Properties

Label 63.2.f.a.22.2
Level $63$
Weight $2$
Character 63.22
Analytic conductor $0.503$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 63.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.503057532734\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 22.2
Root \(-0.173648 + 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 63.22
Dual form 63.2.f.a.43.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.673648 - 1.16679i) q^{2} +(1.70574 - 0.300767i) q^{3} +(0.0923963 - 0.160035i) q^{4} +(-1.26604 + 2.19285i) q^{5} +(-1.50000 - 1.78763i) q^{6} +(-0.500000 - 0.866025i) q^{7} -2.94356 q^{8} +(2.81908 - 1.02606i) q^{9} +O(q^{10})\) \(q+(-0.673648 - 1.16679i) q^{2} +(1.70574 - 0.300767i) q^{3} +(0.0923963 - 0.160035i) q^{4} +(-1.26604 + 2.19285i) q^{5} +(-1.50000 - 1.78763i) q^{6} +(-0.500000 - 0.866025i) q^{7} -2.94356 q^{8} +(2.81908 - 1.02606i) q^{9} +3.41147 q^{10} +(-0.233956 - 0.405223i) q^{11} +(0.109470 - 0.300767i) q^{12} +(-2.91147 + 5.04282i) q^{13} +(-0.673648 + 1.16679i) q^{14} +(-1.50000 + 4.12122i) q^{15} +(1.79813 + 3.11446i) q^{16} +3.87939 q^{17} +(-3.09627 - 2.59808i) q^{18} -2.18479 q^{19} +(0.233956 + 0.405223i) q^{20} +(-1.11334 - 1.32683i) q^{21} +(-0.315207 + 0.545955i) q^{22} +(0.0530334 - 0.0918566i) q^{23} +(-5.02094 + 0.885328i) q^{24} +(-0.705737 - 1.22237i) q^{25} +7.84524 q^{26} +(4.50000 - 2.59808i) q^{27} -0.184793 q^{28} +(-4.39053 - 7.60462i) q^{29} +(5.81908 - 1.02606i) q^{30} +(3.84002 - 6.65111i) q^{31} +(-0.520945 + 0.902302i) q^{32} +(-0.520945 - 0.620838i) q^{33} +(-2.61334 - 4.52644i) q^{34} +2.53209 q^{35} +(0.0962667 - 0.545955i) q^{36} -7.68004 q^{37} +(1.47178 + 2.54920i) q^{38} +(-3.44949 + 9.47740i) q^{39} +(3.72668 - 6.45480i) q^{40} +(1.11334 - 1.92836i) q^{41} +(-0.798133 + 2.19285i) q^{42} +(-0.613341 - 1.06234i) q^{43} -0.0864665 q^{44} +(-1.31908 + 7.48086i) q^{45} -0.142903 q^{46} +(2.66637 + 4.61830i) q^{47} +(4.00387 + 4.77163i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(-0.950837 + 1.64690i) q^{50} +(6.61721 - 1.16679i) q^{51} +(0.538019 + 0.931876i) q^{52} -0.716881 q^{53} +(-6.06283 - 3.50038i) q^{54} +1.18479 q^{55} +(1.47178 + 2.54920i) q^{56} +(-3.72668 + 0.657115i) q^{57} +(-5.91534 + 10.2457i) q^{58} +(-0.368241 + 0.637812i) q^{59} +(0.520945 + 0.620838i) q^{60} +(-0.479055 - 0.829748i) q^{61} -10.3473 q^{62} +(-2.29813 - 1.92836i) q^{63} +8.59627 q^{64} +(-7.37211 - 12.7689i) q^{65} +(-0.373455 + 1.02606i) q^{66} +(4.81908 - 8.34689i) q^{67} +(0.358441 - 0.620838i) q^{68} +(0.0628336 - 0.172634i) q^{69} +(-1.70574 - 2.95442i) q^{70} +13.2344 q^{71} +(-8.29813 + 3.02027i) q^{72} -10.2686 q^{73} +(5.17365 + 8.96102i) q^{74} +(-1.57145 - 1.87278i) q^{75} +(-0.201867 + 0.349643i) q^{76} +(-0.233956 + 0.405223i) q^{77} +(13.3819 - 2.35959i) q^{78} +(6.31908 + 10.9450i) q^{79} -9.10607 q^{80} +(6.89440 - 5.78509i) q^{81} -3.00000 q^{82} +(1.36571 + 2.36549i) q^{83} +(-0.315207 + 0.0555796i) q^{84} +(-4.91147 + 8.50692i) q^{85} +(-0.826352 + 1.43128i) q^{86} +(-9.77631 - 11.6510i) q^{87} +(0.688663 + 1.19280i) q^{88} -8.11381 q^{89} +(9.61721 - 3.50038i) q^{90} +5.82295 q^{91} +(-0.00980018 - 0.0169744i) q^{92} +(4.54963 - 12.5000i) q^{93} +(3.59240 - 6.22221i) q^{94} +(2.76604 - 4.79093i) q^{95} +(-0.617211 + 1.69577i) q^{96} +(6.80200 + 11.7814i) q^{97} +1.34730 q^{98} +(-1.07532 - 0.902302i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 3q^{2} - 3q^{4} - 3q^{5} - 9q^{6} - 3q^{7} + 12q^{8} + O(q^{10}) \) \( 6q - 3q^{2} - 3q^{4} - 3q^{5} - 9q^{6} - 3q^{7} + 12q^{8} - 6q^{11} + 18q^{12} + 3q^{13} - 3q^{14} - 9q^{15} - 3q^{16} + 12q^{17} + 9q^{18} - 6q^{19} + 6q^{20} - 9q^{22} - 12q^{23} - 27q^{24} + 6q^{25} - 6q^{26} + 27q^{27} + 6q^{28} - 9q^{29} + 18q^{30} + 3q^{31} - 9q^{34} + 6q^{35} - 27q^{36} - 6q^{37} - 6q^{38} - 18q^{39} + 9q^{40} + 9q^{42} + 3q^{43} + 30q^{44} + 9q^{45} - 3q^{47} - 3q^{49} + 6q^{50} + 9q^{51} + 21q^{52} + 12q^{53} - 27q^{54} - 6q^{56} - 9q^{57} + 9q^{58} + 3q^{59} - 6q^{61} - 60q^{62} + 24q^{64} - 15q^{65} + 36q^{66} + 12q^{67} - 6q^{68} - 9q^{69} + 18q^{71} - 36q^{72} - 42q^{73} + 30q^{74} - 9q^{75} - 15q^{76} - 6q^{77} + 54q^{78} + 21q^{79} - 30q^{80} - 18q^{82} + 18q^{83} - 9q^{84} - 9q^{85} - 6q^{86} + 9q^{87} - 27q^{88} + 24q^{89} + 27q^{90} - 6q^{91} - 3q^{92} - 27q^{93} + 18q^{94} + 12q^{95} + 27q^{96} + 3q^{97} + 6q^{98} + 18q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.673648 1.16679i −0.476341 0.825047i 0.523291 0.852154i \(-0.324704\pi\)
−0.999633 + 0.0271067i \(0.991371\pi\)
\(3\) 1.70574 0.300767i 0.984808 0.173648i
\(4\) 0.0923963 0.160035i 0.0461981 0.0800175i
\(5\) −1.26604 + 2.19285i −0.566192 + 0.980674i 0.430745 + 0.902473i \(0.358251\pi\)
−0.996938 + 0.0782003i \(0.975083\pi\)
\(6\) −1.50000 1.78763i −0.612372 0.729797i
\(7\) −0.500000 0.866025i −0.188982 0.327327i
\(8\) −2.94356 −1.04071
\(9\) 2.81908 1.02606i 0.939693 0.342020i
\(10\) 3.41147 1.07880
\(11\) −0.233956 0.405223i −0.0705403 0.122179i 0.828598 0.559844i \(-0.189139\pi\)
−0.899138 + 0.437665i \(0.855806\pi\)
\(12\) 0.109470 0.300767i 0.0316014 0.0868241i
\(13\) −2.91147 + 5.04282i −0.807498 + 1.39863i 0.107094 + 0.994249i \(0.465845\pi\)
−0.914592 + 0.404378i \(0.867488\pi\)
\(14\) −0.673648 + 1.16679i −0.180040 + 0.311839i
\(15\) −1.50000 + 4.12122i −0.387298 + 1.06409i
\(16\) 1.79813 + 3.11446i 0.449533 + 0.778615i
\(17\) 3.87939 0.940889 0.470445 0.882430i \(-0.344094\pi\)
0.470445 + 0.882430i \(0.344094\pi\)
\(18\) −3.09627 2.59808i −0.729797 0.612372i
\(19\) −2.18479 −0.501226 −0.250613 0.968087i \(-0.580632\pi\)
−0.250613 + 0.968087i \(0.580632\pi\)
\(20\) 0.233956 + 0.405223i 0.0523141 + 0.0906106i
\(21\) −1.11334 1.32683i −0.242951 0.289538i
\(22\) −0.315207 + 0.545955i −0.0672025 + 0.116398i
\(23\) 0.0530334 0.0918566i 0.0110582 0.0191534i −0.860443 0.509546i \(-0.829813\pi\)
0.871502 + 0.490393i \(0.163147\pi\)
\(24\) −5.02094 + 0.885328i −1.02490 + 0.180717i
\(25\) −0.705737 1.22237i −0.141147 0.244474i
\(26\) 7.84524 1.53858
