Properties

Label 63.2.f.a.22.1
Level $63$
Weight $2$
Character 63.22
Analytic conductor $0.503$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [63,2,Mod(22,63)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(63, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("63.22"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 63.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.503057532734\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 22.1
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 63.22
Dual form 63.2.f.a.43.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26604 - 2.19285i) q^{2} +(-1.11334 - 1.32683i) q^{3} +(-2.20574 + 3.82045i) q^{4} +(0.439693 - 0.761570i) q^{5} +(-1.50000 + 4.12122i) q^{6} +(-0.500000 - 0.866025i) q^{7} +6.10607 q^{8} +(-0.520945 + 2.95442i) q^{9} -2.22668 q^{10} +(-1.93969 - 3.35965i) q^{11} +(7.52481 - 1.32683i) q^{12} +(2.72668 - 4.72275i) q^{13} +(-1.26604 + 2.19285i) q^{14} +(-1.50000 + 0.264490i) q^{15} +(-3.31908 - 5.74881i) q^{16} +1.65270 q^{17} +(7.13816 - 2.59808i) q^{18} +2.41147 q^{19} +(1.93969 + 3.35965i) q^{20} +(-0.592396 + 1.62760i) q^{21} +(-4.91147 + 8.50692i) q^{22} +(-1.58125 + 2.73881i) q^{23} +(-6.79813 - 8.10170i) q^{24} +(2.11334 + 3.66041i) q^{25} -13.8084 q^{26} +(4.50000 - 2.59808i) q^{27} +4.41147 q^{28} +(3.02481 + 5.23913i) q^{29} +(2.47906 + 2.95442i) q^{30} +(2.27719 - 3.94421i) q^{31} +(-2.29813 + 3.98048i) q^{32} +(-2.29813 + 6.31407i) q^{33} +(-2.09240 - 3.62414i) q^{34} -0.879385 q^{35} +(-10.1382 - 8.50692i) q^{36} -4.55438 q^{37} +(-3.05303 - 5.28801i) q^{38} +(-9.30200 + 1.64019i) q^{39} +(2.68479 - 4.65020i) q^{40} +(0.592396 - 1.02606i) q^{41} +(4.31908 - 0.761570i) q^{42} +(-0.0923963 - 0.160035i) q^{43} +17.1138 q^{44} +(2.02094 + 1.69577i) q^{45} +8.00774 q^{46} +(0.511144 + 0.885328i) q^{47} +(-3.93242 + 10.8042i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(5.35117 - 9.26849i) q^{50} +(-1.84002 - 2.19285i) q^{51} +(12.0287 + 20.8343i) q^{52} +7.29086 q^{53} +(-11.3944 - 6.57856i) q^{54} -3.41147 q^{55} +(-3.05303 - 5.28801i) q^{56} +(-2.68479 - 3.19961i) q^{57} +(7.65910 - 13.2660i) q^{58} +(-3.33022 + 5.76811i) q^{59} +(2.29813 - 6.31407i) q^{60} +(1.29813 + 2.24843i) q^{61} -11.5321 q^{62} +(2.81908 - 1.02606i) q^{63} -1.63816 q^{64} +(-2.39780 - 4.15312i) q^{65} +(16.7554 - 2.95442i) q^{66} +(1.47906 - 2.56180i) q^{67} +(-3.64543 + 6.31407i) q^{68} +(5.39440 - 0.951178i) q^{69} +(1.11334 + 1.92836i) q^{70} -3.68004 q^{71} +(-3.18092 + 18.0399i) q^{72} -12.7811 q^{73} +(5.76604 + 9.98708i) q^{74} +(2.50387 - 6.87933i) q^{75} +(-5.31908 + 9.21291i) q^{76} +(-1.93969 + 3.35965i) q^{77} +(15.3735 + 18.3214i) q^{78} +(2.97906 + 5.15988i) q^{79} -5.83750 q^{80} +(-8.45723 - 3.07818i) q^{81} -3.00000 q^{82} +(0.109470 + 0.189608i) q^{83} +(-4.91147 - 5.85327i) q^{84} +(0.726682 - 1.25865i) q^{85} +(-0.233956 + 0.405223i) q^{86} +(3.58378 - 9.84635i) q^{87} +(-11.8439 - 20.5142i) q^{88} +11.0273 q^{89} +(1.15998 - 6.57856i) q^{90} -5.45336 q^{91} +(-6.97565 - 12.0822i) q^{92} +(-7.76857 + 1.36981i) q^{93} +(1.29426 - 2.24173i) q^{94} +(1.06031 - 1.83651i) q^{95} +(7.84002 - 1.38241i) q^{96} +(-6.25150 - 10.8279i) q^{97} +2.53209 q^{98} +(10.9363 - 3.98048i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 3 q^{4} - 3 q^{5} - 9 q^{6} - 3 q^{7} + 12 q^{8} - 6 q^{11} + 18 q^{12} + 3 q^{13} - 3 q^{14} - 9 q^{15} - 3 q^{16} + 12 q^{17} + 9 q^{18} - 6 q^{19} + 6 q^{20} - 9 q^{22} - 12 q^{23} - 27 q^{24}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.26604 2.19285i −0.895229 1.55058i −0.833521 0.552487i \(-0.813679\pi\)
−0.0617072 0.998094i \(-0.519654\pi\)
\(3\) −1.11334 1.32683i −0.642788 0.766044i
\(4\) −2.20574 + 3.82045i −1.10287 + 1.91022i
\(5\) 0.439693 0.761570i 0.196637 0.340584i −0.750799 0.660530i \(-0.770331\pi\)
0.947436 + 0.319946i \(0.103665\pi\)
\(6\) −1.50000 + 4.12122i −0.612372 + 1.68248i
\(7\) −0.500000 0.866025i −0.188982 0.327327i
\(8\) 6.10607 2.15882
\(9\) −0.520945 + 2.95442i −0.173648 + 0.984808i
\(10\) −2.22668 −0.704139
\(11\) −1.93969 3.35965i −0.584839 1.01297i −0.994895 0.100911i \(-0.967824\pi\)
0.410056 0.912060i \(-0.365509\pi\)
\(12\) 7.52481 1.32683i 2.17223 0.383022i
\(13\) 2.72668 4.72275i 0.756245 1.30986i −0.188507 0.982072i \(-0.560365\pi\)
0.944753 0.327784i \(-0.106302\pi\)
\(14\) −1.26604 + 2.19285i −0.338365 + 0.586065i
\(15\) −1.50000 + 0.264490i −0.387298 + 0.0682911i
\(16\) −3.31908 5.74881i −0.829769 1.43720i
\(17\) 1.65270 0.400840 0.200420 0.979710i \(-0.435769\pi\)
0.200420 + 0.979710i \(0.435769\pi\)
\(18\) 7.13816 2.59808i 1.68248 0.612372i
\(19\) 2.41147 0.553230 0.276615 0.960981i \(-0.410787\pi\)
0.276615 + 0.960981i \(0.410787\pi\)
\(20\) 1.93969 + 3.35965i 0.433728 + 0.751240i
\(21\) −0.592396 + 1.62760i −0.129271 + 0.355170i
\(22\) −4.91147 + 8.50692i −1.04713 + 1.81368i
\(23\) −1.58125 + 2.73881i −0.329714 + 0.571081i −0.982455 0.186500i \(-0.940286\pi\)
0.652741 + 0.757581i \(0.273619\pi\)
\(24\) −6.79813 8.10170i −1.38766 1.65375i
\(25\) 2.11334 + 3.66041i 0.422668 + 0.732083i
\(26\) −13.8084 −2.70805
\(27\) 4.50000 2.59808i 0.866025 0.500000i
\(28\) 4.41147 0.833690
\(29\) 3.02481 + 5.23913i 0.561694 + 0.972883i 0.997349 + 0.0727688i \(0.0231835\pi\)
−0.435655 + 0.900114i \(0.643483\pi\)
\(30\) 2.47906 + 2.95442i 0.452612 + 0.539401i
\(31\) 2.27719 3.94421i 0.408995 0.708400i −0.585782 0.810468i \(-0.699213\pi\)
0.994777 + 0.102068i \(0.0325459\pi\)
\(32\) −2.29813 + 3.98048i −0.406256 + 0.703657i
\(33\) −2.29813 + 6.31407i −0.400054 + 1.09914i
\(34\) −2.09240 3.62414i −0.358843 0.621534i
\(35\) −0.879385 −0.148643
\(36\) −10.1382 8.50692i −1.68969 1.41782i
\(37\) −4.55438 −0.748735 −0.374368 0.927280i \(-0.622140\pi\)
−0.374368 + 0.927280i \(0.622140\pi\)
\(38\) −3.05303 5.28801i −0.495267 0.857828i
\(39\) −9.30200 + 1.64019i −1.48951 + 0.262641i
\(40\) 2.68479 4.65020i 0.424503 0.735261i
\(41\) 0.592396 1.02606i 0.0925168 0.160244i −0.816053 0.577977i \(-0.803842\pi\)
0.908570 + 0.417734i \(0.137175\pi\)
\(42\) 4.31908 0.761570i 0.666448 0.117513i
\(43\) −0.0923963 0.160035i −0.0140903 0.0244051i 0.858894 0.512153i \(-0.171152\pi\)
−0.872985 + 0.487748i \(0.837819\pi\)
\(44\) 17.1138 2.58000
\(45\) 2.02094 + 1.69577i 0.301265 + 0.252791i
\(46\) 8.00774 1.18068
\(47\) 0.511144 + 0.885328i 0.0745581 + 0.129138i 0.900894 0.434039i \(-0.142912\pi\)
−0.826336 + 0.563178i \(0.809579\pi\)
\(48\) −3.93242 + 10.8042i −0.567596 + 1.55946i
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 5.35117 9.26849i 0.756769 1.31076i
\(51\) −1.84002 2.19285i −0.257655 0.307061i
