704 + 7.84107i −0.318522 + 0.551696i
$$203$$ 1.23025 2.13086i 0.0863468 0.149557i
$$204$$ −3.57966 + 5.59496i −0.250627 + 0.391726i
$$205$$ −8.30778 14.3895i −0.580241 1.00501i
$$206$$ 23.9325 1.66745
$$207$$ 0.472958 0.669906i 0.0328728 0.0465617i
$$208$$ 4.32743 0.300053
$$209$$ 9.15126 + 15.8505i 0.633006 + 1.09640i
$$210$$ −5.08472 9.81411i −0.350879 0.677238i
$$211$$ −2.28074 + 3.95035i −0.157012 + 0.271954i −0.933790 0.357822i $$-0.883520\pi$$
0.776778 + 0.629775i $$0.216853\pi$$
$$212$$ 12.7163 22.0253i 0.873362 1.51271i
$$213$$ −5.66372 0.258294i −0.388071 0.0176980i
$$214$$ −1.69076 2.92848i −0.115578 0.200187i
$$215$$ 27.0656 1.84586
$$216$$ 26.0167 + 3.57935i 1.77021 + 0.243544i
$$217$$ −2.32743 −0.157996
$$218$$ −4.18190 7.24327i −0.283234 0.490576i
$$219$$ 2.60817 + 0.118946i 0.176244 + 0.00803760i
$$220$$ 23.7345 41.1094i 1.60018 2.77160i
$$221$$ 0.472958 0.819187i 0.0318146 0.0551045i
$$222$$ −3.49115 6.73832i −0.234310 0.452246i
$$223$$ −6.66225 11.5394i −0.446137 0.772733i 0.551993 0.833849i $$-0.313867\pi$$
−0.998131 + 0.0611159i $$0.980534\pi$$
$$224$$ 0.539495 0.0360465
$$225$$ −2.17091 4.70310i −0.144727 0.313540i
$$226$$ −25.5615 −1.70032
$$227$$ −0.690757 1.19643i −0.0458472 0.0794096i 0.842191 0.539179i $$-0.181265\pi$$
−0.888038 + 0.459769i $$0.847932\pi$$
$$228$$ −15.3420 + 23.9793i −1.01605 + 1.58807i
$$229$$ 8.98968 15.5706i 0.594055 1.02893i −0.399625 0.916679i $$-0.630859\pi$$
0.993679 0.112254i $$-0.0358072\pi$$
$$230$$ 0.872181 1.51066i 0.0575099 0.0996101i
$$231$$ −4.21420 + 6.58673i −0.277274 + 0.433375i
$$232$$ 6.21780 + 10.7695i 0.408219 + 0.707055i
$$233$$ −18.9823 −1.24357 −0.621786 0.783187i $$-0.713592\pi$$
−0.621786 + 0.783187i $$0.713592\pi$$
$$234$$ −7.35087 0.671871i −0.480542 0.0439216i
$$235$$ 31.5438 2.05769
$$236$$ 5.52704 + 9.57312i 0.359780 + 0.623157i
$$237$$ 11.7199 + 22.6208i 0.761292 + 1.46938i
$$238$$ 1.16372 2.01561i 0.0754325 0.130653i
$$239$$ −2.44592 + 4.23645i −0.158213 + 0.274033i −0.934224 0.356686i $$-0.883907\pi$$
0.776011 + 0.630719i $$0.217240\pi$$
$$240$$ 19.4195 + 0.885629i 1.25353 + 0.0571671i
$$241$$ 13.0797 + 22.6546i 0.842535 + 1.45931i 0.887745 + 0.460336i $$0.152271\pi$$
−0.0452094 + 0.998978i $$0.514396\pi$$
$$242$$ −23.0833 −1.48385
$$243$$ −15.1855 3.52144i −0.974150 0.225901i
$$244$$ −9.21634 −0.590016
$$245$$ 1.29679 + 2.24611i 0.0828489 + 0.143498i
$$246$$ −27.2740 1.24383i −1.73893 0.0793039i
$$247$$ 2.02704 3.51094i 0.128978 0.223396i
$$248$$ 5.88151 10.1871i 0.373477 0.646880i
$$249$$ −0.753696 1.45472i −0.0477635 0.0921892i
$$250$$ 10.4445 + 18.0903i 0.660565 + 1.14413i
$$251$$ 18.4576 1.16503 0.582516 0.812819i $$-0.302068\pi$$
0.582516 + 0.812819i $$0.302068\pi$$
$$252$$ −12.1118 1.10702i −0.762970 0.0697356i
$$253$$ −1.23405 −0.0775838
$$254$$ 0.827430 + 1.43315i 0.0519176 + 0.0899239i
$$255$$ 2.29007 3.57935i 0.143410 0.224147i
$$256$$ 16.1804 28.0253i 1.01128 1.75158i
$$257$$ 5.86693 10.1618i 0.365969 0.633876i −0.622962 0.782252i $$-0.714071\pi$$
0.988931 + 0.148375i $$0.0474044\pi$$
$$258$$ 23.9684 37.4622i 1.49221 2.33230i
$$259$$ 0.890369 + 1.54216i 0.0553248 + 0.0958254i
$$260$$ −10.5146 −0.652087
$$261$$ −3.09358 6.70198i −0.191488 0.414842i
$$262$$ −19.4720 −1.20298
$$263$$ 3.76089 + 6.51406i 0.231907 + 0.401674i 0.958369 0.285532i $$-0.0921703\pi$$
−0.726463 + 0.687206i $$0.758837\pi$$
$$264$$ −18.1804 35.0904i −1.11893 2.15966i
$$265$$ −8.13521 + 14.0906i −0.499742 + 0.865579i
$$266$$ 4.98755 8.63868i 0.305806 0.529672i
$$267$$ 24.8406 + 1.13285i 1.52022 + 0.0693296i
$$268$$ 32.0620 + 55.5329i 1.95850 + 3.39221i
$$269$$ −18.8348 −1.14838 −0.574190 0.818722i $$-0.694683\pi$$
−0.574190 + 0.818722i $$0.694683\pi$$
$$270$$ −32.8499 4.51945i −1.99918 0.275045i
$$271$$ −23.9823 −1.45682 −0.728410 0.685141i $$-0.759740\pi$$
−0.728410 + 0.685141i $$0.759740\pi$$