\(27\) 4.50000 2.59808i 0.866025 0.500000i
\(28\) −0.184793 −0.0349225
\(29\) −4.39053 7.60462i −0.815301 1.41214i −0.909112 0.416552i \(-0.863238\pi\)
0.0938108 0.995590i \(-0.470095\pi\)
\(30\) 5.81908 1.02606i 1.06241 0.187332i
\(31\) 3.84002 6.65111i 0.689688 1.19458i −0.282250 0.959341i \(-0.591081\pi\)
0.971939 0.235235i \(-0.0755858\pi\)
\(32\) −0.520945 + 0.902302i −0.0920909 + 0.159506i
\(33\) −0.520945 0.620838i −0.0906848 0.108074i
\(34\) −2.61334 4.52644i −0.448184 0.776278i
\(35\) 2.53209 0.428001
\(36\) 0.0962667 0.545955i 0.0160444 0.0909926i
\(37\) −7.68004 −1.26259 −0.631296 0.775542i \(-0.717477\pi\)
−0.631296 + 0.775542i \(0.717477\pi\)
\(38\) 1.47178 + 2.54920i 0.238754 + 0.413535i
\(39\) −3.44949 + 9.47740i −0.552361 + 1.51760i
\(40\) 3.72668 6.45480i 0.589240 1.02059i
\(41\) 1.11334 1.92836i 0.173875 0.301160i −0.765897 0.642964i \(-0.777705\pi\)
0.939771 + 0.341804i \(0.111038\pi\)
\(42\) −0.798133 + 2.19285i −0.123155 + 0.338365i
\(43\) −0.613341 1.06234i −0.0935336 0.162005i 0.815462 0.578811i \(-0.196483\pi\)
−0.908996 + 0.416806i \(0.863150\pi\)
\(44\) −0.0864665 −0.0130353
\(45\) −1.31908 + 7.48086i −0.196637 + 1.11518i
\(46\) −0.142903 −0.0210700
\(47\) 2.66637 + 4.61830i 0.388931 + 0.673648i 0.992306 0.123810i \(-0.0395112\pi\)
−0.603375 + 0.797457i \(0.706178\pi\)
\(48\) 4.00387 + 4.77163i 0.577909 + 0.688725i
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) −0.950837 + 1.64690i −0.134469 + 0.232907i
\(51\) 6.61721 1.16679i 0.926595 0.163384i
\(52\) 0.538019 + 0.931876i 0.0746098 + 0.129228i
\(53\) −0.716881 −0.0984712 −0.0492356 0.998787i \(-0.515679\pi\)
−0.0492356 + 0.998787i \(0.515679\pi\)
\(54\) −6.06283 3.50038i −0.825047 0.476341i
\(55\) 1.18479 0.159757
\(56\) 1.47178 + 2.54920i 0.196675 + 0.340651i
\(57\) −3.72668 + 0.657115i −0.493611 + 0.0870369i
\(58\) −5.91534 + 10.2457i −0.776723 + 1.34532i
\(59\) −0.368241 + 0.637812i −0.0479409 + 0.0830360i −0.889000 0.457907i \(-0.848599\pi\)
0.841059 + 0.540943i \(0.181933\pi\)
\(60\) 0.520945 + 0.620838i 0.0672537 + 0.0801498i
\(61\) −0.479055 0.829748i −0.0613368 0.106238i 0.833726 0.552178i \(-0.186203\pi\)
−0.895063 + 0.445939i \(0.852870\pi\)
\(62\) −10.3473 −1.31411
\(63\) −2.29813 1.92836i −0.289538 0.242951i
\(64\) 8.59627 1.07453
\(65\) −7.37211 12.7689i −0.914398 1.58378i
\(66\) −0.373455 + 1.02606i −0.0459692 + 0.126299i
\(67\) 4.81908 8.34689i 0.588744 1.01973i −0.405653 0.914027i \(-0.632956\pi\)
0.994397 0.105708i \(-0.0337107\pi\)
\(68\) 0.358441 0.620838i 0.0434673 0.0752876i
\(69\) 0.0628336 0.172634i 0.00756428 0.0207827i
\(70\) −1.70574 2.95442i −0.203875 0.353121i
\(71\) 13.2344 1.57064 0.785318 0.619092i \(-0.212499\pi\)
0.785318 + 0.619092i \(0.212499\pi\)
\(72\) −8.29813 + 3.02027i −0.977944 + 0.355943i
\(73\) −10.2686 −1.20185 −0.600923 0.799307i \(-0.705200\pi\)
−0.600923 + 0.799307i \(0.705200\pi\)
\(74\) 5.17365 + 8.96102i 0.601424 + 1.04170i
\(75\) −1.57145 1.87278i −0.181456 0.216250i
\(76\) −0.201867 + 0.349643i −0.0231557 + 0.0401068i
\(77\) −0.233956 + 0.405223i −0.0266617 + 0.0461794i
\(78\) 13.3819 2.35959i 1.51520 0.267171i
\(79\) 6.31908 + 10.9450i 0.710952 + 1.23140i 0.964500 + 0.264082i \(0.0850689\pi\)
−0.253548 + 0.967323i \(0.581598\pi\)
\(80\) −9.10607 −1.01809
\(81\) 6.89440 5.78509i 0.766044 0.642788i
\(82\) −3.00000 −0.331295
\(83\) 1.36571 + 2.36549i 0.149907 + 0.259646i 0.931193 0.364527i \(-0.118769\pi\)
−0.781286 + 0.624173i \(0.785436\pi\)
\(84\) −0.315207 + 0.0555796i −0.0343920 + 0.00606423i
\(85\) −4.91147 + 8.50692i −0.532724 + 0.922705i
\(86\) −0.826352 + 1.43128i −0.0891078 + 0.154339i
\(87\) −9.77631 11.6510i −1.04813 1.24911i
\(88\) 0.688663 + 1.19280i 0.0734117 + 0.127153i
\(89\) −8.11381 −0.860062 −0.430031 0.902814i \(-0.641497\pi\)
−0.430031 + 0.902814i \(0.641497\pi\)
\(90\) 9.61721 3.50038i 1.01374 0.368972i
\(91\) 5.82295 0.610411
\(92\) −0.00980018 0.0169744i −0.00102174 0.00176970i
\(93\) 4.54963 12.5000i 0.471775 1.29619i
\(94\) 3.59240 6.22221i 0.370527 0.641772i
\(95\) 2.76604 4.79093i 0.283790 0.491539i
\(96\) −0.617211 + 1.69577i −0.0629939 + 0.173074i
\(97\) 6.80200 + 11.7814i 0.690639 + 1.19622i 0.971629 + 0.236511i \(0.0760039\pi\)
−0.280990 + 0.959711i \(0.590663\pi\)
\(98\) 1.34730 0.136097
\(99\) −1.07532 0.902302i −0.108074 0.0906848i
\(100\) −0.260830 −0.0260830
\(101\) 4.78699 + 8.29131i 0.476323 + 0.825016i 0.999632 0.0271271i \(-0.00863590\pi\)
−0.523309 + 0.852143i \(0.675303\pi\)
\(102\) −5.81908 6.93491i −0.576175 0.686658i
\(103\) −1.52094 + 2.63435i −0.149863 + 0.259571i −0.931177 0.364568i \(-0.881217\pi\)
0.781314 + 0.624139i \(0.214550\pi\)
\(104\) 8.57011 14.8439i 0.840368 1.45556i
\(105\) 4.31908 0.761570i 0.421499 0.0743216i
\(106\) 0.482926 + 0.836452i 0.0469059 + 0.0812434i
\(107\) −6.51754 −0.630074 −0.315037 0.949079i \(-0.602017\pi\)
−0.315037 + 0.949079i \(0.602017\pi\)
\(108\) 0.960210i 0.0923963i
\(109\) 10.6382 1.01895 0.509475 0.860485i \(-0.329840\pi\)
0.509475 + 0.860485i \(0.329840\pi\)
\(110\) −0.798133 1.38241i −0.0760990 0.131807i
\(111\) −13.1001 + 2.30991i −1.24341 + 0.219247i
\(112\) 1.79813 3.11446i 0.169908 0.294289i
\(113\) −2.58853 + 4.48346i −0.243508 + 0.421768i −0.961711 0.274065i \(-0.911632\pi\)
0.718203 + 0.695834i \(0.244965\pi\)
\(114\) 3.27719 + 3.90560i 0.306937 + 0.365793i
\(115\) 0.134285 + 0.232589i 0.0125222 + 0.0216890i
\(116\) −1.62267 −0.150662
\(117\) −3.03343 + 17.2035i −0.280441 + 1.59046i
\(118\) 0.992259 0.0913449
\(119\) −1.93969 3.35965i −0.177811 0.307978i
\(120\) 4.41534 12.1311i 0.403064 1.10741i
\(121\) 5.39053 9.33667i 0.490048 0.848788i
\(122\) −0.645430 + 1.11792i −0.0584345 + 0.101211i
\(123\) 1.31908 3.62414i 0.118937 0.326777i
\(124\) −0.709607 1.22908i −0.0637246 0.110374i
\(125\) −9.08647 −0.812718
\(126\) −0.701867 + 3.98048i −0.0625273 + 0.354610i
\(127\) −8.88207 −0.788157 −0.394078 0.919077i \(-0.628936\pi\)
−0.394078 + 0.919077i \(0.628936\pi\)
\(128\) −4.74897 8.22546i −0.419754 0.727035i