\(52\) 12.0287 + 20.8343i 1.66808 + 2.88920i
\(53\) 7.29086 1.00148 0.500738 0.865599i \(-0.333062\pi\)
0.500738 + 0.865599i \(0.333062\pi\)
\(54\) −11.3944 6.57856i −1.55058 0.895229i
\(55\) −3.41147 −0.460003
\(56\) −3.05303 5.28801i −0.407979 0.706640i
\(57\) −2.68479 3.19961i −0.355609 0.423799i
\(58\) 7.65910 13.2660i 1.00569 1.74190i
\(59\) −3.33022 + 5.76811i −0.433558 + 0.750944i −0.997177 0.0750906i \(-0.976075\pi\)
0.563619 + 0.826035i \(0.309409\pi\)
\(60\) 2.29813 6.31407i 0.296688 0.815143i
\(61\) 1.29813 + 2.24843i 0.166209 + 0.287882i 0.937084 0.349104i \(-0.113514\pi\)
−0.770875 + 0.636986i \(0.780181\pi\)
\(62\) −11.5321 −1.46458
\(63\) 2.81908 1.02606i 0.355170 0.129271i
\(64\) −1.63816 −0.204769
\(65\) −2.39780 4.15312i −0.297411 0.515131i
\(66\) 16.7554 2.95442i 2.06244 0.363664i
\(67\) 1.47906 2.56180i 0.180695 0.312974i −0.761422 0.648256i \(-0.775499\pi\)
0.942118 + 0.335283i \(0.108832\pi\)
\(68\) −3.64543 + 6.31407i −0.442073 + 0.765693i
\(69\) 5.39440 0.951178i 0.649409 0.114508i
\(70\) 1.11334 + 1.92836i 0.133070 + 0.230483i
\(71\) −3.68004 −0.436741 −0.218370 0.975866i \(-0.570074\pi\)
−0.218370 + 0.975866i \(0.570074\pi\)
\(72\) −3.18092 + 18.0399i −0.374875 + 2.12602i
\(73\) −12.7811 −1.49591 −0.747955 0.663750i \(-0.768964\pi\)
−0.747955 + 0.663750i \(0.768964\pi\)
\(74\) 5.76604 + 9.98708i 0.670289 + 1.16097i
\(75\) 2.50387 6.87933i 0.289122 0.794356i
\(76\) −5.31908 + 9.21291i −0.610140 + 1.05679i
\(77\) −1.93969 + 3.35965i −0.221048 + 0.382867i
\(78\) 15.3735 + 18.3214i 1.74070 + 2.07449i
\(79\) 2.97906 + 5.15988i 0.335170 + 0.580531i 0.983517 0.180813i \(-0.0578729\pi\)
−0.648348 + 0.761345i \(0.724540\pi\)
\(80\) −5.83750 −0.652652
\(81\) −8.45723 3.07818i −0.939693 0.342020i
\(82\) −3.00000 −0.331295
\(83\) 0.109470 + 0.189608i 0.0120159 + 0.0208122i 0.871971 0.489558i \(-0.162842\pi\)
−0.859955 + 0.510370i \(0.829508\pi\)
\(84\) −4.91147 5.85327i −0.535886 0.638644i
\(85\) 0.726682 1.25865i 0.0788197 0.136520i
\(86\) −0.233956 + 0.405223i −0.0252281 + 0.0436963i
\(87\) 3.58378 9.84635i 0.384221 1.05564i
\(88\) −11.8439 20.5142i −1.26256 2.18682i
\(89\) 11.0273 1.16890 0.584448 0.811431i \(-0.301311\pi\)
0.584448 + 0.811431i \(0.301311\pi\)
\(90\) 1.15998 6.57856i 0.122272 0.693441i
\(91\) −5.45336 −0.571668
\(92\) −6.97565 12.0822i −0.727262 1.25965i
\(93\) −7.76857 + 1.36981i −0.805563 + 0.142043i
\(94\) 1.29426 2.24173i 0.133493 0.231217i
\(95\) 1.06031 1.83651i 0.108785 0.188422i
\(96\) 7.84002 1.38241i 0.800169 0.141091i
\(97\) −6.25150 10.8279i −0.634743 1.09941i −0.986569 0.163342i \(-0.947773\pi\)
0.351826 0.936065i \(-0.385561\pi\)
\(98\) 2.53209 0.255780
\(99\) 10.9363 3.98048i 1.09914 0.400054i
\(100\) −18.6459 −1.86459
\(101\) 4.85844 + 8.41507i 0.483433 + 0.837330i 0.999819 0.0190255i \(-0.00605638\pi\)
−0.516386 + 0.856356i \(0.672723\pi\)
\(102\) −2.47906 + 6.81115i −0.245463 + 0.674404i
\(103\) −3.29813 + 5.71253i −0.324975 + 0.562873i −0.981507 0.191425i \(-0.938689\pi\)
0.656533 + 0.754298i \(0.272022\pi\)
\(104\) 16.6493 28.8374i 1.63260 2.82774i
\(105\) 0.979055 + 1.16679i 0.0955460 + 0.113867i
\(106\) −9.23055 15.9878i −0.896550 1.55287i
\(107\) 2.38919 0.230971 0.115486 0.993309i \(-0.463158\pi\)
0.115486 + 0.993309i \(0.463158\pi\)
\(108\) 22.9227i 2.20574i
\(109\) 3.95811 0.379118 0.189559 0.981869i \(-0.439294\pi\)
0.189559 + 0.981869i \(0.439294\pi\)
\(110\) 4.31908 + 7.48086i 0.411808 + 0.713272i
\(111\) 5.07057 + 6.04288i 0.481278 + 0.573564i
\(112\) −3.31908 + 5.74881i −0.313623 + 0.543212i
\(113\) −8.22668 + 14.2490i −0.773901 + 1.34044i 0.161509 + 0.986871i \(0.448364\pi\)
−0.935410 + 0.353565i \(0.884969\pi\)
\(114\) −3.61721 + 9.93821i −0.338783 + 0.930798i
\(115\) 1.39053 + 2.40847i 0.129668 + 0.224591i
\(116\) −26.6878 −2.47790
\(117\) 12.5326 + 10.5161i 1.15864 + 0.972210i
\(118\) 16.8648 1.55253
\(119\) −0.826352 1.43128i −0.0757515 0.131206i
\(120\) −9.15910 + 1.61500i −0.836108 + 0.147428i
\(121\) −2.02481 + 3.50708i −0.184074 + 0.318826i
\(122\) 3.28699 5.69323i 0.297590 0.515441i
\(123\) −2.02094 + 0.356347i −0.182222 + 0.0321307i
\(124\) 10.0458 + 17.3998i 0.902136 + 1.56255i
\(125\) 8.11381 0.725721
\(126\) −5.81908 4.88279i −0.518405 0.434993i
\(127\) 17.6536 1.56651 0.783253 0.621702i \(-0.213559\pi\)
0.783253 + 0.621702i \(0.213559\pi\)
\(128\) 6.67024 + 11.5532i 0.589572 + 1.02117i
\(129\) −0.109470 + 0.300767i −0.00963833 + 0.0264811i
\(130\) −6.07145 + 10.5161i −0.532502 + 0.922320i
\(131\) 9.59879 16.6256i 0.838650 1.45259i −0.0523729 0.998628i \(-0.516678\pi\)
0.891023 0.453958i \(-0.149988\pi\)
\(132\) −19.0535 22.7071i −1.65839 1.97640i
\(133\) −1.20574 2.08840i −0.104551 0.181087i
\(134\) −7.49020 −0.647055
\(135\) 4.56942i 0.393273i
\(136\) 10.0915 0.865341
\(137\) −9.07785 15.7233i −0.775573 1.34333i −0.934472 0.356037i \(-0.884128\pi\)
0.158899 0.987295i \(-0.449206\pi\)
\(138\) −8.91534 10.6249i −0.758925 0.904451i
\(139\) −11.0287 + 19.1022i −0.935441 + 1.62023i −0.161595 + 0.986857i \(0.551664\pi\)
−0.773846 + 0.633374i \(0.781670\pi\)
\(140\) 1.93969 3.35965i 0.163934 0.283942i
\(141\) 0.605600 1.66387i 0.0510007 0.140123i
\(142\) 4.65910 + 8.06980i 0.390983 + 0.677202i
\(143\) −21.1557 −1.76913
\(144\) 18.7135 6.81115i 1.55946 0.567596i
\(145\) 5.31996 0.441798
\(146\) 16.1814 + 28.0270i 1.33918 + 2.31953i
\(147\) 1.70574 0.300767i 0.140687 0.0248069i
\(148\) 10.0458 17.3998i 0.825756 1.43025i
\(149\) 7.57785 13.1252i 0.620802 1.07526i −0.368535 0.929614i \(-0.620141\pi\)
0.989337 0.145646i \(-0.0465261\pi\)
\(150\) −18.2554 + 3.21891i −1.49054 + 0.262823i
\(151\) 9.47818 + 16.4167i 0.771323 + 1.33597i 0.936838 + 0.349764i \(0.113738\pi\)
−0.165515 + 0.986207i \(0.552929\pi\)
\(152\) 14.7246 1.19432
\(153\) −0.860967 + 4.88279i −0.0696051 + 0.394750i
\(154\) 9.82295 0.791556
\(155\) −2.00253 3.46848i −0.160847 0.278595i
\(156\) 14.2515 39.1557i 1.14103 3.13496i
\(157\) 9.02869 15.6381i 0.720568 1.24806i −0.240205 0.970722i \(-0.577215\pi\)
0.960773 0.277337i \(-0.0894520\pi\)
\(158\) 7.54323 13.0653i 0.600107 1.03942i
\(159\) −8.11721 9.67372i −0.643737 0.767176i
\(160\) 2.02094 + 3.50038i 0.159770 + 0.276729i
\(161\) 3.16250 0.249240
\(162\) 3.95723 + 22.4426i 0.310910 + 1.76326i
\(163\) 0.958111 0.0750450 0.0375225 0.999296i \(-0.488053\pi\)
0.0375225 + 0.999296i \(0.488053\pi\)
\(164\) 2.61334 + 4.52644i 0.204068 + 0.353456i
\(165\) 3.79813 + 4.52644i 0.295684 + 0.352383i
\(166\) 0.277189 0.480105i 0.0215140 0.0372634i
\(167\) −9.91921 + 17.1806i −0.767572 + 1.32947i 0.171304 + 0.985218i \(0.445202\pi\)