$$272$$ 2.04669 + 3.54498i 0.124099 + 0.214946i
$$273$$ 1.73025 + 0.0789082i 0.104720 + 0.00477574i
$$274$$ −4.51819 + 7.82573i −0.272954 + 0.472770i
$$275$$ −3.89757 + 6.75078i −0.235032 + 0.407088i
$$276$$ −0.882977 1.70425i −0.0531490 0.102584i
$$277$$ −3.58113 6.20269i −0.215169 0.372684i 0.738156 0.674630i $$-0.235697\pi$$
−0.953325 + 0.301947i $$0.902364\pi$$
$$278$$ 5.05408 0.303124
$$279$$ −4.02704 + 5.70397i −0.241093 + 0.341488i
$$280$$ −13.1082 −0.783363
$$281$$ −7.44085 12.8879i −0.443884 0.768830i 0.554090 0.832457i $$-0.313067\pi$$
−0.997974 + 0.0636271i $$0.979733\pi$$
$$282$$ 27.9341 43.6606i 1.66345 2.59995i
$$283$$ −9.99854 + 17.3180i −0.594351 + 1.02945i 0.399287 + 0.916826i $$0.369258\pi$$
−0.993638 + 0.112621i $$0.964076\pi$$
$$284$$ −6.63521 + 11.4925i −0.393727 + 0.681956i
$$285$$ 9.81498 15.3407i 0.581389 0.908703i
$$286$$ 5.55408 + 9.61996i 0.328420 + 0.568840i
$$287$$ 6.40642 0.378159
$$288$$ 0.933463 1.32217i 0.0550048 0.0779098i
$$289$$ −16.1052 −0.947367
$$290$$ −7.85087 13.5981i −0.461019 0.798509i
$$291$$ −9.15486 17.6699i −0.536667 1.03583i
$$292$$ 3.05555 5.29236i 0.178812 0.309712i
$$293$$ −7.53278 + 13.0472i −0.440070 + 0.762223i −0.997694 0.0678705i $$-0.978380\pi$$
0.557625 + 0.830093i $$0.311713\pi$$
$$294$$ 4.25729 + 0.194154i 0.248290 + 0.0113233i
$$295$$ −3.53590 6.12435i −0.205868 0.356574i
$$296$$ −9.00000 −0.523114
$$297$$ 8.85087 + 21.7247i 0.513580 + 1.26060i
$$298$$ 33.3245 1.93044
$$299$$ 0.136673 + 0.236725i 0.00790401 + 0.0136901i
$$300$$ −12.1118 0.552358i −0.699273 0.0318904i
$$301$$ −5.21780 + 9.03749i −0.300749 + 0.520912i
$$302$$ 12.2142 21.1556i 0.702848 1.21737i
$$303$$ −2.93200 5.65910i −0.168439 0.325107i
$$304$$ 8.77188 + 15.1933i 0.503102 + 0.871398i
$$305$$ 5.89610 0.337610
$$306$$ −2.92627 6.33951i −0.167283 0.362406i
$$307$$ −27.2704 −1.55641 −0.778203 0.628013i $$-0.783868\pi$$
−0.778203 + 0.628013i $$0.783868\pi$$
$$308$$ 9.15126 + 15.8505i 0.521442 + 0.903163i
$$309$$ −9.07947 + 14.1911i −0.516513 + 0.807302i
$$310$$ −7.42627 + 12.8627i −0.421784 + 0.730551i
$$311$$ 7.99115 13.8411i 0.453136 0.784855i −0.545443 0.838148i $$-0.683638\pi$$
0.998579 + 0.0532931i $$0.0169718\pi$$
$$312$$ −4.71780 + 7.37385i −0.267093 + 0.417462i
$$313$$ −5.79893 10.0440i −0.327775 0.567722i 0.654295 0.756239i $$-0.272965\pi$$
−0.982070 + 0.188517i $$0.939632\pi$$
$$314$$ −14.8961 −0.840636
$$315$$ 7.74844 + 0.708209i 0.436575 + 0.0399031i
$$316$$ 59.6313 3.35452
$$317$$ 1.00885 + 1.74739i 0.0566629 + 0.0981430i 0.892965 0.450125i $$-0.148621\pi$$
−0.836303 + 0.548268i $$0.815287\pi$$
$$318$$ 12.2989 + 23.7384i 0.689690 + 1.33118i
$$319$$ −5.55408 + 9.61996i −0.310969 + 0.538614i
$$320$$ −9.50214 + 16.4582i −0.531186 + 0.920040i
$$321$$ 2.37792 + 0.108445i 0.132722 + 0.00605281i
$$322$$ 0.336285 + 0.582462i 0.0187404 + 0.0324594i
$$323$$ 3.83482 0.213375
$$324$$ −23.6694 + 27.7676i −1.31497 + 1.54265i
$$325$$ 1.72665 0.0957775
$$326$$ 21.9195 + 37.9658i 1.21401 + 2.10273i
$$327$$ 5.88151 + 0.268227i 0.325249 + 0.0148330i
$$328$$ −16.1893 + 28.0407i −0.893904 + 1.54829i
$$329$$ −6.08113 + 10.5328i −0.335263 + 0.580693i
$$330$$ 22.9554 + 44.3067i 1.26366 + 2.43900i
$$331$$ 9.85447 + 17.0684i 0.541651 + 0.938167i 0.998809 + 0.0487815i $$0.0155338\pi$$
−0.457159 + 0.889385i $$0.651133\pi$$
$$332$$ −3.83482 −0.210463
$$333$$ 5.32004 + 0.486253i 0.291536 + 0.0266465i
$$334$$ 20.8348 1.14003
$$335$$ −20.5115 35.5269i −1.12066 1.94104i
$$336$$ −4.03950 + 6.31367i −0.220373 + 0.344439i
$$337$$ 14.5256 25.1590i 0.791259 1.37050i −0.133929 0.990991i $$-0.542759\pi$$
0.925188 0.379509i $$-0.123907\pi$$
$$338$$ −14.7630 + 25.5703i −0.803003 + 1.39084i
$$339$$ 9.69748 15.1570i 0.526695 0.823216i
$$340$$ −4.97296 8.61342i −0.269697 0.467128i
$$341$$ 10.5074 0.569007
$$342$$ −12.5416 27.1704i −0.678174 1.46921i
$$343$$ −1.00000 −0.0539949