\(129\) −1.36571 1.62760i −0.120244 0.143302i
\(130\) −9.93242 + 17.2035i −0.871131 + 1.50884i
\(131\) −5.68139 + 9.84045i −0.496385 + 0.859764i −0.999991 0.00416893i \(-0.998673\pi\)
0.503606 + 0.863933i \(0.332006\pi\)
\(132\) −0.147489 + 0.0260063i −0.0128373 + 0.00226356i
\(133\) 1.09240 + 1.89209i 0.0947228 + 0.164065i
\(134\) −12.9855 −1.12177
\(135\) 13.1571i 1.13238i
\(136\) −11.4192 −0.979190
\(137\) 2.86231 + 4.95767i 0.244544 + 0.423562i 0.962003 0.273038i \(-0.0880285\pi\)
−0.717459 + 0.696600i \(0.754695\pi\)
\(138\) −0.243756 + 0.0429807i −0.0207499 + 0.00365876i
\(139\) 0.461981 0.800175i 0.0391847 0.0678700i −0.845768 0.533551i \(-0.820857\pi\)
0.884953 + 0.465681i \(0.154191\pi\)
\(140\) 0.233956 0.405223i 0.0197729 0.0342476i
\(141\) 5.93717 + 7.07564i 0.500000 + 0.595876i
\(142\) −8.91534 15.4418i −0.748159 1.29585i
\(143\) 2.72462 0.227844
\(144\) 8.26470 + 6.93491i 0.688725 + 0.577909i
\(145\) 22.2344 1.84647
\(146\) 6.91740 + 11.9813i 0.572488 + 0.991579i
\(147\) −0.592396 + 1.62760i −0.0488600 + 0.134242i
\(148\) −0.709607 + 1.22908i −0.0583294 + 0.101029i
\(149\) −4.36231 + 7.55574i −0.357374 + 0.618991i −0.987521 0.157485i \(-0.949661\pi\)
0.630147 + 0.776476i \(0.282995\pi\)
\(150\) −1.12654 + 3.09516i −0.0919820 + 0.252718i
\(151\) −9.21348 15.9582i −0.749782 1.29866i −0.947927 0.318488i \(-0.896825\pi\)
0.198145 0.980173i \(-0.436508\pi\)
\(152\) 6.43107 0.521629
\(153\) 10.9363 3.98048i 0.884147 0.321803i
\(154\) 0.630415 0.0508003
\(155\) 9.72328 + 16.8412i 0.780992 + 1.35272i
\(156\) 1.19800 + 1.42772i 0.0959165 + 0.114309i
\(157\) −2.46198 + 4.26428i −0.196488 + 0.340326i −0.947387 0.320090i \(-0.896287\pi\)
0.750900 + 0.660416i \(0.229620\pi\)
\(158\) 8.51367 14.7461i 0.677311 1.17314i
\(159\) −1.22281 + 0.215615i −0.0969752 + 0.0170994i
\(160\) −1.31908 2.28471i −0.104282 0.180622i
\(161\) −0.106067 −0.00835924
\(162\) −11.3944 4.14722i −0.895229 0.325837i
\(163\) 7.63816 0.598267 0.299133 0.954211i \(-0.403302\pi\)
0.299133 + 0.954211i \(0.403302\pi\)
\(164\) −0.205737 0.356347i −0.0160654 0.0278260i
\(165\) 2.02094 0.356347i 0.157330 0.0277416i
\(166\) 1.84002 3.18701i 0.142813 0.247360i
\(167\) 2.82770 4.89771i 0.218814 0.378996i −0.735632 0.677382i \(-0.763115\pi\)
0.954446 + 0.298385i \(0.0964480\pi\)
\(168\) 3.27719 + 3.90560i 0.252841 + 0.301324i
\(169\) −10.4534 18.1058i −0.804105 1.39275i
\(170\) 13.2344 1.01503
\(171\) −6.15910 + 2.24173i −0.470998 + 0.171429i
\(172\) −0.226682 −0.0172843
\(173\) −10.5346 18.2465i −0.800932 1.38725i −0.919003 0.394250i \(-0.871005\pi\)
0.118071 0.993005i \(-0.462329\pi\)
\(174\) −7.00846 + 19.2556i −0.531310 + 1.45976i
\(175\) −0.705737 + 1.22237i −0.0533487 + 0.0924027i
\(176\) 0.841367 1.45729i 0.0634204 0.109847i
\(177\) −0.436289 + 1.19869i −0.0327935 + 0.0900994i
\(178\) 5.46585 + 9.46713i 0.409683 + 0.709592i
\(179\) −5.12061 −0.382733 −0.191366 0.981519i \(-0.561292\pi\)
−0.191366 + 0.981519i \(0.561292\pi\)
\(180\) 1.07532 + 0.902302i 0.0801498 + 0.0672537i
\(181\) −0.319955 −0.0237821 −0.0118910 0.999929i \(-0.503785\pi\)
−0.0118910 + 0.999929i \(0.503785\pi\)
\(182\) −3.92262 6.79417i −0.290764 0.503618i
\(183\) −1.06670 1.27125i −0.0788530 0.0939734i
\(184\) −0.156107 + 0.270386i −0.0115084 + 0.0199331i
\(185\) 9.72328 16.8412i 0.714870 1.23819i
\(186\) −17.6498 + 3.11213i −1.29414 + 0.228192i
\(187\) −0.907604 1.57202i −0.0663706 0.114957i
\(188\) 0.985452 0.0718715
\(189\) −4.50000 2.59808i −0.327327 0.188982i
\(190\) −7.45336 −0.540724
\(191\) 7.78359 + 13.4816i 0.563200 + 0.975492i 0.997215 + 0.0745858i \(0.0237635\pi\)
−0.434014 + 0.900906i \(0.642903\pi\)
\(192\) 14.6630 2.58548i 1.05821 0.186591i
\(193\) −3.02094 + 5.23243i −0.217452 + 0.376639i −0.954028 0.299716i \(-0.903108\pi\)
0.736576 + 0.676355i \(0.236441\pi\)
\(194\) 9.16431 15.8731i 0.657959 1.13962i
\(195\) −16.4153 19.5630i −1.17553 1.40094i
\(196\) 0.0923963 + 0.160035i 0.00659973 + 0.0114311i
\(197\) 25.2344 1.79788 0.898939 0.438074i \(-0.144339\pi\)
0.898939 + 0.438074i \(0.144339\pi\)
\(198\) −0.328411 + 1.86251i −0.0233392 + 0.132363i
\(199\) 3.04189 0.215634 0.107817 0.994171i \(-0.465614\pi\)
0.107817 + 0.994171i \(0.465614\pi\)
\(200\) 2.07738 + 3.59813i 0.146893 + 0.254426i
\(201\) 5.70961 15.6870i 0.402725 1.10648i
\(202\) 6.44949 11.1708i 0.453785 0.785978i
\(203\) −4.39053 + 7.60462i −0.308155 + 0.533740i
\(204\) 0.424678 1.16679i 0.0297334 0.0816918i
\(205\) 2.81908 + 4.88279i 0.196893 + 0.341029i
\(206\) 4.09833 0.285544
\(207\) 0.0552549 0.313366i 0.00384048 0.0217805i
\(208\) −20.9409 −1.45199
\(209\) 0.511144 + 0.885328i 0.0353566 + 0.0612394i
\(210\) −3.79813 4.52644i −0.262096 0.312354i
\(211\) 2.72668 4.72275i 0.187713 0.325128i −0.756775 0.653676i \(-0.773226\pi\)
0.944487 + 0.328548i \(0.106559\pi\)
\(212\) −0.0662372 + 0.114726i −0.00454919 + 0.00787942i
\(213\) 22.5744 3.98048i 1.54678 0.272738i
\(214\) 4.39053 + 7.60462i 0.300130 + 0.519841i
\(215\) 3.10607 0.211832
\(216\) −13.2460 + 7.64760i −0.901278 + 0.520353i
\(217\) −7.68004 −0.521355
\(218\) −7.16637 12.4125i −0.485368 0.840682i
\(219\) −17.5155 + 3.08845i −1.18359 + 0.208698i
\(220\) 0.109470 0.189608i 0.00738049 0.0127834i
\(221\) −11.2947 + 19.5630i −0.759766 + 1.31595i
\(222\) 11.5201 + 13.7291i 0.773176 + 0.921436i
\(223\) −7.09627 12.2911i −0.475201 0.823073i 0.524395 0.851475i \(-0.324291\pi\)
−0.999597 + 0.0284023i \(0.990958\pi\)
\(224\) 1.04189 0.0696141
\(225\) −3.24376 2.72183i −0.216250 0.181456i
\(226\) 6.97502 0.463972
\(227\) 1.44697 + 2.50622i 0.0960385 + 0.166344i 0.910042 0.414517i \(-0.136049\pi\)
−0.814003 + 0.580861i \(0.802716\pi\)
\(228\) −0.239170 + 0.657115i −0.0158394 + 0.0435185i
\(229\) −4.58378 + 7.93934i −0.302905 + 0.524646i −0.976793 0.214187i \(-0.931290\pi\)
0.673888 + 0.738834i \(0.264623\pi\)
\(230\) 0.180922 0.313366i 0.0119297 0.0206628i
\(231\) −0.277189 + 0.761570i −0.0182377 + 0.0501076i
\(232\) 12.9238 + 22.3847i 0.848489 + 1.46963i