−0.938876 + 0.344255i \(0.888131\pi\)
\(168\) −3.61721 + 9.93821i −0.279074 + 0.766749i
\(169\) −8.36959 14.4965i −0.643814 1.11512i
\(170\) −3.68004 −0.282247
\(171\) −1.25624 + 7.12452i −0.0960674 + 0.544825i
\(172\) 0.815207 0.0621590
\(173\) −11.3414 19.6438i −0.862268 1.49349i −0.869734 0.493520i \(-0.835710\pi\)
0.00746626 0.999972i \(-0.497623\pi\)
\(174\) −26.1288 + 4.60722i −1.98082 + 0.349272i
\(175\) 2.11334 3.66041i 0.159754 0.276701i
\(176\) −12.8760 + 22.3019i −0.970564 + 1.68107i
\(177\) 11.3610 2.00324i 0.853943 0.150573i
\(178\) −13.9611 24.1813i −1.04643 1.81247i
\(179\) −7.34730 −0.549163 −0.274581 0.961564i \(-0.588539\pi\)
−0.274581 + 0.961564i \(0.588539\pi\)
\(180\) −10.9363 + 3.98048i −0.815143 + 0.296688i
\(181\) −3.44562 −0.256111 −0.128056 0.991767i \(-0.540874\pi\)
−0.128056 + 0.991767i \(0.540874\pi\)
\(182\) 6.90420 + 11.9584i 0.511773 + 0.886417i
\(183\) 1.53802 4.22567i 0.113694 0.312371i
\(184\) −9.65523 + 16.7233i −0.711793 + 1.23286i
\(185\) −2.00253 + 3.46848i −0.147229 + 0.255008i
\(186\) 12.8391 + 15.3011i 0.941412 + 1.12193i
\(187\) −3.20574 5.55250i −0.234427 0.406039i
\(188\) −4.50980 −0.328911
\(189\) −4.50000 2.59808i −0.327327 0.188982i
\(190\) −5.36959 −0.389551
\(191\) −2.82888 4.89976i −0.204690 0.354534i 0.745344 0.666680i \(-0.232285\pi\)
−0.950034 + 0.312146i \(0.898952\pi\)
\(192\) 1.82383 + 2.17355i 0.131623 + 0.156863i
\(193\) −4.79813 + 8.31061i −0.345377 + 0.598211i −0.985422 0.170127i \(-0.945582\pi\)
0.640045 + 0.768337i \(0.278916\pi\)
\(194\) −15.8293 + 27.4172i −1.13648 + 1.96844i
\(195\) −2.84090 + 7.80531i −0.203441 + 0.558950i
\(196\) −2.20574 3.82045i −0.157553 0.272889i
\(197\) 8.31996 0.592772 0.296386 0.955068i \(-0.404218\pi\)
0.296386 + 0.955068i \(0.404218\pi\)
\(198\) −22.5744 18.9422i −1.60430 1.34616i
\(199\) 6.59627 0.467597 0.233798 0.972285i \(-0.424884\pi\)
0.233798 + 0.972285i \(0.424884\pi\)
\(200\) 12.9042 + 22.3507i 0.912465 + 1.58044i
\(201\) −5.04576 + 0.889704i −0.355900 + 0.0627548i
\(202\) 12.3020 21.3077i 0.865566 1.49920i
\(203\) 3.02481 5.23913i 0.212300 0.367715i
\(204\) 12.4363 2.19285i 0.870714 0.153530i
\(205\) −0.520945 0.902302i −0.0363843 0.0630195i
\(206\) 16.7023 1.16371
\(207\) −7.26786 6.09845i −0.505151 0.423872i
\(208\) −36.2003 −2.51004
\(209\) −4.67752 8.10170i −0.323551 0.560406i
\(210\) 1.31908 3.62414i 0.0910250 0.250089i
\(211\) 1.68479 2.91815i 0.115986 0.200893i −0.802188 0.597072i \(-0.796331\pi\)
0.918173 + 0.396179i \(0.129664\pi\)
\(212\) −16.0817 + 27.8544i −1.10450 + 1.91304i
\(213\) 4.09714 + 4.88279i 0.280732 + 0.334563i
\(214\) −3.02481 5.23913i −0.206772 0.358140i
\(215\) −0.162504 −0.0110827
\(216\) 27.4773 15.8640i 1.86959 1.07941i
\(217\) −4.55438 −0.309171
\(218\) −5.01114 8.67956i −0.339398 0.587854i
\(219\) 14.2297 + 16.9583i 0.961552 + 1.14593i
\(220\) 7.52481 13.0334i 0.507323 0.878709i
\(221\) 4.50640 7.80531i 0.303133 0.525042i
\(222\) 6.83157 18.7696i 0.458505 1.25973i
\(223\) 3.13816 + 5.43545i 0.210146 + 0.363984i 0.951760 0.306843i \(-0.0992726\pi\)
−0.741614 + 0.670827i \(0.765939\pi\)
\(224\) 4.59627 0.307101
\(225\) −11.9153 + 4.33683i −0.794356 + 0.289122i
\(226\) 41.6614 2.77127
\(227\) 3.08125 + 5.33688i 0.204510 + 0.354221i 0.949976 0.312322i \(-0.101107\pi\)
−0.745467 + 0.666543i \(0.767773\pi\)
\(228\) 18.1459 3.19961i 1.20174 0.211899i
\(229\) −11.6925 + 20.2521i −0.772664 + 1.33829i 0.163434 + 0.986554i \(0.447743\pi\)
−0.936098 + 0.351740i \(0.885590\pi\)
\(230\) 3.52094 6.09845i 0.232164 0.402120i
\(231\) 6.61721 1.16679i 0.435381 0.0767693i
\(232\) 18.4697 + 31.9905i 1.21260 + 2.10028i
\(233\) −8.52528 −0.558510 −0.279255 0.960217i \(-0.590087\pi\)
−0.279255 + 0.960217i \(0.590087\pi\)
\(234\) 7.19341 40.7959i 0.470248 2.66691i
\(235\) 0.898986 0.0586434
\(236\) −14.6912 25.4459i −0.956315 1.65639i
\(237\) 3.52956 9.69739i 0.229270 0.629913i
\(238\) −2.09240 + 3.62414i −0.135630 + 0.234918i
\(239\) −7.28106 + 12.6112i −0.470973 + 0.815748i −0.999449 0.0331997i \(-0.989430\pi\)
0.528476 + 0.848948i \(0.322764\pi\)
\(240\) 6.49912 + 7.74535i 0.419517 + 0.499960i
\(241\) 2.70187 + 4.67977i 0.174043 + 0.301451i 0.939830 0.341644i \(-0.110984\pi\)
−0.765787 + 0.643094i \(0.777650\pi\)
\(242\) 10.2540 0.659154
\(243\) 5.33157 + 14.6484i 0.342020 + 0.939693i
\(244\) −11.4534 −0.733226
\(245\) 0.439693 + 0.761570i 0.0280909 + 0.0486549i
\(246\) 3.34002 + 3.98048i 0.212952 + 0.253786i
\(247\) 6.57532 11.3888i 0.418378 0.724651i
\(248\) 13.9047 24.0836i 0.882947 1.52931i
\(249\) 0.129700 0.356347i 0.00821939 0.0225826i
\(250\) −10.2724 17.7924i −0.649686 1.12529i
\(251\) −12.0669 −0.761654 −0.380827 0.924646i \(-0.624361\pi\)
−0.380827 + 0.924646i \(0.624361\pi\)
\(252\) −2.29813 + 13.0334i −0.144769 + 0.821025i
\(253\) 12.2686 0.771318
\(254\) −22.3503 38.7118i −1.40238 2.42900i
\(255\) −2.47906 + 0.437124i −0.155244 + 0.0273738i
\(256\) 15.2515 26.4164i 0.953219 1.65102i
\(257\) −5.28312 + 9.15063i −0.329552 + 0.570801i −0.982423 0.186668i \(-0.940231\pi\)
0.652871 + 0.757469i \(0.273564\pi\)
\(258\) 0.798133 0.140732i 0.0496896 0.00876162i
\(259\) 2.27719 + 3.94421i 0.141498 + 0.245081i
\(260\) 21.1557 1.31202
\(261\) −17.0544 + 6.20729i −1.05564 + 0.384221i
\(262\) −48.6100 −3.00314
\(263\) 14.1766 + 24.5547i 0.874169 + 1.51411i 0.857645 + 0.514242i \(0.171927\pi\)
0.0165240 + 0.999863i \(0.494740\pi\)
\(264\) −14.0326 + 38.5541i −0.863644 + 2.37284i
\(265\) 3.20574 5.55250i 0.196927 0.341087i
\(266\) −3.05303 + 5.28801i −0.187193 + 0.324229i
\(267\) −12.2772 14.6314i −0.751352 0.895426i
\(268\) 6.52481 + 11.3013i 0.398567 + 0.690337i
\(269\) 7.48339 0.456271 0.228135 0.973629i \(-0.426737\pi\)
0.228135 + 0.973629i \(0.426737\pi\)
\(270\) −10.0201 + 5.78509i −0.609802 + 0.352069i
\(271\) 13.6382 0.828459 0.414229 0.910172i \(-0.364051\pi\)
0.414229 + 0.910172i \(0.364051\pi\)
\(272\) −5.48545 9.50108i −0.332604 0.576088i
\(273\) 6.07145 + 7.23567i 0.367461 + 0.437923i
\(274\) −22.9859 + 39.8128i −1.38863 + 2.40518i
\(275\) 8.19846 14.2002i 0.494386 0.856302i
\(276\) −8.26470 + 22.7071i −0.497476 + 1.36681i
\(277\) 3.07532 + 5.32661i 0.184778 + 0.320045i 0.943502 0.331368i \(-0.107510\pi\)
−0.758724 + 0.651413i \(0.774177\pi\)
\(278\) 55.8512 3.34973
\(279\) 10.4666 + 8.78249i 0.626617 + 0.525794i
\(280\) −5.36959 −0.320894
\(281\) −1.65611 2.86846i −0.0987951 0.171118i 0.812391 0.583113i \(-0.198165\pi\)
−0.911186 + 0.411995i \(0.864832\pi\)
\(282\) −4.41534 + 0.778544i −0.262930 + 0.0463616i
\(283\) −14.5116 + 25.1348i −0.862626 + 1.49411i 0.00675974 + 0.999977i \(0.497848\pi\)
−0.869385 + 0.494134i \(0.835485\pi\)