$$344$$ −26.3712 45.6763i −1.42184 2.46270i
$$345$$ 0.564880 + 1.09028i 0.0304121 + 0.0586989i
$$346$$ 21.3530 36.9845i 1.14794 1.98830i
$$347$$ −14.5416 + 25.1868i −0.780636 + 1.35210i 0.150936 + 0.988544i $$0.451771\pi$$
−0.931572 + 0.363557i $$0.881562\pi$$
$$348$$ −17.2594 0.787117i −0.925203 0.0421939i
$$349$$ −12.3815 21.4454i −0.662767 1.14795i −0.979885 0.199561i $$-0.936049\pi$$
0.317118 0.948386i $$-0.397285\pi$$
$$350$$ 4.24844 0.227089
$$351$$ 3.18716 4.10390i 0.170118 0.219050i
$$352$$ −2.43560 −0.129818
$$353$$ 16.6513 + 28.8408i 0.886257 + 1.53504i 0.844266 + 0.535925i $$0.180037\pi$$
0.0419914 + 0.999118i $$0.486630\pi$$
$$354$$ −11.6082 0.529391i −0.616967 0.0281368i
$$355$$ 4.24484 7.35228i 0.225293 0.390219i
$$356$$ 29.1015 50.4052i 1.54237 2.67147i
$$357$$ 0.753696 + 1.45472i 0.0398898 + 0.0769920i
$$358$$ −13.9626 24.1840i −0.737949 1.27816i
$$359$$ 25.5366 1.34777 0.673884 0.738837i $$-0.264625\pi$$
0.673884 + 0.738837i $$0.264625\pi$$
$$360$$ −22.6804 + 32.1250i −1.19536 + 1.69314i
$$361$$ −2.56440 −0.134968
$$362$$ 26.9289 + 46.6422i 1.41535 + 2.45146i
$$363$$ 8.75729 13.6875i 0.459639 0.718409i
$$364$$ 2.02704 3.51094i 0.106246 0.184023i
$$365$$ −1.95477 + 3.38576i −0.102317 + 0.177219i
$$366$$ 5.22140 8.16097i 0.272927 0.426581i
$$367$$ −13.7252 23.7727i −0.716449 1.24093i −0.962398 0.271644i $$-0.912433\pi$$
0.245949 0.969283i $$-0.420900\pi$$
$$368$$ −1.18289 −0.0616622
$$369$$ 11.0847 15.7006i 0.577048 0.817341i
$$370$$ 11.3638 0.590776
$$371$$ −3.13667 5.43288i −0.162848 0.282061i
$$372$$ 7.51819 + 14.5110i 0.389800 + 0.752359i
$$373$$ −8.16372 + 14.1400i −0.422701 + 0.732140i −0.996203 0.0870646i $$-0.972251\pi$$
0.573502 + 0.819204i $$0.305585\pi$$
$$374$$ −5.25370 + 9.09967i −0.271662 + 0.470533i
$$375$$ −14.6893 0.669906i −0.758552 0.0345938i
$$376$$ −30.7345 53.2338i −1.58501 2.74532i
$$377$$ 2.46050 0.126722
$$378$$ 7.84202 10.0977i 0.403350 0.519368i
$$379$$ 12.0364 0.618267 0.309134 0.951019i $$-0.399961\pi$$
0.309134 + 0.951019i $$0.399961\pi$$
$$380$$ −21.3135 36.9161i −1.09336 1.89376i
$$381$$ −1.16372 0.0530713i −0.0596189 0.00271892i
$$382$$ −0.863327 + 1.49533i −0.0441716 + 0.0765075i
$$383$$ 6.21780 10.7695i 0.317715 0.550298i −0.662296 0.749242i $$-0.730418\pi$$
0.980011 + 0.198944i $$0.0637512\pi$$
$$384$$ 15.2252 + 29.3864i 0.776957 + 1.49962i
$$385$$ −5.85447 10.1402i −0.298372 0.516795i
$$386$$ −29.8817 −1.52094
$$387$$ 13.1206 + 28.4247i 0.666959 + 1.44491i
$$388$$ −46.5801 −2.36475
$$389$$ −10.3004 17.8408i −0.522250 0.904564i −0.999665 0.0258860i $$-0.991759\pi$$
0.477414 0.878678i $$-0.341574\pi$$
$$390$$ 5.95691 9.31056i 0.301640 0.471458i
$$391$$ −0.129281 + 0.223922i −0.00653803 + 0.0113242i
$$392$$ 2.52704 4.37697i 0.127635 0.221070i
$$393$$ 7.38725 11.5462i 0.372637 0.582427i
$$394$$ −20.1893 34.9689i −1.01712 1.76171i
$$395$$ −38.1488 −1.91948
$$396$$ 54.6797 + 4.99773i 2.74776 + 0.251145i
$$397$$ −23.6372 −1.18631 −0.593157 0.805087i $$-0.702119\pi$$
−0.593157 + 0.805087i $$0.702119\pi$$
$$398$$ 27.9341 + 48.3833i 1.40021 + 2.42524i
$$399$$ 3.23025 + 6.23476i 0.161715 + 0.312129i
$$400$$ −3.73599 + 6.47092i −0.186799 + 0.323546i
$$401$$ 1.28220 2.22084i 0.0640300 0.110903i −0.832233 0.554426i $$-0.812938\pi$$
0.896263 + 0.443522i $$0.146271\pi$$
$$402$$ −67.3381 3.07096i −3.35852 0.153165i
$$403$$ −1.16372 2.01561i −0.0579688 0.100405i
$$404$$ −14.9181 −0.742202
$$405$$ 15.1424 17.7642i 0.752432 0.882710i
$$406$$ 6.05408 0.300459
$$407$$ −4.01965 6.96224i −0.199247 0.345105i
$$408$$ −8.27188 0.377240i −0.409519 0.0186761i
$$409$$ 17.1623 29.7259i 0.848619 1.46985i −0.0338223 0.999428i $$-0.510768\pi$$
0.882441 0.470423i $$-0.155899\pi$$
$$410$$ 20.4413 35.4054i 1.00953 1.74855i
$$411$$ −2.92627 5.64803i −0.144342 0.278597i
$$412$$ 19.7163 + 34.1497i 0.971354 + 1.68243i
$$413$$ 2.72665 0.134170