\(233\) 13.2713 0.869429 0.434715 0.900568i \(-0.356849\pi\)
0.434715 + 0.900568i \(0.356849\pi\)
\(234\) 22.1163 8.04969i 1.44579 0.526225i
\(235\) −13.5030 −0.880838
\(236\) 0.0680482 + 0.117863i 0.00442956 + 0.00767222i
\(237\) 14.0706 + 16.7687i 0.913982 + 1.08924i
\(238\) −2.61334 + 4.52644i −0.169398 + 0.293405i
\(239\) −4.76857 + 8.25941i −0.308453 + 0.534257i −0.978024 0.208491i \(-0.933145\pi\)
0.669571 + 0.742748i \(0.266478\pi\)
\(240\) −15.5326 + 2.73881i −1.00262 + 0.176789i
\(241\) 4.47906 + 7.75795i 0.288521 + 0.499734i 0.973457 0.228870i \(-0.0735031\pi\)
−0.684936 + 0.728604i \(0.740170\pi\)
\(242\) −14.5253 −0.933720
\(243\) 10.0201 11.9415i 0.642788 0.766044i
\(244\) −0.177052 −0.0113346
\(245\) −1.26604 2.19285i −0.0808846 0.140096i
\(246\) −5.11721 + 0.902302i −0.326261 + 0.0575287i
\(247\) 6.36097 11.0175i 0.404739 0.701028i
\(248\) −11.3033 + 19.5780i −0.717763 + 1.24320i
\(249\) 3.04101 + 3.62414i 0.192716 + 0.229670i
\(250\) 6.12108 + 10.6020i 0.387131 + 0.670531i
\(251\) −24.9982 −1.57788 −0.788938 0.614473i \(-0.789369\pi\)
−0.788938 + 0.614473i \(0.789369\pi\)
\(252\) −0.520945 + 0.189608i −0.0328164 + 0.0119442i
\(253\) −0.0496299 −0.00312020
\(254\) 5.98339 + 10.3635i 0.375431 + 0.650266i
\(255\) −5.81908 + 15.9878i −0.364405 + 1.00119i
\(256\) 2.19800 3.80704i 0.137375 0.237940i
\(257\) −5.42602 + 9.39815i −0.338466 + 0.586240i −0.984144 0.177369i \(-0.943241\pi\)
0.645678 + 0.763609i \(0.276575\pi\)
\(258\) −0.979055 + 2.68993i −0.0609533 + 0.167468i
\(259\) 3.84002 + 6.65111i 0.238607 + 0.413280i
\(260\) −2.72462 −0.168974
\(261\) −20.1800 16.9331i −1.24911 1.04813i
\(262\) 15.3090 0.945795
\(263\) −13.0437 22.5924i −0.804309 1.39310i −0.916757 0.399446i \(-0.869202\pi\)
0.112448 0.993658i \(-0.464131\pi\)
\(264\) 1.53343 + 1.82747i 0.0943763 + 0.112473i
\(265\) 0.907604 1.57202i 0.0557537 0.0965682i
\(266\) 1.47178 2.54920i 0.0902407 0.156302i
\(267\) −13.8400 + 2.44037i −0.846996 + 0.149348i
\(268\) −0.890530 1.54244i −0.0543978 0.0942197i
\(269\) −7.63310 −0.465399 −0.232699 0.972549i \(-0.574756\pi\)
−0.232699 + 0.972549i \(0.574756\pi\)
\(270\) 15.3516 8.86327i 0.934271 0.539401i
\(271\) 3.40373 0.206762 0.103381 0.994642i \(-0.467034\pi\)
0.103381 + 0.994642i \(0.467034\pi\)
\(272\) 6.97565 + 12.0822i 0.422961 + 0.732590i
\(273\) 9.93242 1.75135i 0.601137 0.105997i
\(274\) 3.85638 6.67945i 0.232973 0.403520i
\(275\) −0.330222 + 0.571962i −0.0199131 + 0.0344906i
\(276\) −0.0218219 0.0260063i −0.00131352 0.00156540i
\(277\) 2.86097 + 4.95534i 0.171899 + 0.297738i 0.939084 0.343689i \(-0.111676\pi\)
−0.767185 + 0.641426i \(0.778343\pi\)
\(278\) −1.24485 −0.0746612
\(279\) 4.00088 22.6901i 0.239526 1.35842i
\(280\) −7.45336 −0.445424
\(281\) −14.1887 24.5755i −0.846425 1.46605i −0.884378 0.466771i \(-0.845417\pi\)
0.0379535 0.999280i \(-0.487916\pi\)
\(282\) 4.25624 11.6939i 0.253456 0.696364i
\(283\) −2.28564 + 3.95885i −0.135867 + 0.235329i −0.925929 0.377699i \(-0.876715\pi\)
0.790061 + 0.613028i \(0.210049\pi\)
\(284\) 1.22281 2.11797i 0.0725605 0.125678i
\(285\) 3.27719 9.00400i 0.194124 0.533351i
\(286\) −1.83544 3.17907i −0.108532 0.187982i
\(287\) −2.22668 −0.131437
\(288\) −0.542766 + 3.07818i −0.0319828 + 0.181384i
\(289\) −1.95037 −0.114728
\(290\) −14.9782 25.9430i −0.879549 1.52342i
\(291\) 15.1459 + 18.0502i 0.887868 + 1.05812i
\(292\) −0.948778 + 1.64333i −0.0555230 + 0.0961687i
\(293\) −2.16385 + 3.74789i −0.126413 + 0.218954i −0.922285 0.386512i \(-0.873680\pi\)
0.795871 + 0.605466i \(0.207013\pi\)
\(294\) 2.29813 0.405223i 0.134030 0.0236331i
\(295\) −0.932419 1.61500i −0.0542875 0.0940287i
\(296\) 22.6067 1.31399
\(297\) −2.10560 1.21567i −0.122179 0.0705403i
\(298\) 11.7547 0.680929
\(299\) 0.308811 + 0.534876i 0.0178590 + 0.0309327i
\(300\) −0.444907 + 0.0784491i −0.0256867 + 0.00452926i
\(301\) −0.613341 + 1.06234i −0.0353524 + 0.0612321i
\(302\) −12.4133 + 21.5004i −0.714304 + 1.23721i
\(303\) 10.6591 + 12.7030i 0.612349 + 0.729769i
\(304\) −3.92855 6.80445i −0.225318 0.390262i
\(305\) 2.42602 0.138914
\(306\) −12.0116 10.0789i −0.686658 0.576175i
\(307\) 12.3773 0.706411 0.353206 0.935546i \(-0.385092\pi\)
0.353206 + 0.935546i \(0.385092\pi\)
\(308\) 0.0432332 + 0.0748822i 0.00246344 + 0.00426681i
\(309\) −1.80200 + 4.95096i −0.102512 + 0.281651i
\(310\) 13.1001 22.6901i 0.744038 1.28871i
\(311\) 10.9927 19.0400i 0.623340 1.07966i −0.365519 0.930804i \(-0.619108\pi\)
0.988859 0.148853i \(-0.0475582\pi\)
\(312\) 10.1538 27.8973i 0.574846 1.57938i
\(313\) 6.94491 + 12.0289i 0.392549 + 0.679915i 0.992785 0.119908i \(-0.0382599\pi\)
−0.600236 + 0.799823i \(0.704927\pi\)
\(314\) 6.63404 0.374380
\(315\) 7.13816 2.59808i 0.402190 0.146385i
\(316\) 2.33544 0.131379
\(317\) 3.09105 + 5.35386i 0.173611 + 0.300703i 0.939680 0.342056i \(-0.111123\pi\)
−0.766069 + 0.642759i \(0.777790\pi\)
\(318\) 1.07532 + 1.28152i 0.0603011 + 0.0718640i
\(319\) −2.05438 + 3.55829i −0.115023 + 0.199226i
\(320\) −10.8833 + 18.8504i −0.608392 + 1.05377i
\(321\) −11.1172 + 1.96026i −0.620502 + 0.109411i
\(322\) 0.0714517 + 0.123758i 0.00398185 + 0.00689677i
\(323\) −8.47565 −0.471598
\(324\) −0.288800 1.63787i −0.0160444 0.0909926i
\(325\) 8.21894 0.455905
\(326\) −5.14543 8.91215i −0.284979 0.493598i
\(327\) 18.1459 3.19961i 1.00347 0.176939i
\(328\) −3.27719 + 5.67626i −0.180952 + 0.313419i
\(329\) 2.66637 4.61830i 0.147002 0.254615i
\(330\) −1.77719 2.11797i −0.0978310 0.116590i
\(331\) −5.36571 9.29369i −0.294926 0.510827i 0.680041 0.733174i \(-0.261962\pi\)
−0.974968 + 0.222346i \(0.928628\pi\)
\(332\) 0.504748 0.0277016
\(333\) −21.6506 + 7.88019i −1.18645 + 0.431832i
\(334\) −7.61949 −0.416920
\(335\) 12.2023 + 21.1351i 0.666685 + 1.15473i
\(336\) 2.13041 5.85327i 0.116224 0.319322i
\(337\) 9.29726 16.1033i 0.506454 0.877204i −0.493518 0.869735i \(-0.664289\pi\)
0.999972 0.00746831i \(-0.00237726\pi\)
\(338\) −14.0838 + 24.3938i −0.766057 + 1.32685i
\(339\) −3.06687 + 8.42615i −0.166569 + 0.457645i