\(284\) 8.11721 14.0594i 0.481668 0.834273i
\(285\) −3.61721 + 0.637812i −0.214265 + 0.0377807i
\(286\) 26.7841 + 46.3913i 1.58377 + 2.74318i
\(287\) −1.18479 −0.0699361
\(288\) −10.5628 8.86327i −0.622421 0.522273i
\(289\) −14.2686 −0.839328
\(290\) −6.73530 11.6659i −0.395510 0.685044i
\(291\) −7.40673 + 20.3498i −0.434190 + 1.19293i
\(292\) 28.1917 48.8294i 1.64979 2.85752i
\(293\) 4.20961 7.29125i 0.245928 0.425960i −0.716464 0.697624i \(-0.754241\pi\)
0.962392 + 0.271664i \(0.0875740\pi\)
\(294\) −2.81908 3.35965i −0.164412 0.195939i
\(295\) 2.92855 + 5.07239i 0.170507 + 0.295326i
\(296\) −27.8093 −1.61638
\(297\) −17.4572 10.0789i −1.01297 0.584839i
\(298\) −38.3756 −2.22304
\(299\) 8.62314 + 14.9357i 0.498689 + 0.863755i
\(300\) 20.7592 + 24.7399i 1.19854 + 1.42836i
\(301\) −0.0923963 + 0.160035i −0.00532563 + 0.00922427i
\(302\) 23.9996 41.5685i 1.38102 2.39200i
\(303\) 5.75624 15.8152i 0.330688 0.908557i
\(304\) −8.00387 13.8631i −0.459053 0.795104i
\(305\) 2.28312 0.130731
\(306\) 11.7973 4.29385i 0.674404 0.245463i
\(307\) −12.6878 −0.724130 −0.362065 0.932153i \(-0.617928\pi\)
−0.362065 + 0.932153i \(0.617928\pi\)
\(308\) −8.55690 14.8210i −0.487575 0.844504i
\(309\) 11.2515 1.98394i 0.640075 0.112863i
\(310\) −5.07057 + 8.78249i −0.287989 + 0.498812i
\(311\) 8.24510 14.2809i 0.467537 0.809797i −0.531775 0.846886i \(-0.678475\pi\)
0.999312 + 0.0370881i \(0.0118082\pi\)
\(312\) −56.7987 + 10.0151i −3.21559 + 0.566995i
\(313\) −14.2592 24.6977i −0.805980 1.39600i −0.915628 0.402027i \(-0.868306\pi\)
0.109648 0.993970i \(-0.465028\pi\)
\(314\) −45.7229 −2.58029
\(315\) 0.458111 2.59808i 0.0258116 0.146385i
\(316\) −26.2841 −1.47859
\(317\) 12.9474 + 22.4256i 0.727200 + 1.25955i 0.958062 + 0.286561i \(0.0925122\pi\)
−0.230862 + 0.972987i \(0.574154\pi\)
\(318\) −10.9363 + 30.0472i −0.613277 + 1.68496i
\(319\) 11.7344 20.3246i 0.657002 1.13796i
\(320\) −0.720285 + 1.24757i −0.0402652 + 0.0697413i
\(321\) −2.65998 3.17004i −0.148465 0.176934i
\(322\) −4.00387 6.93491i −0.223127 0.386467i
\(323\) 3.98545 0.221756
\(324\) 30.4145 25.5208i 1.68969 1.41782i
\(325\) 23.0496 1.27856
\(326\) −1.21301 2.10100i −0.0671825 0.116363i
\(327\) −4.40673 5.25173i −0.243693 0.290421i
\(328\) 3.61721 6.26519i 0.199727 0.345937i
\(329\) 0.511144 0.885328i 0.0281803 0.0488097i
\(330\) 5.11721 14.0594i 0.281693 0.773946i
\(331\) −4.10947 7.11781i −0.225877 0.391230i 0.730705 0.682693i \(-0.239191\pi\)
−0.956582 + 0.291463i \(0.905858\pi\)
\(332\) −0.965852 −0.0530080
\(333\) 2.37258 13.4556i 0.130016 0.737360i
\(334\) 50.2327 2.74861
\(335\) −1.30066 2.25281i −0.0710626 0.123084i
\(336\) 11.3229 1.99654i 0.617717 0.108920i
\(337\) −2.28564 + 3.95885i −0.124507 + 0.215652i −0.921540 0.388283i \(-0.873068\pi\)
0.797033 + 0.603936i \(0.206402\pi\)
\(338\) −21.1925 + 36.7065i −1.15272 + 1.99657i
\(339\) 28.0651 4.94864i 1.52429 0.268773i
\(340\) 3.20574 + 5.55250i 0.173856 + 0.301127i
\(341\) −17.6682 −0.956786
\(342\) 17.2135 6.26519i 0.930798 0.338783i
\(343\) 1.00000 0.0539949
\(344\) −0.564178 0.977185i −0.0304184 0.0526863i
\(345\) 1.64749 4.52644i 0.0886978 0.243695i
\(346\) −28.7173 + 49.7399i −1.54385 + 2.67403i
\(347\) −11.2331 + 19.4563i −0.603023 + 1.04447i 0.389337 + 0.921095i \(0.372704\pi\)
−0.992361 + 0.123372i \(0.960629\pi\)
\(348\) 29.7126 + 35.4101i 1.59276 + 1.89818i
\(349\) −13.0496 22.6026i −0.698531 1.20989i −0.968976 0.247155i \(-0.920504\pi\)
0.270445 0.962735i \(-0.412829\pi\)
\(350\) −10.7023 −0.572064
\(351\) 28.3365i 1.51249i
\(352\) 17.8307 0.950379
\(353\) 0.177519 + 0.307471i 0.00944836 + 0.0163650i 0.870711 0.491795i \(-0.163659\pi\)
−0.861263 + 0.508160i \(0.830326\pi\)
\(354\) −18.7763 22.3767i −0.997950 1.18931i
\(355\) −1.61809 + 2.80261i −0.0858792 + 0.148747i
\(356\) −24.3234 + 42.1294i −1.28914 + 2.23285i
\(357\) −0.979055 + 2.68993i −0.0518171 + 0.142366i
\(358\) 9.30200 + 16.1115i 0.491626 + 0.851522i
\(359\) 5.45605 0.287959 0.143980 0.989581i \(-0.454010\pi\)
0.143980 + 0.989581i \(0.454010\pi\)
\(360\) 12.3400 + 10.3545i 0.650376 + 0.545731i
\(361\) −13.1848 −0.693936
\(362\) 4.36231 + 7.55574i 0.229278 + 0.397121i
\(363\) 6.90760 1.21800i 0.362555 0.0639283i
\(364\) 12.0287 20.8343i 0.630474 1.09201i
\(365\) −5.61974 + 9.73367i −0.294150 + 0.509484i
\(366\) −11.2135 + 1.97724i −0.586138 + 0.103352i
\(367\) −5.46198 9.46043i −0.285113 0.493830i 0.687523 0.726162i \(-0.258698\pi\)
−0.972637 + 0.232332i \(0.925364\pi\)
\(368\) 20.9932 1.09435
\(369\) 2.72281 + 2.28471i 0.141744 + 0.118937i
\(370\) 10.1411 0.527213
\(371\) −3.64543 6.31407i −0.189261 0.327810i
\(372\) 11.9021 32.7009i 0.617097 1.69546i
\(373\) −0.865715 + 1.49946i −0.0448250 + 0.0776392i −0.887567 0.460678i \(-0.847606\pi\)
0.842742 + 0.538317i \(0.180940\pi\)
\(374\) −8.11721 + 14.0594i −0.419731 + 0.726995i
\(375\) −9.03343 10.7656i −0.466484 0.555935i
\(376\) 3.12108 + 5.40587i 0.160957 + 0.278787i
\(377\) 32.9908 1.69911
\(378\) 13.1571i 0.676729i
\(379\) −12.1334 −0.623251 −0.311626 0.950205i \(-0.600873\pi\)
−0.311626 + 0.950205i \(0.600873\pi\)
\(380\) 4.67752 + 8.10170i 0.239952 + 0.415608i
\(381\) −19.6545 23.4233i −1.00693 1.20001i
\(382\) −7.16297 + 12.4066i −0.366489 + 0.634778i
\(383\) 4.35591 7.54467i 0.222577 0.385514i −0.733013 0.680215i \(-0.761887\pi\)
0.955590 + 0.294700i \(0.0952198\pi\)
\(384\) 7.90286 21.7129i 0.403291 1.10803i
\(385\) 1.70574 + 2.95442i 0.0869324 + 0.150571i
\(386\) 24.2986 1.23677
\(387\) 0.520945 0.189608i 0.0264811 0.00963833i
\(388\) 55.1566 2.80015
\(389\) −1.82160 3.15511i −0.0923590 0.159970i 0.816144 0.577848i \(-0.196107\pi\)
−0.908503 + 0.417878i \(0.862774\pi\)
\(390\) 20.7126 3.65219i 1.04882 0.184936i
\(391\) −2.61334 + 4.52644i −0.132162 + 0.228912i
\(392\) −3.05303 + 5.28801i −0.154201 + 0.267085i
\(393\) −32.7460 + 5.77401i −1.65182 + 0.291260i
\(394\) −10.5334 18.2444i −0.530667 0.919142i
\(395\) 5.23947 0.263627
\(396\) −8.91534 + 50.5614i −0.448013 + 2.54081i
\(397\) −15.4456 −0.775194 −0.387597 0.921829i \(-0.626695\pi\)
−0.387597 + 0.921829i \(0.626695\pi\)
\(398\) −8.35117 14.4646i −0.418606 0.725047i
\(399\) −1.42855 + 3.92490i −0.0715169 + 0.196491i
\(400\) 14.0287 24.2984i 0.701434 1.21492i
\(401\) −9.21095 + 15.9538i −0.459973 + 0.796697i −0.998959 0.0456182i \(-0.985474\pi\)
0.538986 + 0.842315i \(0.318808\pi\)
\(402\) 8.33915 + 9.93821i 0.415919 + 0.495673i
\(403\) −12.4183 21.5092i −0.618601 1.07145i
\(404\) −42.8658 −2.13265
\(405\) −6.06283 + 5.08732i −0.301265 + 0.252791i
\(406\) −15.3182 −0.760230
\(407\) 8.83409 + 15.3011i 0.437890 + 0.758447i