$$414$$ 2.00933 + 0.183653i 0.0987533 + 0.00902607i
$$415$$ 2.45331 0.120428
$$416$$ 0.269748 + 0.467216i 0.0132255 + 0.0229072i
$$417$$ −1.91741 + 2.99689i −0.0938960 + 0.146758i
$$418$$ −22.5167 + 39.0001i −1.10133 + 1.90756i
$$419$$ −2.02850 + 3.51347i −0.0990989 + 0.171644i −0.911312 0.411717i $$-0.864929\pi$$
0.812213 + 0.583361i $$0.198263\pi$$
$$420$$ 9.81498 15.3407i 0.478922 0.748548i
$$421$$ 10.5344 + 18.2462i 0.513417 + 0.889264i 0.999879 + 0.0155624i $$0.00495387\pi$$
−0.486462 + 0.873702i $$0.661713\pi$$
$$422$$ −11.2235 −0.546353
$$423$$ 15.2915 + 33.1278i 0.743500 + 1.61073i
$$424$$ 31.7060 1.53978
$$425$$ 0.816635 + 1.41445i 0.0396126 + 0.0686110i
$$426$$ −6.41741 12.3863i −0.310925 0.600121i
$$427$$ −1.13667 + 1.96878i −0.0550075 + 0.0952757i
$$428$$ 2.78580 4.82515i 0.134657 0.233232i
$$429$$ −7.81138 0.356238i −0.377137 0.0171993i
$$430$$ 33.2975 + 57.6729i 1.60575 + 2.78123i
$$431$$ 22.6185 1.08949 0.544747 0.838600i $$-0.316626\pi$$
0.544747 + 0.838600i $$0.316626\pi$$
$$432$$ 8.48395 + 20.8241i 0.408184 + 1.00190i
$$433$$ 2.41789 0.116196 0.0580982 0.998311i $$-0.481496\pi$$
0.0580982 + 0.998311i $$0.481496\pi$$
$$434$$ −2.86333 4.95943i −0.137444 0.238060i
$$435$$ 11.0416 + 0.503554i 0.529406 + 0.0241436i
$$436$$ 6.89037 11.9345i 0.329989 0.571557i
$$437$$ −0.554084 + 0.959702i −0.0265054 + 0.0459088i
$$438$$ 2.95525 + 5.70397i 0.141207 + 0.272546i
$$439$$ 11.7448 + 20.3427i 0.560551 + 0.970902i 0.997448 + 0.0713911i $$0.0227438\pi$$
−0.436898 + 0.899511i $$0.643923\pi$$
$$440$$ 59.1780 2.82120
$$441$$ −1.73025 + 2.45076i −0.0823930 + 0.116703i
$$442$$ 2.32743 0.110705
$$443$$ 6.70895 + 11.6202i 0.318752 + 0.552094i 0.980228 0.197872i $$-0.0634031\pi$$
−0.661476 + 0.749966i $$0.730070\pi$$
$$444$$ 6.73891 10.5328i 0.319815 0.499866i
$$445$$ −18.6175 + 32.2465i −0.882554 + 1.52863i
$$446$$ 16.3925 28.3927i 0.776208 1.34443i
$$447$$ −12.6426 + 19.7602i −0.597975 + 0.934625i
$$448$$ −3.66372 6.34574i −0.173094 0.299808i
$$449$$ −9.16225 −0.432393 −0.216197 0.976350i $$-0.569365\pi$$
−0.216197 + 0.976350i $$0.569365\pi$$
$$450$$ 7.35087 10.4119i 0.346524 0.490822i
$$451$$ −28.9224 −1.36190
$$452$$ −21.0584 36.4741i −0.990502 1.71560i
$$453$$ 7.91069 + 15.2686i 0.371677 + 0.717379i
$$454$$ 1.69961 2.94381i 0.0797667 0.138160i
$$455$$ −1.29679 + 2.24611i −0.0607944 + 0.105299i
$$456$$ −35.4523 1.61680i −1.66021 0.0757138i
$$457$$ −4.40856 7.63584i −0.206224 0.357190i 0.744298 0.667847i $$-0.232784\pi$$
−0.950522 + 0.310658i $$0.899451\pi$$
$$458$$ 44.2383 2.06712
$$459$$ 4.86926 + 0.669906i 0.227277 + 0.0312685i
$$460$$ 2.87412 0.134007
$$461$$ 2.82957 + 4.90095i 0.131786 + 0.228260i 0.924365 0.381509i $$-0.124595\pi$$
−0.792579 + 0.609769i $$0.791262\pi$$
$$462$$ −19.2199 0.876526i −0.894192 0.0407797i
$$463$$ −7.86333 + 13.6197i −0.365440 + 0.632960i −0.988847 0.148937i $$-0.952415\pi$$
0.623407 + 0.781898i $$0.285748\pi$$
$$464$$ −5.32383 + 9.22115i −0.247153 + 0.428081i
$$465$$ −4.80972 9.28332i −0.223045 0.430504i
$$466$$ −23.3530 40.4486i −1.08181 1.87375i
$$467$$ −21.9971 −1.01790 −0.508952 0.860795i $$-0.669967\pi$$
−0.508952 + 0.860795i $$0.669967\pi$$
$$468$$ −5.09718 11.0426i −0.235617 0.510445i
$$469$$ 15.8171 0.730366
$$470$$ 38.8068 + 67.2153i 1.79002 + 3.10041i
$$471$$ 5.65126 8.83284i 0.260396 0.406996i
$$472$$ −6.89037 + 11.9345i −0.317155 + 0.549328i
$$473$$ 23.5562 40.8006i 1.08312 1.87601i
$$474$$ −33.7834 + 52.8029i −1.55172 + 2.42532i
$$475$$ 3.50000 + 6.06218i 0.160591 + 0.278152i
$$476$$ 3.83482 0.175769
$$477$$ −18.7419 1.71301i −0.858133 0.0784336i
$$478$$ −12.0364 −0.550531
$$479$$ −12.4875 21.6291i −0.570571 0.988257i −0.996507 0.0835043i $$-0.973389\pi$$
0.425937 0.904753i $$-0.359945\pi$$
$$480$$ 1.11489 + 2.15186i 0.0508874 + 0.0982186i
$$481$$ −0.890369 + 1.54216i −0.0405973 + 0.0703166i
$$482$$ −32.1826 + 55.7419i −1.46588 + 2.53897i