\(340\) 0.907604 + 1.57202i 0.0492217 + 0.0852545i
\(341\) −3.59358 −0.194603
\(342\) 6.76470 + 5.67626i 0.365793 + 0.306937i
\(343\) 1.00000 0.0539949
\(344\) 1.80541 + 3.12706i 0.0973410 + 0.168600i
\(345\) 0.299011 + 0.356347i 0.0160982 + 0.0191851i
\(346\) −14.1932 + 24.5834i −0.763034 + 1.32161i
\(347\) 10.2062 17.6777i 0.547898 0.948987i −0.450521 0.892766i \(-0.648762\pi\)
0.998418 0.0562207i \(-0.0179050\pi\)
\(348\) −2.76786 + 0.488048i −0.148373 + 0.0261621i
\(349\) 1.78106 + 3.08489i 0.0953379 + 0.165130i 0.909750 0.415157i \(-0.136274\pi\)
−0.814412 + 0.580288i \(0.802940\pi\)
\(350\) 1.90167 0.101649
\(351\) 30.2569i 1.61500i
\(352\) 0.487511 0.0259844
\(353\) −5.01114 8.67956i −0.266716 0.461966i 0.701296 0.712871i \(-0.252605\pi\)
−0.968012 + 0.250904i \(0.919272\pi\)
\(354\) 1.69253 0.298439i 0.0899571 0.0158619i
\(355\) −16.7554 + 29.0211i −0.889283 + 1.54028i
\(356\) −0.749686 + 1.29849i −0.0397333 + 0.0688200i
\(357\) −4.31908 5.14728i −0.228590 0.272423i
\(358\) 3.44949 + 5.97470i 0.182311 + 0.315773i
\(359\) 9.48070 0.500372 0.250186 0.968198i \(-0.419508\pi\)
0.250186 + 0.968198i \(0.419508\pi\)
\(360\) 3.88279 22.0204i 0.204641 1.16058i
\(361\) −14.2267 −0.748773
\(362\) 0.215537 + 0.373321i 0.0113284 + 0.0196213i
\(363\) 6.38666 17.5472i 0.335213 0.920989i
\(364\) 0.538019 0.931876i 0.0281998 0.0488436i
\(365\) 13.0005 22.5175i 0.680476 1.17862i
\(366\) −0.764700 + 2.10100i −0.0399715 + 0.109821i
\(367\) −8.06670 13.9719i −0.421079 0.729329i 0.574967 0.818177i \(-0.305015\pi\)
−0.996045 + 0.0888474i \(0.971682\pi\)
\(368\) 0.381445 0.0198842
\(369\) 1.15998 6.57856i 0.0603860 0.342466i
\(370\) −26.2003 −1.36209
\(371\) 0.358441 + 0.620838i 0.0186093 + 0.0322323i
\(372\) −1.58007 1.88305i −0.0819228 0.0976318i
\(373\) −7.02481 + 12.1673i −0.363731 + 0.630001i −0.988572 0.150752i \(-0.951831\pi\)
0.624841 + 0.780752i \(0.285164\pi\)
\(374\) −1.22281 + 2.11797i −0.0632301 + 0.109518i
\(375\) −15.4991 + 2.73291i −0.800371 + 0.141127i
\(376\) −7.84864 13.5942i −0.404763 0.701070i
\(377\) 51.1317 2.63341
\(378\) 7.00076i 0.360080i
\(379\) 16.0574 0.824812 0.412406 0.911000i \(-0.364689\pi\)
0.412406 + 0.911000i \(0.364689\pi\)
\(380\) −0.511144 0.885328i −0.0262212 0.0454164i
\(381\) −15.1505 + 2.67144i −0.776183 + 0.136862i
\(382\) 10.4868 18.1637i 0.536551 0.929334i
\(383\) 16.0103 27.7306i 0.818086 1.41697i −0.0890039 0.996031i \(-0.528368\pi\)
0.907090 0.420936i \(-0.138298\pi\)
\(384\) −10.5744 12.6021i −0.539625 0.643100i
\(385\) −0.592396 1.02606i −0.0301913 0.0522929i
\(386\) 8.14022 0.414326
\(387\) −2.81908 2.36549i −0.143302 0.120244i
\(388\) 2.51392 0.127625
\(389\) 15.0214 + 26.0178i 0.761616 + 1.31916i 0.942017 + 0.335564i \(0.108927\pi\)
−0.180402 + 0.983593i \(0.557740\pi\)
\(390\) −11.7679 + 32.3319i −0.595889 + 1.63719i
\(391\) 0.205737 0.356347i 0.0104046 0.0180212i
\(392\) 1.47178 2.54920i 0.0743362 0.128754i
\(393\) −6.73127 + 18.4940i −0.339548 + 0.932899i
\(394\) −16.9991 29.4433i −0.856403 1.48333i
\(395\) −32.0009 −1.61014
\(396\) −0.243756 + 0.0887198i −0.0122492 + 0.00445834i
\(397\) −12.3200 −0.618321 −0.309160 0.951010i \(-0.600048\pi\)
−0.309160 + 0.951010i \(0.600048\pi\)
\(398\) −2.04916 3.54925i −0.102715 0.177908i
\(399\) 2.43242 + 2.89884i 0.121773 + 0.145124i
\(400\) 2.53802 4.39598i 0.126901 0.219799i
\(401\) −10.4880 + 18.1657i −0.523745 + 0.907152i 0.475873 + 0.879514i \(0.342132\pi\)
−0.999618 + 0.0276385i \(0.991201\pi\)
\(402\) −22.1498 + 3.90560i −1.10473 + 0.194794i
\(403\) 22.3603 + 38.7291i 1.11384 + 1.92923i
\(404\) 1.76920 0.0880210
\(405\) 3.95723 + 22.4426i 0.196637 + 1.11518i
\(406\) 11.8307 0.587147
\(407\) 1.79679 + 3.11213i 0.0890635 + 0.154263i
\(408\) −19.4782 + 3.43453i −0.964314 + 0.170034i
\(409\) −12.8307 + 22.2234i −0.634437 + 1.09888i 0.352197 + 0.935926i \(0.385435\pi\)
−0.986634 + 0.162951i \(0.947899\pi\)
\(410\) 3.79813 6.57856i 0.187576 0.324892i
\(411\) 6.37346 + 7.59559i 0.314379 + 0.374663i
\(412\) 0.281059 + 0.486809i 0.0138468 + 0.0239833i
\(413\) 0.736482 0.0362399
\(414\) −0.402856 + 0.146628i −0.0197993 + 0.00720635i
\(415\) −6.91622 −0.339504
\(416\) −3.03343 5.25406i −0.148726 0.257601i
\(417\) 0.547352 1.50384i 0.0268039 0.0736432i
\(418\) 0.688663 1.19280i 0.0336836 0.0583417i
\(419\) 0.739885 1.28152i 0.0361458 0.0626063i −0.847387 0.530976i \(-0.821825\pi\)
0.883532 + 0.468370i \(0.155159\pi\)
\(420\) 0.277189 0.761570i 0.0135254 0.0371608i
\(421\) −6.55350 11.3510i −0.319398 0.553214i 0.660965 0.750417i \(-0.270147\pi\)
−0.980363 + 0.197203i \(0.936814\pi\)
\(422\) −7.34730 −0.357661
\(423\) 12.2554 + 10.2835i 0.595876 + 0.500000i
\(424\) 2.11019 0.102480
\(425\) −2.73783 4.74205i −0.132804 0.230023i
\(426\) −19.8516 23.6583i −0.961815 1.14625i
\(427\) −0.479055 + 0.829748i −0.0231831 + 0.0401543i
\(428\) −0.602196 + 1.04303i −0.0291083 + 0.0504170i
\(429\) 4.64749 0.819478i 0.224383 0.0395648i
\(430\) −2.09240 3.62414i −0.100904 0.174771i
\(431\) 17.7270 0.853879 0.426939 0.904280i \(-0.359592\pi\)
0.426939 + 0.904280i \(0.359592\pi\)
\(432\) 16.1832 + 9.34337i 0.778615 + 0.449533i
\(433\) −5.83843 −0.280577 −0.140289 0.990111i \(-0.544803\pi\)
−0.140289 + 0.990111i \(0.544803\pi\)
\(434\) 5.17365 + 8.96102i 0.248343 + 0.430143i
\(435\) 37.9261 6.68739i 1.81842 0.320636i
\(436\) 0.982926 1.70248i 0.0470736 0.0815339i
\(437\) −0.115867 + 0.200688i −0.00554267 + 0.00960019i
\(438\) 15.4029 + 18.3564i 0.735977 + 0.877103i
\(439\) −14.9277 25.8555i −0.712459 1.23401i −0.963931 0.266151i \(-0.914248\pi\)
0.251473 0.967864i \(-0.419085\pi\)
\(440\) −3.48751 −0.166261
\(441\) −0.520945 + 2.95442i −0.0248069 + 0.140687i
\(442\) 30.4347 1.44763
\(443\) −5.33275 9.23659i −0.253367 0.438844i 0.711084 0.703107i \(-0.248205\pi\)
−0.964451 + 0.264263i \(0.914871\pi\)
\(444\) −0.840738 + 2.30991i −0.0398996 + 0.109623i
\(445\) 10.2724 17.7924i 0.486960 0.843440i
\(446\) −9.56077 + 16.5597i −0.452716 + 0.784127i
\(447\) −5.16843 + 14.2002i −0.244459 + 0.671644i