\(408\) −11.2353 13.3897i −0.556230 0.662889i
\(409\) 14.3182 24.7999i 0.707989 1.22627i −0.257612 0.966248i \(-0.582936\pi\)
0.965602 0.260025i \(-0.0837309\pi\)
\(410\) −1.31908 + 2.28471i −0.0651446 + 0.112834i
\(411\) −10.7554 + 29.5501i −0.530523 + 1.45760i
\(412\) −14.5496 25.2007i −0.716809 1.24155i
\(413\) 6.66044 0.327739
\(414\) −4.17159 + 23.6583i −0.205022 + 1.16274i
\(415\) 0.192533 0.00945109
\(416\) 12.5326 + 21.7070i 0.614459 + 1.06427i
\(417\) 37.6241 6.63414i 1.84246 0.324875i
\(418\) −11.8439 + 20.5142i −0.579304 + 1.00338i
\(419\) 17.3478 30.0472i 0.847494 1.46790i −0.0359442 0.999354i \(-0.511444\pi\)
0.883438 0.468548i \(-0.155223\pi\)
\(420\) −6.61721 + 1.16679i −0.322887 + 0.0569337i
\(421\) 13.7010 + 23.7308i 0.667745 + 1.15657i 0.978533 + 0.206090i \(0.0660738\pi\)
−0.310788 + 0.950479i \(0.600593\pi\)
\(422\) −8.53209 −0.415336
\(423\) −2.88191 + 1.04893i −0.140123 + 0.0510007i
\(424\) 44.5185 2.16201
\(425\) 3.49273 + 6.04958i 0.169422 + 0.293448i
\(426\) 5.52007 15.1663i 0.267448 0.734808i
\(427\) 1.29813 2.24843i 0.0628211 0.108809i
\(428\) −5.26991 + 9.12776i −0.254731 + 0.441207i
\(429\) 23.5535 + 28.0700i 1.13717 + 1.35523i
\(430\) 0.205737 + 0.356347i 0.00992152 + 0.0171846i
\(431\) 26.5921 1.28090 0.640449 0.768000i \(-0.278748\pi\)
0.640449 + 0.768000i \(0.278748\pi\)
\(432\) −29.8717 17.2464i −1.43720 0.829769i
\(433\) 37.1830 1.78690 0.893451 0.449160i \(-0.148277\pi\)
0.893451 + 0.449160i \(0.148277\pi\)
\(434\) 5.76604 + 9.98708i 0.276779 + 0.479395i
\(435\) −5.92292 7.05866i −0.283982 0.338437i
\(436\) −8.73055 + 15.1218i −0.418118 + 0.724201i
\(437\) −3.81315 + 6.60457i −0.182408 + 0.315939i
\(438\) 19.1716 52.6735i 0.916054 2.51684i
\(439\) −12.5373 21.7152i −0.598373 1.03641i −0.993061 0.117597i \(-0.962481\pi\)
0.394689 0.918815i \(-0.370853\pi\)
\(440\) −20.8307 −0.993064
\(441\) −2.29813 1.92836i −0.109435 0.0918268i
\(442\) −22.8212 −1.08549
\(443\) −1.02229 1.77066i −0.0485704 0.0841264i 0.840718 0.541473i \(-0.182133\pi\)
−0.889288 + 0.457347i \(0.848800\pi\)
\(444\) −34.2708 + 6.04288i −1.62642 + 0.286782i
\(445\) 4.84864 8.39809i 0.229848 0.398108i
\(446\) 7.94609 13.7630i 0.376258 0.651698i
\(447\) −25.8516 + 4.55834i −1.22274 + 0.215602i
\(448\) 0.819078 + 1.41868i 0.0386978 + 0.0670265i
\(449\) −10.2344 −0.482992 −0.241496 0.970402i \(-0.577638\pi\)
−0.241496 + 0.970402i \(0.577638\pi\)
\(450\) 24.5954 + 20.6380i 1.15944 + 0.972884i
\(451\) −4.59627 −0.216430
\(452\) −36.2918 62.8592i −1.70702 2.95665i
\(453\) 11.2297 30.8533i 0.527616 1.44961i
\(454\) 7.80200 13.5135i 0.366166 0.634218i
\(455\) −2.39780 + 4.15312i −0.112411 + 0.194701i
\(456\) −16.3935 19.5370i −0.767697 0.914906i
\(457\) 21.2973 + 36.8879i 0.996244 + 1.72554i 0.573115 + 0.819475i \(0.305735\pi\)
0.423129 + 0.906070i \(0.360932\pi\)
\(458\) 59.2131 2.76684
\(459\) 7.43717 4.29385i 0.347137 0.200420i
\(460\) −12.2686 −0.572025
\(461\) −0.252374 0.437124i −0.0117542 0.0203589i 0.860088 0.510145i \(-0.170408\pi\)
−0.871843 + 0.489786i \(0.837075\pi\)
\(462\) −10.9363 13.0334i −0.508802 0.606367i
\(463\) −1.34002 + 2.32099i −0.0622761 + 0.107865i −0.895482 0.445097i \(-0.853169\pi\)
0.833206 + 0.552962i \(0.186503\pi\)
\(464\) 20.0792 34.7782i 0.932153 1.61454i
\(465\) −2.37258 + 6.51860i −0.110026 + 0.302293i
\(466\) 10.7934 + 18.6947i 0.499994 + 0.866015i
\(467\) −31.4165 −1.45378 −0.726892 0.686752i \(-0.759036\pi\)
−0.726892 + 0.686752i \(0.759036\pi\)
\(468\) −67.8196 + 24.6843i −3.13496 + 1.14103i
\(469\) −2.95811 −0.136593
\(470\) −1.13816 1.97134i −0.0524992 0.0909313i
\(471\) −30.8011 + 5.43107i −1.41924 + 0.250250i
\(472\) −20.3346 + 35.2205i −0.935974 + 1.62115i
\(473\) −0.358441 + 0.620838i −0.0164811 + 0.0285461i
\(474\) −25.7335 + 4.53752i −1.18198 + 0.208415i
\(475\) 5.09627 + 8.82699i 0.233833 + 0.405010i
\(476\) 7.29086 0.334176
\(477\) −3.79813 + 21.5403i −0.173905 + 0.986262i
\(478\) 36.8726 1.68651
\(479\) 8.22028 + 14.2380i 0.375594 + 0.650549i 0.990416 0.138118i \(-0.0441052\pi\)
−0.614821 + 0.788666i \(0.710772\pi\)
\(480\) 2.39440 6.57856i 0.109289 0.300269i
\(481\) −12.4183 + 21.5092i −0.566227 + 0.980735i
\(482\) 6.84137 11.8496i 0.311616 0.539734i
\(483\) −3.52094 4.19610i −0.160209 0.190929i
\(484\) −8.93242 15.4714i −0.406019 0.703246i
\(485\) −10.9949 −0.499255
\(486\) 25.3717 30.2368i 1.15088 1.37157i
\(487\) −2.97535 −0.134826 −0.0674129 0.997725i \(-0.521474\pi\)
−0.0674129 + 0.997725i \(0.521474\pi\)
\(488\) 7.92649 + 13.7291i 0.358815 + 0.621486i
\(489\) −1.06670 1.27125i −0.0482380 0.0574878i
\(490\) 1.11334 1.92836i 0.0502956 0.0871146i
\(491\) 13.2430 22.9376i 0.597650 1.03516i −0.395517 0.918459i \(-0.629435\pi\)
0.993167 0.116702i \(-0.0372321\pi\)
\(492\) 3.09627 8.50692i 0.139590 0.383522i
\(493\) 4.99912 + 8.65873i 0.225149 + 0.389970i
\(494\) −33.2986 −1.49817
\(495\) 1.77719 10.0789i 0.0798787 0.453015i
\(496\) −30.2327 −1.35749
\(497\) 1.84002 + 3.18701i 0.0825363 + 0.142957i
\(498\) −0.945622 + 0.166739i −0.0423744 + 0.00747174i
\(499\) 6.72193 11.6427i 0.300915 0.521200i −0.675428 0.737426i \(-0.736041\pi\)
0.976343 + 0.216225i \(0.0693746\pi\)
\(500\) −17.8969 + 30.9984i −0.800375 + 1.38629i
\(501\) 33.8391 5.96675i 1.51182 0.266575i
\(502\) 15.2772 + 26.4609i 0.681854 + 1.18101i
\(503\) −22.6631 −1.01050 −0.505250 0.862973i \(-0.668600\pi\)
−0.505250 + 0.862973i \(0.668600\pi\)
\(504\) 17.2135 6.26519i 0.766749 0.279074i
\(505\) 8.54488 0.380242
\(506\) −15.5326 26.9032i −0.690506 1.19599i
\(507\) −9.91622 + 27.2446i −0.440395 + 1.20997i
\(508\) −38.9393 + 67.4448i −1.72765 + 2.99238i
\(509\) −4.77379 + 8.26844i −0.211594 + 0.366492i −0.952214 0.305433i \(-0.901199\pi\)
0.740619 + 0.671925i \(0.234532\pi\)
\(510\) 4.09714 + 4.88279i 0.181425 + 0.216213i
\(511\) 6.39053 + 11.0687i 0.282700 + 0.489651i
\(512\) −50.5553 −2.23425
\(513\) 10.8516 6.26519i 0.479111 0.276615i
\(514\) 26.7547 1.18010
\(515\) 2.90033 + 5.02352i 0.127804 + 0.221363i
\(516\) −0.907604 1.08164i −0.0399550 0.0476165i
\(517\) 1.98293 3.43453i 0.0872090 0.151050i
\(518\) 5.76604 9.98708i 0.253345 0.438807i
\(519\) −13.4372 + 36.9183i −0.589826 + 1.62053i
\(520\) −14.6411 25.3592i −0.642057 1.11208i
\(521\) −3.11287 −0.136377 −0.0681887 0.997672i \(-0.521722\pi\)
−0.0681887 + 0.997672i \(0.521722\pi\)
\(522\) 35.2033 + 29.5390i 1.54081 + 1.29289i
\(523\) −16.1489 −0.706142 −0.353071 0.935597i \(-0.614863\pi\)
−0.353071 + 0.935597i \(0.614863\pi\)
\(524\) 42.3448 + 73.3434i 1.84984 + 3.20402i
\(525\) −7.20961 + 1.27125i −0.314653 + 0.0554818i
\(526\) 35.8965 62.1746i 1.56516 2.71094i