$$483$$ −0.472958 0.0215693i −0.0215203 0.000981436i
$$484$$ −19.0167 32.9379i −0.864397 1.49718i
$$485$$ 29.7994 1.35312
$$486$$ −11.1783 36.6904i −0.507058 1.66431i
$$487$$ −17.5979 −0.797435 −0.398717 0.917074i $$-0.630545\pi$$
−0.398717 + 0.917074i $$0.630545\pi$$
$$488$$ −5.74484 9.95036i −0.260057 0.450432i
$$489$$ −30.8281 1.40592i −1.39410 0.0635778i
$$490$$ −3.19076 + 5.52655i −0.144144 + 0.249664i
$$491$$ −6.89757 + 11.9469i −0.311283 + 0.539158i −0.978640 0.205580i $$-0.934092\pi$$
0.667358 + 0.744737i $$0.267425\pi$$
$$492$$ −20.6944 39.9425i −0.932974 1.80075i
$$493$$ 1.16372 + 2.01561i 0.0524111 + 0.0907787i
$$494$$ 9.97509 0.448801
$$495$$ −34.9810 3.19727i −1.57228 0.143707i
$$496$$ 10.0718 0.452237
$$497$$ 1.63667 + 2.83480i 0.0734148 + 0.127158i
$$498$$ 2.17257 3.39569i 0.0973552 0.152165i
$$499$$ −6.54377 + 11.3341i −0.292939 + 0.507386i −0.974503 0.224373i $$-0.927967\pi$$
0.681564 + 0.731758i $$0.261300\pi$$
$$500$$ −17.2089 + 29.8068i −0.769607 + 1.33300i
$$501$$ −7.90428 + 12.3543i −0.353137 + 0.551949i
$$502$$ 22.7075 + 39.3305i 1.01348 + 1.75541i
$$503$$ −22.3068 −0.994611 −0.497305 0.867576i $$-0.665677\pi$$
−0.497305 + 0.867576i $$0.665677\pi$$
$$504$$ −6.35447 13.7664i −0.283051 0.613206i
$$505$$ 9.54377 0.424692
$$506$$ −1.51819 2.62958i −0.0674917 0.116899i
$$507$$ −9.56148 18.4548i −0.424640 0.819605i
$$508$$ −1.36333 + 2.36135i −0.0604879 + 0.104768i
$$509$$ 7.94659 13.7639i 0.352226 0.610074i −0.634413 0.772994i $$-0.718758\pi$$
0.986639 + 0.162920i $$0.0520914\pi$$
$$510$$ 10.4445 + 0.476320i 0.462488 + 0.0210918i
$$511$$ −0.753696 1.30544i −0.0333415 0.0577492i
$$512$$ 41.4078 1.82998
$$513$$ 20.8691 + 2.87114i 0.921392 + 0.126764i
$$514$$ 28.8712 1.27345
$$515$$ −12.6134 21.8471i −0.555814 0.962698i
$$516$$ 73.2014 + 3.33836i 3.22251 + 0.146963i
$$517$$ 27.4538 47.5514i 1.20742 2.09131i
$$518$$ −2.19076 + 3.79450i −0.0962563 + 0.166721i
$$519$$ 13.8296 + 26.6927i 0.607051 + 1.17168i
$$520$$ −6.55408 11.3520i −0.287416 0.497818i
$$521$$ 4.41789 0.193551 0.0967756 0.995306i $$-0.469147\pi$$
0.0967756 + 0.995306i $$0.469147\pi$$
$$522$$ 10.4751 14.8371i 0.458482 0.649403i
$$523$$ 25.2733 1.10513 0.552563 0.833471i $$-0.313650\pi$$
0.552563 + 0.833471i $$0.313650\pi$$
$$524$$ −16.0416 27.7849i −0.700782 1.21379i
$$525$$ −1.61177 + 2.51917i −0.0703433 + 0.109946i
$$526$$ −9.25370 + 16.0279i −0.403480 + 0.698848i
$$527$$ 1.10078 1.90660i 0.0479506 0.0830528i
$$528$$ 18.2367 28.5036i 0.793649 1.24046i
$$529$$ 11.4626 + 19.8539i 0.498376 + 0.863212i
$$530$$ −40.0335 −1.73894
$$531$$ 4.71780 6.68238i 0.204735 0.289990i
$$532$$ 16.4356 0.712574
$$533$$ 3.20321 + 5.54812i 0.138746 + 0.240316i
$$534$$ 28.1462 + 54.3254i 1.21801 + 2.35089i
$$535$$ −1.78220 + 3.08686i −0.0770513 + 0.133457i
$$536$$ −39.9705 + 69.2310i −1.72646 + 2.99032i
$$537$$ 19.6373 + 0.895562i 0.847414 + 0.0386464i
$$538$$ −23.1716 40.1344i −0.998998 1.73032i
$$539$$ 4.51459 0.194457
$$540$$ −20.6139 50.5974i −0.887081 2.17736i
$$541$$ −3.43852 −0.147834 −0.0739168 0.997264i $$-0.523550\pi$$
−0.0739168 + 0.997264i $$0.523550\pi$$
$$542$$ −29.5043 51.1029i −1.26732 2.19506i
$$543$$ −37.8733 1.72722i −1.62530 0.0741219i
$$544$$ −0.255158 + 0.441947i −0.0109398 + 0.0189483i
$$545$$ −4.40808 + 7.63501i −0.188821 + 0.327048i
$$546$$ 1.96050 + 3.78400i 0.0839019 + 0.161940i
$$547$$ 3.46410 + 6.00000i 0.148114 + 0.256542i 0.930531 0.366214i $$-0.119346\pi$$
−0.782416 + 0.622756i $$0.786013\pi$$
$$548$$ −14.8889 −0.636023
$$549$$ 2.85827 + 6.19219i 0.121988 + 0.264276i
$$550$$ −19.1800 −0.817836
$$551$$ 4.98755 + 8.63868i 0.212477 + 0.368020i
$$552$$ 1.28959 2.01561i 0.0548887 0.0857902i
$$553$$ 7.35447 12.7383i 0.312744 0.541688i
$$554$$ 8.81138 15.2618i 0.374360 0.648410i
$$555$$ −4.31118 + 6.73832i −0.183000 + 0.286026i
$$556$$ 4.16372 + 7.21177i 0.176581 + 0.305847i