\(448\) −4.29813 7.44459i −0.203068 0.351724i
\(449\) 3.55438 0.167741 0.0838707 0.996477i \(-0.473272\pi\)
0.0838707 + 0.996477i \(0.473272\pi\)
\(450\) −0.990667 + 5.61835i −0.0467005 + 0.264852i
\(451\) −1.04189 −0.0490606
\(452\) 0.478340 + 0.828510i 0.0224992 + 0.0389698i
\(453\) −20.5155 24.4494i −0.963901 1.14873i
\(454\) 1.94949 3.37662i 0.0914942 0.158473i
\(455\) −7.37211 + 12.7689i −0.345610 + 0.598614i
\(456\) 10.9697 1.93426i 0.513704 0.0905799i
\(457\) −2.51161 4.35024i −0.117488 0.203496i 0.801283 0.598285i \(-0.204151\pi\)
−0.918772 + 0.394789i \(0.870818\pi\)
\(458\) 12.3514 0.577144
\(459\) 17.4572 10.0789i 0.814834 0.470445i
\(460\) 0.0496299 0.00231400
\(461\) −9.23055 15.9878i −0.429910 0.744625i 0.566955 0.823749i \(-0.308121\pi\)
−0.996865 + 0.0791233i \(0.974788\pi\)
\(462\) 1.07532 0.189608i 0.0500285 0.00882138i
\(463\) 7.11721 12.3274i 0.330765 0.572902i −0.651897 0.758307i \(-0.726027\pi\)
0.982662 + 0.185406i \(0.0593600\pi\)
\(464\) 15.7895 27.3482i 0.733010 1.26961i
\(465\) 21.6506 + 25.8022i 1.00402 + 1.19655i
\(466\) −8.94016 15.4848i −0.414145 0.717320i
\(467\) −3.36865 −0.155883 −0.0779413 0.996958i \(-0.524835\pi\)
−0.0779413 + 0.996958i \(0.524835\pi\)
\(468\) 2.47288 + 2.07499i 0.114309 + 0.0959165i
\(469\) −9.63816 −0.445049
\(470\) 9.09627 + 15.7552i 0.419579 + 0.726733i
\(471\) −2.91694 + 8.01422i −0.134405 + 0.369276i
\(472\) 1.08394 1.87744i 0.0498924 0.0864162i
\(473\) −0.286989 + 0.497079i −0.0131958 + 0.0228557i
\(474\) 10.0869 27.7136i 0.463308 1.27293i
\(475\) 1.54189 + 2.67063i 0.0707467 + 0.122537i
\(476\) −0.716881 −0.0328582
\(477\) −2.02094 + 0.735564i −0.0925327 + 0.0336791i
\(478\) 12.8494 0.587716
\(479\) 18.3833 + 31.8407i 0.839952 + 1.45484i 0.889934 + 0.456090i \(0.150751\pi\)
−0.0499812 + 0.998750i \(0.515916\pi\)
\(480\) −2.93717 3.50038i −0.134063 0.159770i
\(481\) 22.3603 38.7291i 1.01954 1.76589i
\(482\) 6.03462 10.4523i 0.274869 0.476087i
\(483\) −0.180922 + 0.0319015i −0.00823224 + 0.00145157i
\(484\) −0.996130 1.72535i −0.0452786 0.0784249i
\(485\) −34.4466 −1.56414
\(486\) −20.6832 3.64701i −0.938209 0.165432i
\(487\) −37.4175 −1.69555 −0.847773 0.530358i \(-0.822057\pi\)
−0.847773 + 0.530358i \(0.822057\pi\)
\(488\) 1.41013 + 2.44242i 0.0638336 + 0.110563i
\(489\) 13.0287 2.29731i 0.589178 0.103888i
\(490\) −1.70574 + 2.95442i −0.0770573 + 0.133467i
\(491\) 13.3353 23.0974i 0.601813 1.04237i −0.390734 0.920504i \(-0.627779\pi\)
0.992547 0.121866i \(-0.0388879\pi\)
\(492\) −0.458111 0.545955i −0.0206532 0.0246136i
\(493\) −17.0326 29.5013i −0.767108 1.32867i
\(494\) −17.1402 −0.771175
\(495\) 3.34002 1.21567i 0.150123 0.0546402i
\(496\) 27.6195 1.24015
\(497\) −6.61721 11.4613i −0.296822 0.514112i
\(498\) 2.18004 5.98962i 0.0976901 0.268401i
\(499\) −16.8726 + 29.2242i −0.755320 + 1.30825i 0.189895 + 0.981804i \(0.439185\pi\)
−0.945215 + 0.326449i \(0.894148\pi\)
\(500\) −0.839556 + 1.45415i −0.0375461 + 0.0650317i
\(501\) 3.35023 9.20469i 0.149677 0.411235i
\(502\) 16.8400 + 29.1678i 0.751607 + 1.30182i
\(503\) −32.0401 −1.42860 −0.714299 0.699840i \(-0.753255\pi\)
−0.714299 + 0.699840i \(0.753255\pi\)
\(504\) 6.76470 + 5.67626i 0.301324 + 0.252841i
\(505\) −24.2422 −1.07876
\(506\) 0.0334331 + 0.0579078i 0.00148628 + 0.00257431i
\(507\) −23.2763 27.7396i −1.03374 1.23196i
\(508\) −0.820670 + 1.42144i −0.0364114 + 0.0630663i
\(509\) 3.96926 6.87495i 0.175934 0.304727i −0.764550 0.644564i \(-0.777039\pi\)
0.940484 + 0.339838i \(0.110372\pi\)
\(510\) 22.5744 3.98048i 0.999613 0.176259i
\(511\) 5.13429 + 8.89284i 0.227127 + 0.393396i
\(512\) −24.9186 −1.10126
\(513\) −9.83157 + 5.67626i −0.434074 + 0.250613i
\(514\) 14.6209 0.644901
\(515\) −3.85117 6.67042i −0.169703 0.293934i
\(516\) −0.386659 + 0.0681784i −0.0170217 + 0.00300139i
\(517\) 1.24763 2.16095i 0.0548705 0.0950386i
\(518\) 5.17365 8.96102i 0.227317 0.393725i
\(519\) −23.4572 27.9552i −1.02966 1.22710i
\(520\) 21.7003 + 37.5860i 0.951620 + 1.64825i
\(521\) −14.6750 −0.642923 −0.321462 0.946923i \(-0.604174\pi\)
−0.321462 + 0.946923i \(0.604174\pi\)
\(522\) −6.16313 + 34.9529i −0.269753 + 1.52985i
\(523\) 28.3432 1.23936 0.619680 0.784854i \(-0.287262\pi\)
0.619680 + 0.784854i \(0.287262\pi\)
\(524\) 1.04988 + 1.81844i 0.0458641 + 0.0794390i
\(525\) −0.836152 + 2.29731i −0.0364927 + 0.100263i
\(526\) −17.5737 + 30.4386i −0.766251 + 1.32719i
\(527\) 14.8969 25.8022i 0.648920 1.12396i
\(528\) 0.996845 2.73881i 0.0433821 0.119191i
\(529\) 11.4944 + 19.9088i 0.499755 + 0.865602i
\(530\) −2.44562 −0.106231
\(531\) −0.383666 + 2.17588i −0.0166497 + 0.0944251i
\(532\) 0.403733 0.0175041
\(533\) 6.48293 + 11.2288i 0.280807 + 0.486371i
\(534\) 12.1707 + 14.5045i 0.526678 + 0.627671i
\(535\) 8.25150 14.2920i 0.356743 0.617898i
\(536\) −14.1853 + 24.5696i −0.612710 + 1.06124i
\(537\) −8.73442 + 1.54011i −0.376918 + 0.0664608i
\(538\) 5.14203 + 8.90625i 0.221688 + 0.383976i
\(539\) 0.467911 0.0201544
\(540\) 2.10560 + 1.21567i 0.0906106 + 0.0523141i
\(541\) 11.2858 0.485215 0.242607 0.970125i \(-0.421997\pi\)
0.242607 + 0.970125i \(0.421997\pi\)
\(542\) −2.29292 3.97145i −0.0984893 0.170588i
\(543\) −0.545759 + 0.0962321i −0.0234208 + 0.00412972i
\(544\) −2.02094 + 3.50038i −0.0866473 + 0.150077i
\(545\) −13.4684 + 23.3279i −0.576922 + 0.999258i
\(546\) −8.73442 10.4093i −0.373799 0.445476i
\(547\) 14.6202 + 25.3229i 0.625115 + 1.08273i 0.988519 + 0.151099i \(0.0482812\pi\)
−0.363404 + 0.931632i \(0.618385\pi\)
\(548\) 1.05787 0.0451899
\(549\) −2.20187 1.84759i −0.0939734 0.0788530i
\(550\) 0.889814 0.0379418
\(551\) 9.59240 + 16.6145i 0.408650 + 0.707802i
\(552\) −0.184955 + 0.508159i −0.00787219 + 0.0216287i
\(553\) 6.31908 10.9450i 0.268715 0.465427i
\(554\) 3.85457 6.67631i 0.163765 0.283649i
\(555\) 11.5201 31.6511i 0.489000 1.34352i
\(556\) −0.0853707 0.147866i −0.00362052 0.00627093i
\(557\) −0.775682 −0.0328667 −0.0164334 0.999865i \(-0.505231\pi\)
−0.0164334 + 0.999865i \(0.505231\pi\)
\(558\) −29.1698 + 10.6170i −1.23486 + 0.449451i