\(527\) 3.76352 6.51860i 0.163941 0.283955i
\(528\) 43.9261 7.74535i 1.91164 0.337073i
\(529\) 6.49928 + 11.2571i 0.282578 + 0.489439i
\(530\) −16.2344 −0.705178
\(531\) −15.3066 12.8438i −0.664249 0.557371i
\(532\) 10.6382 0.461223
\(533\) −3.23055 5.59548i −0.139931 0.242367i
\(534\) −16.5410 + 45.4461i −0.715800 + 1.96664i
\(535\) 1.05051 1.81953i 0.0454174 0.0786652i
\(536\) 9.03121 15.6425i 0.390089 0.675654i
\(537\) 8.18004 + 9.74860i 0.352995 + 0.420683i
\(538\) −9.47431 16.4100i −0.408466 0.707485i
\(539\) 3.87939 0.167097
\(540\) 17.4572 + 10.0789i 0.751240 + 0.433728i
\(541\) −5.01548 −0.215632 −0.107816 0.994171i \(-0.534386\pi\)
−0.107816 + 0.994171i \(0.534386\pi\)
\(542\) −17.2665 29.9065i −0.741660 1.28459i
\(543\) 3.83615 + 4.57175i 0.164625 + 0.196192i
\(544\) −3.79813 + 6.57856i −0.162844 + 0.282053i
\(545\) 1.74035 3.01438i 0.0745485 0.129122i
\(546\) 8.18004 22.4745i 0.350074 0.961819i
\(547\) −8.23901 14.2704i −0.352275 0.610157i 0.634373 0.773027i \(-0.281258\pi\)
−0.986648 + 0.162870i \(0.947925\pi\)
\(548\) 80.0934 3.42142
\(549\) −7.31908 + 2.66393i −0.312371 + 0.113694i
\(550\) −41.5185 −1.77035
\(551\) 7.29426 + 12.6340i 0.310746 + 0.538228i
\(552\) 32.9386 5.80796i 1.40196 0.247203i
\(553\) 2.97906 5.15988i 0.126682 0.219420i
\(554\) 7.78699 13.4875i 0.330837 0.573027i
\(555\) 6.83157 1.20459i 0.289984 0.0511320i
\(556\) −48.6528 84.2691i −2.06334 3.57380i
\(557\) −34.5631 −1.46448 −0.732242 0.681045i \(-0.761526\pi\)
−0.732242 + 0.681045i \(0.761526\pi\)
\(558\) 6.00758 34.0707i 0.254321 1.44233i
\(559\) −1.00774 −0.0426229
\(560\) 2.91875 + 5.05542i 0.123340 + 0.213630i
\(561\) −3.79813 + 10.4353i −0.160357 + 0.440578i
\(562\) −4.19341 + 7.26320i −0.176888 + 0.306380i
\(563\) 18.6052 32.2251i 0.784115 1.35813i −0.145411 0.989371i \(-0.546450\pi\)
0.929526 0.368756i \(-0.120216\pi\)
\(564\) 5.02094 + 5.98373i 0.211420 + 0.251960i
\(565\) 7.23442 + 12.5304i 0.304354 + 0.527157i
\(566\) 73.4894 3.08899
\(567\) 1.56283 + 8.86327i 0.0656328 + 0.372222i
\(568\) −22.4706 −0.942845
\(569\) −0.202333 0.350452i −0.00848226 0.0146917i 0.861753 0.507328i \(-0.169367\pi\)
−0.870235 + 0.492636i \(0.836033\pi\)
\(570\) 5.97818 + 7.12452i 0.250398 + 0.298413i
\(571\) 18.8897 32.7178i 0.790507 1.36920i −0.135146 0.990826i \(-0.543150\pi\)
0.925653 0.378373i \(-0.123516\pi\)
\(572\) 46.6639 80.8243i 1.95112 3.37943i
\(573\) −3.35163 + 9.20854i −0.140017 + 0.384692i
\(574\) 1.50000 + 2.59808i 0.0626088 + 0.108442i
\(575\) −13.3669 −0.557438
\(576\) 0.853388 4.83981i 0.0355578 0.201659i
\(577\) −2.21120 −0.0920535 −0.0460267 0.998940i \(-0.514656\pi\)
−0.0460267 + 0.998940i \(0.514656\pi\)
\(578\) 18.0646 + 31.2889i 0.751390 + 1.30145i
\(579\) 16.3687 2.88624i 0.680260 0.119948i
\(580\) −11.7344 + 20.3246i −0.487245 + 0.843934i
\(581\) 0.109470 0.189608i 0.00454160 0.00786628i
\(582\) 54.0014 9.52190i 2.23843 0.394696i
\(583\) −14.1420 24.4947i −0.585703 1.01447i
\(584\) −78.0420 −3.22940
\(585\) 13.5192 4.92058i 0.558950 0.203441i
\(586\) −21.3182 −0.880647
\(587\) −12.1049 20.9663i −0.499622 0.865371i 0.500378 0.865807i \(-0.333194\pi\)
−1.00000 0.000436347i \(0.999861\pi\)
\(588\) −2.61334 + 7.18009i −0.107772 + 0.296102i
\(589\) 5.49138 9.51135i 0.226268 0.391908i
\(590\) 7.41534 12.8438i 0.305285 0.528769i
\(591\) −9.26295 11.0391i −0.381027 0.454090i
\(592\) 15.1163 + 26.1823i 0.621277 + 1.07608i
\(593\) 12.2385 0.502577 0.251288 0.967912i \(-0.419146\pi\)
0.251288 + 0.967912i \(0.419146\pi\)
\(594\) 51.0415i 2.09426i
\(595\) −1.45336 −0.0595821
\(596\) 33.4295 + 57.9016i 1.36932 + 2.37174i
\(597\) −7.34389 8.75211i −0.300566 0.358200i
\(598\) 21.8346 37.8186i 0.892882 1.54652i
\(599\) −19.8084 + 34.3092i −0.809349 + 1.40183i 0.103966 + 0.994581i \(0.466847\pi\)
−0.913315 + 0.407253i \(0.866487\pi\)
\(600\) 15.2888 42.0056i 0.624163 1.71487i
\(601\) 15.0039 + 25.9875i 0.612021 + 1.06005i 0.990899 + 0.134605i \(0.0429764\pi\)
−0.378879 + 0.925446i \(0.623690\pi\)
\(602\) 0.467911 0.0190706
\(603\) 6.79813 + 5.70431i 0.276841 + 0.232298i
\(604\) −83.6255 −3.40267
\(605\) 1.78059 + 3.08408i 0.0723914 + 0.125386i
\(606\) −41.9680 + 7.40008i −1.70483 + 0.300608i
\(607\) 9.74216 16.8739i 0.395422 0.684891i −0.597733 0.801695i \(-0.703932\pi\)
0.993155 + 0.116804i \(0.0372650\pi\)
\(608\) −5.54189 + 9.59883i −0.224753 + 0.389284i
\(609\) −10.3191 + 1.81953i −0.418150 + 0.0737312i
\(610\) −2.89053 5.00654i −0.117034 0.202709i
\(611\) 5.57491 0.225537
\(612\) −16.7554 14.0594i −0.677296 0.568318i
\(613\) −18.5276 −0.748325 −0.374162 0.927363i \(-0.622070\pi\)
−0.374162 + 0.927363i \(0.622070\pi\)
\(614\) 16.0633 + 27.8225i 0.648262 + 1.12282i
\(615\) −0.617211 + 1.69577i −0.0248884 + 0.0683802i
\(616\) −11.8439 + 20.5142i −0.477204 + 0.826542i
\(617\) −13.9201 + 24.1103i −0.560402 + 0.970644i 0.437059 + 0.899433i \(0.356020\pi\)
−0.997461 + 0.0712118i \(0.977313\pi\)
\(618\) −18.5954 22.1611i −0.748016 0.891451i
\(619\) 22.4907 + 38.9550i 0.903976 + 1.56573i 0.822286 + 0.569075i \(0.192699\pi\)
0.0816906 + 0.996658i \(0.473968\pi\)
\(620\) 17.6682 0.709571
\(621\) 16.4329i 0.659428i
\(622\) −41.7547 −1.67421
\(623\) −5.51367 9.54996i −0.220901 0.382611i
\(624\) 40.3032 + 48.0315i 1.61342 + 1.92280i
\(625\) −6.99912 + 12.1228i −0.279965 + 0.484913i
\(626\) −36.1057 + 62.5368i −1.44307 + 2.49947i
\(627\) −5.54189 + 15.2262i −0.221322 + 0.608076i
\(628\) 39.8298 + 68.9873i 1.58938 + 2.75289i
\(629\) −7.52704 −0.300123
\(630\) −6.27719 + 2.28471i −0.250089 + 0.0910250i
\(631\) 9.43613 0.375646 0.187823 0.982203i \(-0.439857\pi\)
0.187823 + 0.982203i \(0.439857\pi\)
\(632\) 18.1903 + 31.5065i 0.723572 + 1.25326i
\(633\) −5.74763 + 1.01346i −0.228448 + 0.0402815i
\(634\) 32.7841 56.7836i 1.30202 2.25517i
\(635\) 7.76217 13.4445i 0.308032 0.533528i
\(636\) 54.8624 9.67372i 2.17543 0.383588i
\(637\) 2.72668 + 4.72275i 0.108035 + 0.187122i
\(638\) −59.4252 −2.35267
\(639\) 1.91710 10.8724i 0.0758393 0.430106i
\(640\) 11.7314 0.463725
\(641\) −18.6951 32.3808i −0.738410 1.27896i −0.953211 0.302306i \(-0.902243\pi\)
0.214800 0.976658i \(-0.431090\pi\)
\(642\) −3.58378 + 9.84635i −0.141440 + 0.388604i
\(643\) −0.805874 + 1.39581i −0.0317806 + 0.0550456i −0.881478 0.472225i \(-0.843451\pi\)
0.849698 + 0.527270i \(0.176784\pi\)
\(644\) −6.97565 + 12.0822i −0.274879 + 0.476105i
\(645\) 0.180922 + 0.215615i 0.00712380 + 0.00848982i
\(646\) −5.04576 8.73951i −0.198523 0.343851i
\(647\) −41.1762 −1.61880 −0.809402 0.587255i \(-0.800209\pi\)
−0.809402 + 0.587255i \(0.800209\pi\)
\(648\) −51.6404 18.7956i −2.02863 0.738360i
\(649\) 25.8384 1.01425