$$557$$ 33.5835 1.42298 0.711488 0.702698i $$-0.248021\pi$$
0.711488 + 0.702698i $$0.248021\pi$$
$$558$$ −17.1086 1.56373i −0.724267 0.0661981i
$$559$$ −10.4356 −0.441379
$$560$$ −5.61177 9.71987i −0.237140 0.410739i
$$561$$ −3.40263 6.56747i −0.143659 0.277279i
$$562$$ 18.3083 31.7108i 0.772287 1.33764i
$$563$$ −21.2396 + 36.7880i −0.895142 + 1.55043i −0.0615128 + 0.998106i $$0.519593\pi$$
−0.833629 + 0.552325i $$0.813741\pi$$
$$564$$ 85.3132 + 3.89071i 3.59233 + 0.163829i
$$565$$ 13.4720 + 23.3341i 0.566770 + 0.981675i
$$566$$ −49.2029 −2.06815
$$567$$ 3.01245 + 8.48087i 0.126511 + 0.356163i
$$568$$ −16.5438 −0.694161
$$569$$ −5.20175 9.00969i −0.218069 0.377706i 0.736149 0.676820i $$-0.236642\pi$$
−0.954217 + 0.299114i $$0.903309\pi$$
$$570$$ 44.7637 + 2.04145i 1.87495 + 0.0855070i
$$571$$ −8.92480 + 15.4582i −0.373491 + 0.646906i −0.990100 0.140364i $$-0.955173\pi$$
0.616609 + 0.787270i $$0.288506\pi$$
$$572$$ −9.15126 + 15.8505i −0.382633 + 0.662741i
$$573$$ −0.559145 1.07922i −0.0233586 0.0450849i
$$574$$ 7.88151 + 13.6512i 0.328968 + 0.569789i
$$575$$ −0.471974 −0.0196827
$$576$$ −21.8910 2.00085i −0.912127 0.0833686i
$$577$$ 11.9430 0.497193 0.248597 0.968607i $$-0.420031\pi$$
0.248597 + 0.968607i $$0.420031\pi$$
$$578$$ −19.8135 34.3180i −0.824134 1.42744i
$$579$$ 11.3365 17.7187i 0.471128 0.736366i
$$580$$ 12.9356 22.4051i 0.537122 0.930322i
$$581$$ −0.472958 + 0.819187i −0.0196216 + 0.0339856i
$$582$$ 26.3894 41.2462i 1.09388 1.70971i
$$583$$ 14.1608 + 24.5272i 0.586480 + 1.01581i
$$584$$ 7.61849 0.315255
$$585$$ 3.26089 + 7.06445i 0.134821 + 0.292079i
$$586$$ −37.0689 −1.53130
$$587$$ −11.9299 20.6631i −0.492398 0.852859i 0.507563 0.861614i $$-0.330546\pi$$
−0.999962 + 0.00875568i $$0.997213\pi$$
$$588$$ 3.23025 + 6.23476i 0.133213 + 0.257117i
$$589$$ 4.71780 8.17147i 0.194394 0.336699i
$$590$$ 8.70009 15.0690i 0.358177 0.620381i
$$591$$ 28.3946 + 1.29494i 1.16800 + 0.0532667i
$$592$$ −3.85301 6.67361i −0.158358 0.274284i
$$593$$ 19.5801 0.804060 0.402030 0.915626i $$-0.368305\pi$$
0.402030 + 0.915626i $$0.368305\pi$$
$$594$$ −35.4035 + 45.5868i −1.45262 + 1.87045i
$$595$$ −2.45331 −0.100576
$$596$$ 27.4538 + 47.5514i 1.12455 + 1.94778i
$$597$$ −39.2871 1.79169i −1.60792 0.0733291i
$$598$$ −0.336285 + 0.582462i −0.0137517 + 0.0238187i
$$599$$ −9.27335 + 16.0619i −0.378899 + 0.656272i −0.990902 0.134583i $$-0.957030\pi$$
0.612004 + 0.790855i $$0.290364\pi$$
$$600$$ −6.95331 13.4207i −0.283868 0.547897i
$$601$$ 9.09931 + 15.7605i 0.371169 + 0.642883i 0.989746 0.142841i $$-0.0456238\pi$$
−0.618577 + 0.785724i $$0.712290\pi$$
$$602$$ −25.6768 −1.04651
$$603$$ 27.3676 38.7640i 1.11449 1.57859i
$$604$$ 40.2498 1.63774
$$605$$ 12.1659 + 21.0719i 0.494612 + 0.856693i
$$606$$ 8.45165 13.2098i 0.343325 0.536612i
$$607$$ 11.1549 19.3208i 0.452762 0.784206i −0.545795 0.837919i $$-0.683772\pi$$
0.998556 + 0.0537125i $$0.0171055\pi$$
$$608$$ −1.09358 + 1.89413i −0.0443505 + 0.0768173i
$$609$$ −2.29679 + 3.58985i −0.0930706 + 0.145468i
$$610$$ 7.25370 + 12.5638i 0.293694 + 0.508692i
$$611$$ −12.1623 −0.492032
$$612$$ 6.63521 9.39823i 0.268212 0.379901i
$$613$$ 10.2370 0.413467 0.206734 0.978397i $$-0.433717\pi$$
0.206734 + 0.978397i $$0.433717\pi$$
$$614$$ −33.5495 58.1094i −1.35395 2.34511i
$$615$$ 13.2391 + 25.5530i 0.533852 + 1.03040i
$$616$$ −11.4086 + 19.7602i −0.459664 + 0.796161i
$$617$$ 5.66372 9.80984i 0.228013 0.394929i −0.729206 0.684294i $$-0.760111\pi$$
0.957219 + 0.289364i $$0.0934439\pi$$
$$618$$ −41.4092 1.88847i −1.66572 0.0759654i
$$619$$ −4.31663 7.47663i −0.173500 0.300511i 0.766141 0.642672i $$-0.222174\pi$$
−0.939641 + 0.342161i $$0.888841\pi$$
$$620$$ −24.4720 −0.982818
$$621$$ −0.871198 + 1.12179i −0.0349600 + 0.0450157i
$$622$$ 39.3245 1.57677
$$623$$ −7.17830 12.4332i −0.287593 0.498125i
$$624$$ −7.48755 0.341470i −0.299742 0.0136697i