\(559\) 7.14290 0.302113
\(560\) 4.55303 + 7.88609i 0.192401 + 0.333248i
\(561\) −2.02094 2.40847i −0.0853243 0.101686i
\(562\) −19.1163 + 33.1105i −0.806374 + 1.39668i
\(563\) −12.4761 + 21.6093i −0.525806 + 0.910722i 0.473742 + 0.880663i \(0.342903\pi\)
−0.999548 + 0.0300588i \(0.990431\pi\)
\(564\) 1.68092 0.296392i 0.0707796 0.0124804i
\(565\) −6.55438 11.3525i −0.275745 0.477604i
\(566\) 6.15888 0.258877
\(567\) −8.45723 3.07818i −0.355170 0.129271i
\(568\) −38.9564 −1.63457
\(569\) 12.4017 + 21.4803i 0.519905 + 0.900502i 0.999732 + 0.0231391i \(0.00736608\pi\)
−0.479827 + 0.877363i \(0.659301\pi\)
\(570\) −12.7135 + 2.24173i −0.532509 + 0.0938957i
\(571\) −4.39827 + 7.61803i −0.184062 + 0.318805i −0.943260 0.332055i \(-0.892258\pi\)
0.759198 + 0.650860i \(0.225591\pi\)
\(572\) 0.251745 0.436035i 0.0105260 0.0182315i
\(573\) 17.3316 + 20.6550i 0.724037 + 0.862873i
\(574\) 1.50000 + 2.59808i 0.0626088 + 0.108442i
\(575\) −0.149711 −0.00624336
\(576\) 24.2335 8.82029i 1.00973 0.367512i
\(577\) −12.8743 −0.535965 −0.267983 0.963424i \(-0.586357\pi\)
−0.267983 + 0.963424i \(0.586357\pi\)
\(578\) 1.31386 + 2.27568i 0.0546495 + 0.0946557i
\(579\) −3.57919 + 9.83375i −0.148746 + 0.408677i
\(580\) 2.05438 3.55829i 0.0853034 0.147750i
\(581\) 1.36571 2.36549i 0.0566594 0.0981369i
\(582\) 10.8578 29.8316i 0.450071 1.23656i
\(583\) 0.167718 + 0.290497i 0.00694619 + 0.0120311i
\(584\) 30.2262 1.25077
\(585\) −33.8842 28.4322i −1.40094 1.17553i
\(586\) 5.83069 0.240864
\(587\) −22.4315 38.8526i −0.925849 1.60362i −0.790190 0.612861i \(-0.790018\pi\)
−0.135658 0.990756i \(-0.543315\pi\)
\(588\) 0.205737 + 0.245188i 0.00848445 + 0.0101114i
\(589\) −8.38965 + 14.5313i −0.345690 + 0.598752i
\(590\) −1.25624 + 2.17588i −0.0517188 + 0.0895795i
\(591\) 43.0433 7.58969i 1.77056 0.312198i
\(592\) −13.8097 23.9192i −0.567577 0.983072i
\(593\) 3.76053 0.154426 0.0772131 0.997015i \(-0.475398\pi\)
0.0772131 + 0.997015i \(0.475398\pi\)
\(594\) 3.27573i 0.134405i
\(595\) 9.82295 0.402702
\(596\) 0.806123 + 1.39625i 0.0330201 + 0.0571924i
\(597\) 5.18866 0.914901i 0.212358 0.0374444i
\(598\) 0.416060 0.720637i 0.0170139 0.0294690i
\(599\) 1.84524 3.19604i 0.0753943 0.130587i −0.825863 0.563870i \(-0.809312\pi\)
0.901258 + 0.433283i \(0.142645\pi\)
\(600\) 4.62567 + 5.51266i 0.188842 + 0.225053i
\(601\) 10.9285 + 18.9288i 0.445785 + 0.772122i 0.998107 0.0615091i \(-0.0195913\pi\)
−0.552322 + 0.833631i \(0.686258\pi\)
\(602\) 1.65270 0.0673592
\(603\) 5.02094 28.4752i 0.204469 1.15960i
\(604\) −3.40516 −0.138554
\(605\) 13.6493 + 23.6413i 0.554923 + 0.961155i
\(606\) 7.64131 20.9943i 0.310407 0.852836i
\(607\) −12.1973 + 21.1263i −0.495072 + 0.857490i −0.999984 0.00568063i \(-0.998192\pi\)
0.504911 + 0.863171i \(0.331525\pi\)
\(608\) 1.13816 1.97134i 0.0461583 0.0799485i
\(609\) −5.20187 + 14.2920i −0.210790 + 0.579142i
\(610\) −1.63429 2.83067i −0.0661703 0.114610i
\(611\) −31.0523 −1.25624
\(612\) 0.373455 2.11797i 0.0150960 0.0856139i
\(613\) 42.0215 1.69723 0.848616 0.529010i \(-0.177437\pi\)
0.848616 + 0.529010i \(0.177437\pi\)
\(614\) −8.33796 14.4418i −0.336493 0.582823i
\(615\) 6.27719 + 7.48086i 0.253121 + 0.301657i
\(616\) 0.688663 1.19280i 0.0277470 0.0480592i
\(617\) −23.2049 + 40.1920i −0.934192 + 1.61807i −0.158125 + 0.987419i \(0.550545\pi\)
−0.776068 + 0.630650i \(0.782788\pi\)
\(618\) 6.99067 1.23264i 0.281206 0.0495842i
\(619\) 13.6047 + 23.5641i 0.546820 + 0.947120i 0.998490 + 0.0549349i \(0.0174951\pi\)
−0.451670 + 0.892185i \(0.649172\pi\)
\(620\) 3.59358 0.144322
\(621\) 0.551139i 0.0221165i
\(622\) −29.6209 −1.18769
\(623\) 4.05690 + 7.02676i 0.162536 + 0.281521i
\(624\) −35.7196 + 6.29833i −1.42993 + 0.252135i
\(625\) 15.0326 26.0372i 0.601302 1.04149i
\(626\) 9.35685 16.2065i 0.373975 0.647743i
\(627\) 1.13816 + 1.35640i 0.0454536 + 0.0541694i
\(628\) 0.454956 + 0.788006i 0.0181547 + 0.0314449i
\(629\) −29.7939 −1.18796
\(630\) −7.84002 6.57856i −0.312354 0.262096i
\(631\) −29.6023 −1.17845 −0.589224 0.807970i \(-0.700566\pi\)
−0.589224 + 0.807970i \(0.700566\pi\)
\(632\) −18.6006 32.2172i −0.739892 1.28153i
\(633\) 3.23055 8.87587i 0.128403 0.352784i
\(634\) 4.16456 7.21324i 0.165396 0.286474i
\(635\) 11.2451 19.4771i 0.446248 0.772925i
\(636\) −0.0784773 + 0.215615i −0.00311183 + 0.00854968i
\(637\) −2.91147 5.04282i −0.115357 0.199804i
\(638\) 5.53571 0.219161
\(639\) 37.3089 13.5793i 1.47592 0.537189i
\(640\) 24.0496 0.950645
\(641\) 0.139500 + 0.241621i 0.00550991 + 0.00954345i 0.868767 0.495221i \(-0.164913\pi\)
−0.863257 + 0.504764i \(0.831579\pi\)
\(642\) 9.77631 + 11.6510i 0.385840 + 0.459826i
\(643\) 9.12196 15.7997i 0.359735 0.623079i −0.628181 0.778067i \(-0.716200\pi\)
0.987916 + 0.154988i \(0.0495338\pi\)
\(644\) −0.00980018 + 0.0169744i −0.000386181 + 0.000668885i
\(645\) 5.29813 0.934204i 0.208614 0.0367842i
\(646\) 5.70961 + 9.88933i 0.224642 + 0.389090i
\(647\) 22.4570 0.882875 0.441438 0.897292i \(-0.354469\pi\)
0.441438 + 0.897292i \(0.354469\pi\)
\(648\) −20.2941 + 17.0288i −0.797228 + 0.668953i
\(649\) 0.344608 0.0135270
\(650\) −5.53667 9.58980i −0.217166 0.376143i
\(651\) −13.1001 + 2.30991i −0.513435 + 0.0905324i
\(652\) 0.705737 1.22237i 0.0276388 0.0478718i
\(653\) 25.2656 43.7614i 0.988721 1.71251i 0.364655 0.931143i \(-0.381187\pi\)
0.624066 0.781372i \(-0.285480\pi\)
\(654\) −15.9572 19.0171i −0.623977 0.743627i
\(655\) −14.3858 24.9169i −0.562099 0.973584i
\(656\) 8.00774 0.312650
\(657\) −28.9479 + 10.5362i −1.12937 + 0.411055i
\(658\) −7.18479 −0.280092
\(659\) 1.33631 + 2.31456i 0.0520554 + 0.0901626i 0.890879 0.454241i \(-0.150089\pi\)
−0.838824 + 0.544403i \(0.816756\pi\)
\(660\) 0.129700 0.356347i 0.00504855 0.0138708i
\(661\) 17.3050 29.9731i 0.673086 1.16582i −0.303938 0.952692i \(-0.598302\pi\)
0.977024 0.213128i \(-0.0683651\pi\)
\(662\) −7.22921 + 12.5214i −0.280971 + 0.486656i
\(663\) −13.3819 + 36.7665i −0.519710 + 1.42789i
\(664\) −4.02007 6.96296i −0.156009 0.270215i
\(665\) −5.53209 −0.214525