\(650\) −29.1819 50.5445i −1.14461 1.98252i
\(651\) 5.07057 + 6.04288i 0.198731 + 0.236839i
\(652\) −2.11334 + 3.66041i −0.0827648 + 0.143353i
\(653\) −1.52600 + 2.64310i −0.0597169 + 0.103433i −0.894338 0.447391i \(-0.852353\pi\)
0.834621 + 0.550824i \(0.185686\pi\)
\(654\) −5.93717 + 16.3122i −0.232162 + 0.637859i
\(655\) −8.44104 14.6203i −0.329819 0.571263i
\(656\) −7.86484 −0.307070
\(657\) 6.65822 37.7607i 0.259762 1.47318i
\(658\) −2.58853 −0.100911
\(659\) −20.8175 36.0569i −0.810934 1.40458i −0.912211 0.409721i \(-0.865626\pi\)
0.101277 0.994858i \(-0.467707\pi\)
\(660\) −25.6707 + 4.52644i −0.999231 + 0.176191i
\(661\) −10.1505 + 17.5812i −0.394808 + 0.683828i −0.993077 0.117468i \(-0.962522\pi\)
0.598269 + 0.801296i \(0.295856\pi\)
\(662\) −10.4055 + 18.0229i −0.404423 + 0.700481i
\(663\) −15.3735 + 2.71075i −0.597056 + 0.105277i
\(664\) 0.668434 + 1.15776i 0.0259403 + 0.0449298i
\(665\) −2.12061 −0.0822339
\(666\) −32.5099 + 11.8326i −1.25973 + 0.458505i
\(667\) −19.1320 −0.740793
\(668\) −43.7584 75.7917i −1.69306 2.93247i
\(669\) 3.71806 10.2153i 0.143749 0.394946i
\(670\) −3.29339 + 5.70431i −0.127235 + 0.220377i
\(671\) 5.03596 8.72254i 0.194411 0.336730i
\(672\) −5.11721 6.09845i −0.197401 0.235253i
\(673\) 0.415345 + 0.719398i 0.0160104 + 0.0277307i 0.873920 0.486071i \(-0.161570\pi\)
−0.857909 + 0.513801i \(0.828237\pi\)
\(674\) 11.5749 0.445849
\(675\) 19.0201 + 10.9812i 0.732083 + 0.422668i
\(676\) 73.8444 2.84017
\(677\) −5.43360 9.41127i −0.208830 0.361705i 0.742516 0.669828i \(-0.233632\pi\)
−0.951346 + 0.308124i \(0.900299\pi\)
\(678\) −46.3833 55.2775i −1.78134 2.12292i
\(679\) −6.25150 + 10.8279i −0.239910 + 0.415537i
\(680\) 4.43717 7.68540i 0.170158 0.294722i
\(681\) 3.65064 10.0301i 0.139893 0.384353i
\(682\) 22.3687 + 38.7437i 0.856542 + 1.48357i
\(683\) 32.6946 1.25102 0.625512 0.780215i \(-0.284890\pi\)
0.625512 + 0.780215i \(0.284890\pi\)
\(684\) −24.4479 20.5142i −0.934789 0.784381i
\(685\) −15.9659 −0.610024
\(686\) −1.26604 2.19285i −0.0483378 0.0837235i
\(687\) 39.8888 7.03347i 1.52185 0.268344i
\(688\) −0.613341 + 1.06234i −0.0233834 + 0.0405012i
\(689\) 19.8799 34.4329i 0.757362 1.31179i
\(690\) −12.0116 + 2.11797i −0.457274 + 0.0806298i
\(691\) −7.49912 12.9889i −0.285280 0.494120i 0.687397 0.726282i \(-0.258753\pi\)
−0.972677 + 0.232162i \(0.925420\pi\)
\(692\) 100.064 3.80387
\(693\) −8.91534 7.48086i −0.338666 0.284174i
\(694\) 56.8863 2.15937
\(695\) 9.69846 + 16.7982i 0.367884 + 0.637193i
\(696\) 21.8828 60.1225i 0.829465 2.27894i
\(697\) 0.979055 1.69577i 0.0370844 0.0642320i
\(698\) −33.0428 + 57.2318i −1.25069 + 2.16626i
\(699\) 9.49154 + 11.3116i 0.359003 + 0.427843i
\(700\) 9.32295 + 16.1478i 0.352374 + 0.610330i
\(701\) 26.4688 0.999714 0.499857 0.866108i \(-0.333386\pi\)
0.499857 + 0.866108i \(0.333386\pi\)
\(702\) −62.1378 + 35.8753i −2.34524 + 1.35403i
\(703\) −10.9828 −0.414223
\(704\) 3.17752 + 5.50362i 0.119757 + 0.207426i
\(705\) −1.00088 1.19280i −0.0376952 0.0449234i
\(706\) 0.449493 0.778544i 0.0169169 0.0293009i
\(707\) 4.85844 8.41507i 0.182720 0.316481i
\(708\) −17.4060 + 47.8226i −0.654158 + 1.79728i
\(709\) −7.68004 13.3022i −0.288430 0.499576i 0.685005 0.728538i \(-0.259800\pi\)
−0.973435 + 0.228963i \(0.926467\pi\)
\(710\) 8.19429 0.307526
\(711\) −16.7964 + 6.11338i −0.629913 + 0.229270i
\(712\) 67.3337 2.52344
\(713\) 7.20162 + 12.4736i 0.269703 + 0.467139i
\(714\) 7.13816 1.25865i 0.267139 0.0471038i
\(715\) −9.30200 + 16.1115i −0.347875 + 0.602538i
\(716\) 16.2062 28.0700i 0.605654 1.04902i
\(717\) 24.8391 4.37981i 0.927635 0.163567i
\(718\) −6.90760 11.9643i −0.257789 0.446504i
\(719\) 26.7306 0.996883 0.498442 0.866923i \(-0.333906\pi\)
0.498442 + 0.866923i \(0.333906\pi\)
\(720\) 3.04101 17.2464i 0.113332 0.642737i
\(721\) 6.59627 0.245658
\(722\) 16.6925 + 28.9123i 0.621232 + 1.07600i
\(723\) 3.20115 8.79509i 0.119052 0.327093i
\(724\) 7.60014 13.1638i 0.282457 0.489230i
\(725\) −12.7849 + 22.1441i −0.474820 + 0.822413i
\(726\) −11.4162 13.6053i −0.423696 0.504941i
\(727\) 22.8221 + 39.5290i 0.846424 + 1.46605i 0.884379 + 0.466770i \(0.154582\pi\)
−0.0379552 + 0.999279i \(0.512084\pi\)
\(728\) −33.2986 −1.23413
\(729\) 13.5000 23.3827i 0.500000 0.866025i
\(730\) 28.4593 1.05333
\(731\) −0.152704 0.264490i −0.00564795 0.00978253i
\(732\) 12.7515 + 15.1966i 0.471309 + 0.561684i
\(733\) −2.98751 + 5.17452i −0.110346 + 0.191125i −0.915910 0.401384i \(-0.868529\pi\)
0.805564 + 0.592509i \(0.201863\pi\)
\(734\) −13.8302 + 23.9546i −0.510483 + 0.884182i
\(735\) 0.520945 1.43128i 0.0192153 0.0527937i
\(736\) −7.26786 12.5883i −0.267897 0.464011i
\(737\) −11.4757 −0.422711
\(738\) 1.56283 8.86327i 0.0575287 0.326261i
\(739\) −35.5963 −1.30943 −0.654715 0.755876i \(-0.727211\pi\)
−0.654715 + 0.755876i \(0.727211\pi\)
\(740\) −8.83409 15.3011i −0.324748 0.562480i
\(741\) −22.4315 + 3.95529i −0.824043 + 0.145301i
\(742\) −9.23055 + 15.9878i −0.338864 + 0.586930i
\(743\) 14.6544 25.3821i 0.537616 0.931178i −0.461416 0.887184i \(-0.652658\pi\)
0.999032 0.0439943i \(-0.0140083\pi\)
\(744\) −47.4354 + 8.36414i −1.73907 + 0.306644i
\(745\) −6.66385 11.5421i −0.244145 0.422871i
\(746\) 4.38413 0.160515
\(747\) −0.617211 + 0.224647i −0.0225826 + 0.00821939i
\(748\) 28.2841 1.03417
\(749\) −1.19459 2.06910i −0.0436495 0.0756031i
\(750\) −12.1707 + 33.4388i −0.444412 + 1.22101i
\(751\) 8.66684 15.0114i 0.316258 0.547774i −0.663446 0.748224i \(-0.730907\pi\)
0.979704 + 0.200450i \(0.0642403\pi\)
\(752\) 3.39306 5.87695i 0.123732 0.214310i
\(753\) 13.4345 + 16.0107i 0.489582 + 0.583461i
\(754\) −41.7679 72.3440i −1.52110 2.63461i
\(755\) 16.6699 0.606681
\(756\) 19.8516 11.4613i 0.721997 0.416845i
\(757\) −2.77156 −0.100734 −0.0503671 0.998731i \(-0.516039\pi\)
−0.0503671 + 0.998731i \(0.516039\pi\)
\(758\) 15.3614 + 26.6068i 0.557952 + 0.966402i
\(759\) −13.6591 16.2783i −0.495794 0.590864i
\(760\) 6.47431 11.2138i 0.234848 0.406768i
\(761\) −3.75372 + 6.50163i −0.136072 + 0.235684i −0.926007 0.377508i \(-0.876781\pi\)
0.789934 + 0.613191i \(0.210115\pi\)
\(762\) −26.4805 + 72.7545i −0.959286 + 2.63562i
\(763\) −1.97906 3.42782i −0.0716466 0.124096i
\(764\) 24.9590 0.902987
\(765\) 3.34002 + 2.80261i 0.120759 + 0.101329i
\(766\) −22.0591 −0.797029
\(767\) 18.1609 + 31.4556i 0.655752 + 1.13580i
\(768\) −52.0301 + 9.17431i −1.87747 + 0.331049i
\(769\) −1.02182 + 1.76985i −0.0368478 + 0.0638223i −0.883861 0.467749i \(-0.845065\pi\)
0.847013 + 0.531572i \(0.178398\pi\)
\(770\) 4.31908 7.48086i 0.155649 0.269592i
\(771\) 18.0232 3.17798i 0.649090 0.114452i
\(772\) −21.1668 36.6620i −0.761811 1.31950i