$$625$$ 15.3260 26.5454i 0.613039 1.06181i
$$626$$ 14.2683 24.7134i 0.570275 0.987746i
$$627$$ −14.5833 28.1474i −0.582399 1.12410i
$$628$$ −12.2719 21.2555i −0.489701 0.848188i
$$629$$ −1.68443 −0.0671626
$$630$$ 8.02344 + 17.3821i 0.319662 + 0.692520i
$$631$$ −14.8535 −0.591308 −0.295654 0.955295i $$-0.595538\pi$$
−0.295654 + 0.955295i $$0.595538\pi$$
$$632$$ 37.1701 + 64.3805i 1.47855 + 2.56092i
$$633$$ 4.25797 6.65514i 0.169239 0.264518i
$$634$$ −2.48229 + 4.29945i −0.0985844 + 0.170753i
$$635$$ 0.872181 1.51066i 0.0346115 0.0599488i
$$636$$ −23.7405 + 37.1060i −0.941370 + 1.47135i
$$637$$ −0.500000 0.866025i −0.0198107 0.0343132i
$$638$$ −27.3317 −1.08207
$$639$$ 9.77928 + 0.893828i 0.386862 + 0.0353593i
$$640$$ −49.5586 −1.95897
$$641$$ 17.0797 + 29.5828i 0.674606 + 1.16845i 0.976584 + 0.215137i $$0.0690199\pi$$
−0.301978 + 0.953315i $$0.597647\pi$$
$$642$$ 2.69436 + 5.20042i 0.106338 + 0.205244i
$$643$$ 5.41741 9.38323i 0.213642 0.370039i −0.739210 0.673475i $$-0.764801\pi$$
0.952852 + 0.303437i $$0.0981341\pi$$
$$644$$ −0.554084 + 0.959702i −0.0218340 + 0.0378176i
$$645$$ −46.8302 2.13570i −1.84394 0.0840929i
$$646$$ 4.71780 + 8.17147i 0.185619 + 0.321502i
$$647$$ 32.9692 1.29615 0.648077 0.761575i $$-0.275573\pi$$
0.648077 + 0.761575i $$0.275573\pi$$
$$648$$ −44.7331 8.24611i −1.75728 0.323938i
$$649$$ −12.3097 −0.483199
$$650$$ 2.12422 + 3.67926i 0.0833188 + 0.144312i
$$651$$ 4.02704 + 0.183653i 0.157832 + 0.00719795i
$$652$$ −36.1160 + 62.5548i −1.41441 + 2.44984i
$$653$$ 1.96557 3.40446i 0.0769185 0.133227i −0.825000 0.565132i $$-0.808825\pi$$
0.901919 + 0.431905i $$0.142159\pi$$
$$654$$ 6.66419 + 12.8627i 0.260591 + 0.502970i
$$655$$ 10.2626 + 17.7753i 0.400991 + 0.694537i
$$656$$ −27.7233 −1.08241
$$657$$ −4.50340 0.411612i −0.175695 0.0160585i
$$658$$ −29.9253 −1.16661
$$659$$ −8.40856 14.5640i −0.327551 0.567335i 0.654474 0.756084i $$-0.272890\pi$$
−0.982025 + 0.188749i $$0.939557\pi$$
$$660$$ −44.3106 + 69.2568i −1.72479 + 2.69582i
$$661$$ 8.51080 14.7411i 0.331032 0.573364i −0.651683 0.758492i $$-0.725937\pi$$
0.982714 + 0.185128i $$0.0592700\pi$$
$$662$$ −24.2470 + 41.9970i −0.942386 + 1.63226i
$$663$$ −0.882977 + 1.38008i −0.0342920 + 0.0535979i
$$664$$ −2.39037 4.14024i −0.0927643 0.160672i
$$665$$ −10.5146 −0.407738
$$666$$ 5.50885 + 11.9345i 0.213464 + 0.462451i
$$667$$ −0.672570 −0.0260420
$$668$$ 17.1644 + 29.7296i 0.664110 + 1.15027i
$$669$$ 10.6168 + 20.4917i 0.410470 + 0.792255i
$$670$$ 50.4686 87.4141i 1.94977 3.37710i
$$671$$ 5.13161 8.88821i 0.198104 0.343126i
$$672$$ −0.933463 0.0425706i −0.0360091 0.00164220i
$$673$$ −14.3727 24.8942i −0.554025 0.959600i −0.997979 0.0635501i $$-0.979758\pi$$
0.443953 0.896050i $$-0.353576\pi$$
$$674$$ 71.4805 2.75333
$$675$$ 3.38511 + 8.30885i 0.130293 + 0.319808i
$$676$$ −48.6490 −1.87112
$$677$$ 3.01819 + 5.22765i 0.115998 + 0.200915i 0.918178 0.396167i $$-0.129660\pi$$
−0.802180 + 0.597082i $$0.796327\pi$$
$$678$$ 44.2278 + 2.01701i 1.69856 + 0.0774628i
$$679$$ −5.74484 + 9.95036i −0.220467 + 0.381860i
$$680$$ 6.19961 10.7380i 0.237744 0.411785i
$$681$$ 1.10078 + 2.12463i 0.0421818 + 0.0814159i
$$682$$ 12.9267 + 22.3898i 0.494991 + 0.857349i
$$683$$ 20.5113 0.784842 0.392421 0.919786i $$-0.371638\pi$$
0.392421 + 0.919786i $$0.371638\pi$$
$$684$$ 28.4377 40.2797i 1.08734 1.54013i
$$685$$ 9.52510 0.363935
$$686$$ −1.23025 2.13086i −0.0469713 0.0813566i
$$687$$ −16.7831 + 26.2317i −0.640314 + 1.00080i
$$688$$ 22.5797 39.1091i 0.860842 1.49102i
$$689$$ 3.13667 5.43288i 0.119498 0.206976i
$$690$$ −1.62830 + 2.54500i −0.0619882 + 0.0968867i
$$691$$ 7.50146 + 12.9929i 0.285369 + 0.494274i 0.972699 0.232072i $$-0.0745505\pi$$
−0.687330 + 0.726346i $$0.741217\pi$$
$$692$$ 70.3652 2.67488
$$693$$ 7.81138 11.0642i 0.296730 0.420293i
$$694$$ −71.5595 −2.71636
$$695$$ −2.66372 4.61369i −0.101040 0.175007i