\(666\) 23.7795 + 19.9533i 0.921436 + 0.773176i
\(667\) −0.931379 −0.0360631
\(668\) −0.522537 0.905061i −0.0202176 0.0350179i
\(669\) −15.8011 18.8310i −0.610907 0.728050i
\(670\) 16.4402 28.4752i 0.635139 1.10009i
\(671\) −0.224155 + 0.388249i −0.00865342 + 0.0149882i
\(672\) 1.77719 0.313366i 0.0685565 0.0120884i
\(673\) −8.25624 14.3002i −0.318255 0.551234i 0.661869 0.749619i \(-0.269763\pi\)
−0.980124 + 0.198386i \(0.936430\pi\)
\(674\) −25.0523 −0.964979
\(675\) −6.35163 3.66712i −0.244474 0.141147i
\(676\) −3.86341 −0.148593
\(677\) 21.8790 + 37.8955i 0.840877 + 1.45644i 0.889154 + 0.457608i \(0.151294\pi\)
−0.0482766 + 0.998834i \(0.515373\pi\)
\(678\) 11.8976 2.09786i 0.456923 0.0805678i
\(679\) 6.80200 11.7814i 0.261037 0.452129i
\(680\) 14.4572 25.0407i 0.554410 0.960266i
\(681\) 3.22193 + 3.83975i 0.123465 + 0.147140i
\(682\) 2.42081 + 4.19296i 0.0926975 + 0.160557i
\(683\) 28.2412 1.08062 0.540310 0.841466i \(-0.318307\pi\)
0.540310 + 0.841466i \(0.318307\pi\)
\(684\) −0.210323 + 1.19280i −0.00804189 + 0.0456078i
\(685\) −14.4953 −0.553835
\(686\) −0.673648 1.16679i −0.0257200 0.0445484i
\(687\) −5.43083 + 14.9211i −0.207199 + 0.569274i
\(688\) 2.20574 3.82045i 0.0840929 0.145653i
\(689\) 2.08718 3.61510i 0.0795153 0.137725i
\(690\) 0.214355 0.588936i 0.00816036 0.0224204i
\(691\) 14.5326 + 25.1711i 0.552844 + 0.957555i 0.998068 + 0.0621351i \(0.0197910\pi\)
−0.445223 + 0.895420i \(0.646876\pi\)
\(692\) −3.89344 −0.148006
\(693\) −0.243756 + 1.38241i −0.00925951 + 0.0525133i
\(694\) −27.5016 −1.04395
\(695\) 1.16978 + 2.02611i 0.0443722 + 0.0768549i
\(696\) 28.7772 + 34.2953i 1.09080 + 1.29996i
\(697\) 4.31908 7.48086i 0.163597 0.283358i
\(698\) 2.39961 4.15625i 0.0908268 0.157317i
\(699\) 22.6373 3.99156i 0.856221 0.150975i
\(700\) 0.130415 + 0.225885i 0.00492922 + 0.00853766i
\(701\) −1.10876 −0.0418771 −0.0209386 0.999781i \(-0.506665\pi\)
−0.0209386 + 0.999781i \(0.506665\pi\)
\(702\) 35.3036 20.3825i 1.33245 0.769289i
\(703\) 16.7793 0.632843
\(704\) −2.01114 3.48340i −0.0757979 0.131286i
\(705\) −23.0326 + 4.06126i −0.867456 + 0.152956i
\(706\) −6.75150 + 11.6939i −0.254096 + 0.440107i
\(707\) 4.78699 8.29131i 0.180033 0.311827i
\(708\) 0.151522 + 0.180576i 0.00569453 + 0.00678648i
\(709\) 9.23442 + 15.9945i 0.346806 + 0.600686i 0.985680 0.168626i \(-0.0539329\pi\)
−0.638874 + 0.769311i \(0.720600\pi\)
\(710\) 45.1489 1.69441
\(711\) 29.0442 + 24.3709i 1.08924 + 0.913982i
\(712\) 23.8835 0.895072
\(713\) −0.407299 0.705463i −0.0152535 0.0264198i
\(714\) −3.09627 + 8.50692i −0.115875 + 0.318364i
\(715\) −3.44949 + 5.97470i −0.129004 + 0.223441i
\(716\) −0.473126 + 0.819478i −0.0176815 + 0.0306253i
\(717\) −5.64977 + 15.5226i −0.210994 + 0.579702i
\(718\) −6.38666 11.0620i −0.238348 0.412831i
\(719\) −33.7769 −1.25967 −0.629834 0.776730i \(-0.716877\pi\)
−0.629834 + 0.776730i \(0.716877\pi\)
\(720\) −25.6707 + 9.34337i −0.956691 + 0.348207i
\(721\) 3.04189 0.113286
\(722\) 9.58378 + 16.5996i 0.356671 + 0.617773i
\(723\) 9.97343 + 11.8859i 0.370916 + 0.442040i
\(724\) −0.0295627 + 0.0512040i −0.00109869 + 0.00190298i
\(725\) −6.19712 + 10.7337i −0.230155 + 0.398641i
\(726\) −24.7763 + 4.36873i −0.919535 + 0.162139i
\(727\) −8.40214 14.5529i −0.311618 0.539738i 0.667095 0.744973i \(-0.267538\pi\)
−0.978713 + 0.205234i \(0.934204\pi\)
\(728\) −17.1402 −0.635259
\(729\) 13.5000 23.3827i 0.500000 0.866025i
\(730\) −35.0310 −1.29655
\(731\) −2.37939 4.12122i −0.0880047 0.152429i
\(732\) −0.302004 + 0.0532514i −0.0111624 + 0.00196823i
\(733\) 6.81820 11.8095i 0.251836 0.436193i −0.712195 0.701981i \(-0.752299\pi\)
0.964031 + 0.265789i \(0.0856323\pi\)
\(734\) −10.8682 + 18.8243i −0.401154 + 0.694819i
\(735\) −2.81908 3.35965i −0.103983 0.123922i
\(736\) 0.0552549 + 0.0957044i 0.00203672 + 0.00352771i
\(737\) −4.50980 −0.166121
\(738\) −8.45723 + 3.07818i −0.311315 + 0.113309i
\(739\) −32.0419 −1.17868 −0.589340 0.807885i \(-0.700612\pi\)
−0.589340 + 0.807885i \(0.700612\pi\)
\(740\) −1.79679 3.11213i −0.0660513 0.114404i
\(741\) 7.53643 20.7062i 0.276858 0.760660i
\(742\) 0.482926 0.836452i 0.0177288 0.0307071i
\(743\) −16.8764 + 29.2309i −0.619137 + 1.07238i 0.370507 + 0.928830i \(0.379184\pi\)
−0.989644 + 0.143547i \(0.954149\pi\)
\(744\) −13.3921 + 36.7946i −0.490979 + 1.34895i
\(745\) −11.0458 19.1318i −0.404685 0.700936i
\(746\) 18.9290 0.693040
\(747\) 6.27719 + 5.26719i 0.229670 + 0.192716i
\(748\) −0.335437 −0.0122648
\(749\) 3.25877 + 5.64436i 0.119073 + 0.206240i
\(750\) 13.6297 + 16.2432i 0.497686 + 0.593119i
\(751\) −13.0582 + 22.6175i −0.476502 + 0.825326i −0.999637 0.0269236i \(-0.991429\pi\)
0.523135 + 0.852250i \(0.324762\pi\)
\(752\) −9.58899 + 16.6086i −0.349675 + 0.605654i
\(753\) −42.6404 + 7.51866i −1.55390 + 0.273995i
\(754\) −34.4447 59.6600i −1.25440 2.17269i
\(755\) 46.6587 1.69808
\(756\) −0.831566 + 0.480105i −0.0302438 + 0.0174613i
\(757\) 35.6536 1.29585 0.647927 0.761703i \(-0.275636\pi\)
0.647927 + 0.761703i \(0.275636\pi\)
\(758\) −10.8170 18.7356i −0.392892 0.680509i
\(759\) −0.0846555 + 0.0149270i −0.00307280 + 0.000541817i
\(760\) −8.14203 + 14.1024i −0.295342 + 0.511548i
\(761\) −20.3824 + 35.3033i −0.738861 + 1.27974i 0.214148 + 0.976801i \(0.431302\pi\)
−0.953009 + 0.302943i \(0.902031\pi\)
\(762\) 13.3231 + 15.8779i 0.482645 + 0.575194i
\(763\) −5.31908 9.21291i −0.192564 0.333530i
\(764\) 2.87670 0.104075
\(765\) −5.11721 + 29.0211i −0.185013 + 1.04926i
\(766\) −43.1411 −1.55875
\(767\) −2.14425 3.71395i −0.0774243 0.134103i
\(768\) 2.60417 7.15490i 0.0939699 0.258180i
\(769\) −19.7135 + 34.1447i −0.710886 + 1.23129i 0.253639 + 0.967299i \(0.418373\pi\)
−0.964525 + 0.263992i \(0.914961\pi\)
\(770\) −0.798133 + 1.38241i −0.0287627 + 0.0498185i
\(771\) −6.42871 + 17.6627i −0.231524 + 0.636108i
\(772\) 0.558248 + 0.966914i 0.0200918 + 0.0348000i
\(773\) 24.9026 0.895685 0.447842 0.894113i \(-0.352193\pi\)
0.447842 + 0.894113i \(0.352193\pi\)
\(774\) −0.860967 + 4.88279i −0.0309468 + 0.175508i