$$696$$ −9.90856 19.1247i −0.375583 0.724919i
$$697$$ −3.02997 + 5.24806i −0.114768 + 0.198784i
$$698$$ 30.4648 52.7665i 1.15311 1.99724i
$$699$$ 32.8442 + 1.49786i 1.24228 + 0.0566542i
$$700$$ 3.50000 + 6.06218i 0.132288 + 0.229129i
$$701$$ 38.5113 1.45455 0.727275 0.686346i $$-0.240786\pi$$
0.727275 + 0.686346i $$0.240786\pi$$
$$702$$ 12.6659 + 1.74255i 0.478042 + 0.0657684i
$$703$$ −7.21926 −0.272280
$$704$$ 16.5402 + 28.6484i 0.623381 + 1.07973i
$$705$$ −54.5787 2.48906i −2.05555 0.0937435i
$$706$$ −40.9705 + 70.9630i −1.54195 + 2.67073i
$$707$$ −1.83988 + 3.18677i −0.0691959 + 0.119851i
$$708$$ −8.80778 17.0000i −0.331017 0.638901i
$$709$$ −3.82004 6.61650i −0.143465 0.248488i 0.785334 0.619072i $$-0.212491\pi$$
−0.928799 + 0.370584i $$0.879158\pi$$
$$710$$ 20.8889 0.783947
$$711$$ −18.4935 40.0646i −0.693560 1.50254i
$$712$$ 72.5595 2.71928
$$713$$ 0.318097 + 0.550960i 0.0119128 + 0.0206336i
$$714$$ −2.17257 + 3.39569i −0.0813064 + 0.127081i
$$715$$ 5.85447 10.1402i 0.218945 0.379224i
$$716$$ 23.0057 39.8471i 0.859765 1.48916i
$$717$$ 4.56634 7.13713i 0.170533 0.266541i
$$718$$ 31.4164 + 54.4148i 1.17245 + 2.03074i
$$719$$ −30.0364 −1.12017 −0.560084 0.828436i $$-0.689231\pi$$
−0.560084 + 0.828436i $$0.689231\pi$$
$$720$$ −33.5308 3.06472i −1.24962 0.114216i
$$721$$ 9.72665 0.362240
$$722$$ −3.15486 5.46438i −0.117412 0.203363i
$$723$$ −20.8435 40.2303i −0.775177 1.49618i
$$724$$ −44.3697 + 76.8506i −1.64899 + 2.85613i
$$725$$ −2.12422 + 3.67926i −0.0788916 + 0.136644i
$$726$$ 39.9399 + 1.82146i 1.48231 + 0.0676007i
$$727$$ −1.72812 2.99319i −0.0640923 0.111011i 0.832199 0.554478i $$-0.187082\pi$$
−0.896291 + 0.443466i $$0.853749\pi$$
$$728$$ 5.05408 0.187317
$$729$$ 25.9969 + 7.29124i 0.962847 + 0.270046i
$$730$$ −9.61944 −0.356032
$$731$$ −4.93560 8.54871i −0.182550 0.316185i
$$732$$ 15.9466 + 0.727245i 0.589403 + 0.0268797i
$$733$$ −19.2630 + 33.3645i −0.711496 + 1.23235i 0.252799 + 0.967519i $$0.418649\pi$$
−0.964295 + 0.264829i $$0.914685\pi$$
$$734$$ 33.7709 58.4929i 1.24651 2.15901i
$$735$$ −2.06654 3.98866i −0.0762254 0.147124i
$$736$$ −0.0737345 0.127712i −0.00271789 0.00470752i
$$737$$ −71.4078 −2.63034
$$738$$ 47.0928 + 4.30429i 1.73351 + 0.158443i
$$739$$ 45.1239 1.65991 0.829955 0.557830i $$-0.188366\pi$$
0.829955 + 0.557830i $$0.188366\pi$$
$$740$$ 9.36186 + 16.2152i 0.344149 + 0.596084i
$$741$$ −3.78434 + 5.91486i −0.139021 + 0.217288i
$$742$$ 7.71780 13.3676i 0.283329 0.490741i
$$743$$ −4.74338 + 8.21577i −0.174018 + 0.301407i −0.939821 0.341668i $$-0.889008\pi$$
0.765803 + 0.643075i $$0.222342\pi$$
$$744$$ −10.9803 + 17.1621i −0.402559 + 0.629194i
$$745$$ −17.5634 30.4207i −0.643474 1.11453i
$$746$$ −40.1737 −1.47086
$$747$$ 1.18929 + 2.57651i 0.0435140 + 0.0942695i
$$748$$ −17.3126 −0.633013
$$749$$ −0.687159 1.19019i −0.0251082 0.0434887i
$$750$$ −16.6441 32.1250i −0.607755 1.17304i
$$751$$ 4.91595 8.51467i 0.179386 0.310705i −0.762285 0.647242i $$-0.775922\pi$$
0.941670 + 0.336537i $$0.109256\pi$$
$$752$$ 26.3157 45.5800i 0.959633 1.66213i
$$753$$ −31.9363 1.45646i −1.16382 0.0530762i
$$754$$ 3.02704 + 5.24299i 0.110238 + 0.190938i
$$755$$ −25.7496 −0.937124
$$756$$ 20.8691 + 2.87114i 0.759000 + 0.104422i
$$757$$ −41.8171 −1.51987 −0.759934 0.650000i $$-0.774769\pi$$
−0.759934 + 0.650000i $$0.774769\pi$$
$$758$$ 14.8078 + 25.6478i 0.537843 + 0.931571i
$$759$$ 2.13521 + 0.0973764i 0.0775032 + 0.00353454i
$$760$$ 26.5708 46.0220i 0.963825 1.66939i
$$761$$ −11.4897 + 19.9007i −0.416501 + 0.721400i −0.995585 0.0938675i $$-0.970077\pi$$
0.579084 + 0.815268i $$0.303410\pi$$
$$762$$ −1.31858 2.54500i −0.0477670 0.0921958i
$$763$$ −1.69961 2.94381i −0.0615301 0.106573i
$$764$$ −2.84494 −0.102926
$$765$$ −4.24484 + 6.01247i −0.153473 + 0.217381i
$$766$$ 30.5979 1.10555
$$767$$ 1.36333 + 2.36135i 0.0492269 + 0.0852635i
$$768$$ −30.2077 + 47.2142i −1.09003 +