\(773\) −24.9418 −0.897094 −0.448547 0.893759i \(-0.648058\pi\)
−0.448547 + 0.893759i \(0.648058\pi\)
\(774\) −1.07532 0.902302i −0.0386517 0.0324326i
\(775\) 19.2499 0.691477
\(776\) −38.1721 66.1159i −1.37030 2.37342i
\(777\) 2.69800 7.41268i 0.0967901 0.265929i
\(778\) −4.61246 + 7.98902i −0.165365 + 0.286420i
\(779\) 1.42855 2.47432i 0.0511831 0.0886516i
\(780\) −23.5535 28.0700i −0.843351 1.00507i
\(781\) 7.13816 + 12.3636i 0.255423 + 0.442406i
\(782\) 13.2344 0.473262
\(783\) 27.2233 + 15.7174i 0.972883 + 0.561694i
\(784\) 6.63816 0.237077
\(785\) −7.93969 13.7520i −0.283380 0.490828i
\(786\) 54.1195 + 64.4971i 1.93038 + 2.30054i
\(787\) −3.55350 + 6.15484i −0.126669 + 0.219396i −0.922384 0.386274i \(-0.873762\pi\)
0.795715 + 0.605671i \(0.207095\pi\)
\(788\) −18.3516 + 31.7860i −0.653750 + 1.13233i
\(789\) 16.7964 46.1477i 0.597967 1.64290i
\(790\) −6.63341 11.4894i −0.236006 0.408774i
\(791\) 16.4534 0.585014
\(792\) 66.7777 24.3051i 2.37284 0.863644i
\(793\) 14.1584 0.502779
\(794\) 19.5548 + 33.8700i 0.693975 + 1.20200i
\(795\) −10.9363 + 1.92836i −0.387870 + 0.0683920i
\(796\) −14.5496 + 25.2007i −0.515698 + 0.893215i
\(797\) −16.8314 + 29.1528i −0.596199 + 1.03265i 0.397178 + 0.917742i \(0.369990\pi\)
−0.993376 + 0.114905i \(0.963344\pi\)
\(798\) 10.4153 1.83651i 0.368699 0.0650116i
\(799\) 0.844770 + 1.46318i 0.0298858 + 0.0517638i
\(800\) −19.4270 −0.686847
\(801\) −5.74463 + 32.5794i −0.202977 + 1.15114i
\(802\) 46.6459 1.64712
\(803\) 24.7913 + 42.9398i 0.874867 + 1.51531i
\(804\) 7.73055 21.2395i 0.272636 0.749060i
\(805\) 1.39053 2.40847i 0.0490097 0.0848873i
\(806\) −31.4443 + 54.4632i −1.10758 + 1.91838i
\(807\) −8.33157 9.92917i −0.293285 0.349523i
\(808\) 29.6660 + 51.3830i 1.04364 + 1.80765i
\(809\) −12.8161 −0.450592 −0.225296 0.974290i \(-0.572335\pi\)
−0.225296 + 0.974290i \(0.572335\pi\)
\(810\) 18.8316 + 6.85413i 0.661674 + 0.240830i
\(811\) −26.1239 −0.917335 −0.458667 0.888608i \(-0.651673\pi\)
−0.458667 + 0.888608i \(0.651673\pi\)
\(812\) 13.3439 + 23.1123i 0.468279 + 0.811083i
\(813\) −15.1839 18.0955i −0.532523 0.634636i
\(814\) 22.3687 38.7437i 0.784023 1.35797i
\(815\) 0.421274 0.729669i 0.0147566 0.0255592i
\(816\) −6.49912 + 17.8562i −0.227515 + 0.625092i
\(817\) −0.222811 0.385920i −0.00779518 0.0135016i
\(818\) −72.5099 −2.53525
\(819\) 2.84090 16.1115i 0.0992691 0.562983i
\(820\) 4.59627 0.160509
\(821\) −13.8320 23.9578i −0.482741 0.836132i 0.517062 0.855948i \(-0.327026\pi\)
−0.999804 + 0.0198153i \(0.993692\pi\)
\(822\) 78.4159 13.8268i 2.73507 0.482266i
\(823\) −13.9162 + 24.1036i −0.485089 + 0.840199i −0.999853 0.0171330i \(-0.994546\pi\)
0.514764 + 0.857332i \(0.327879\pi\)
\(824\) −20.1386 + 34.8811i −0.701562 + 1.21514i
\(825\) −27.9688 + 4.93166i −0.973750 + 0.171698i
\(826\) −8.43242 14.6054i −0.293401 0.508186i
\(827\) 4.65507 0.161873 0.0809363 0.996719i \(-0.474209\pi\)
0.0809363 + 0.996719i \(0.474209\pi\)
\(828\) 39.3298 14.3149i 1.36681 0.497476i
\(829\) −9.97359 −0.346397 −0.173199 0.984887i \(-0.555410\pi\)
−0.173199 + 0.984887i \(0.555410\pi\)
\(830\) −0.243756 0.422197i −0.00846089 0.0146547i
\(831\) 3.64362 10.0108i 0.126396 0.347269i
\(832\) −4.46673 + 7.73660i −0.154856 + 0.268218i
\(833\) −0.826352 + 1.43128i −0.0286314 + 0.0495910i
\(834\) −62.1814 74.1050i −2.15317 2.56604i
\(835\) 8.72281 + 15.1084i 0.301865 + 0.522846i
\(836\) 41.2695 1.42734
\(837\) 23.6652i 0.817990i
\(838\) −87.8522 −3.03480
\(839\) 3.36484 + 5.82807i 0.116167 + 0.201207i 0.918246 0.396011i \(-0.129606\pi\)
−0.802079 + 0.597218i \(0.796273\pi\)
\(840\) 5.97818 + 7.12452i 0.206267 + 0.245819i
\(841\) −3.79901 + 6.58008i −0.131000 + 0.226899i
\(842\) 34.6921 60.0885i 1.19557 2.07079i
\(843\) −1.96214 + 5.39094i −0.0675798 + 0.185674i
\(844\) 7.43242 + 12.8733i 0.255834 + 0.443118i
\(845\) −14.7202 −0.506390
\(846\) 5.94878 + 4.99162i 0.204523 + 0.171615i
\(847\) 4.04963 0.139147
\(848\) −24.1989 41.9138i −0.830995 1.43932i
\(849\) 49.5060 8.72924i 1.69904 0.299587i
\(850\) 8.84389 15.3181i 0.303343 0.525406i
\(851\) 7.20162 12.4736i 0.246868 0.427588i
\(852\) −27.6917 + 4.88279i −0.948701 + 0.167281i
\(853\) −2.89528 5.01477i −0.0991324 0.171702i 0.812193 0.583388i \(-0.198273\pi\)
−0.911326 + 0.411686i \(0.864940\pi\)
\(854\) −6.57398 −0.224957
\(855\) 4.87346 + 4.08931i 0.166669 + 0.139852i
\(856\) 14.5885 0.498626
\(857\) 17.4538 + 30.2309i 0.596211 + 1.03267i 0.993375 + 0.114921i \(0.0366614\pi\)
−0.397163 + 0.917748i \(0.630005\pi\)
\(858\) 31.7335 87.1872i 1.08337 2.97652i
\(859\) 6.30747 10.9249i 0.215208 0.372751i −0.738129 0.674660i \(-0.764290\pi\)
0.953337 + 0.301909i \(0.0976237\pi\)
\(860\) 0.358441 0.620838i 0.0122227 0.0211704i
\(861\) 1.31908 + 1.57202i 0.0449541 + 0.0535742i
\(862\) −33.6668 58.3127i −1.14670 1.98614i
\(863\) −24.2053 −0.823959 −0.411979 0.911193i \(-0.635162\pi\)
−0.411979 + 0.911193i \(0.635162\pi\)
\(864\) 23.8829i 0.812513i
\(865\) −19.9469 −0.678214
\(866\) −47.0754 81.5369i −1.59969 2.77074i
\(867\) 15.8858 + 18.9319i 0.539509 + 0.642962i
\(868\) 10.0458 17.3998i 0.340975 0.590587i
\(869\) 11.5569 20.0171i 0.392041 0.679035i
\(870\) −7.97993 + 21.9247i −0.270545 + 0.743316i
\(871\) −8.06583 13.9704i −0.273300 0.473370i
\(872\) 24.1685 0.818448
\(873\) 35.2469 12.8288i 1.19293 0.434190i
\(874\) 19.3105 0.653186
\(875\) −4.05690 7.02676i −0.137148 0.237548i
\(876\) −96.1751 + 16.9583i −3.24946 + 0.572967i
\(877\) 0.562834 0.974856i 0.0190055 0.0329186i −0.856366 0.516369i \(-0.827283\pi\)
0.875372 + 0.483450i \(0.160617\pi\)
\(878\) −31.7456 + 54.9849i −1.07136 + 1.85565i
\(879\) −14.3610 + 2.53223i −0.484383 + 0.0854099i
\(880\) 11.3229 + 19.6119i 0.381697 + 0.661118i
\(881\) −4.38331 −0.147678 −0.0738388 0.997270i \(-0.523525\pi\)
−0.0738388 + 0.997270i \(0.523525\pi\)
\(882\) −1.31908 + 7.48086i −0.0444157 + 0.251894i
\(883\) −6.88949 −0.231850 −0.115925 0.993258i \(-0.536983\pi\)
−0.115925 + 0.993258i \(0.536983\pi\)
\(884\) 19.8799 + 34.4329i 0.668632 + 1.15810i
\(885\) 3.46972 9.53298i 0.116633 0.320448i
\(886\) −2.58853 + 4.48346i −0.0869632 + 0.150625i
\(887\) −19.5376 + 33.8401i −0.656009 + 1.13624i 0.325631 + 0.945497i \(0.394423\pi\)
−0.981640 + 0.190744i \(0.938910\pi\)
\(888\) 30.9613 + 36.8982i 1.03899 + 1.23822i
\(889\) −8.82682 15.2885i −0.296042 0.512760i
\(890\) −24.5544 −0.823065
\(891\) 6.06283 + 34.3840i 0.203113 + 1.15191i
\(892\) −27.6878 −0.927056
\(893\) 1.23261 + 2.13495i 0.0412478 + 0.0714432i
\(894\) 42.7251 + 50.9178i 1.42894 + 1.70295i
\(895\) −3.23055 + 5.59548i −0.107985 + 0.187036i
\(896\) 6.67024 11.5532i 0.222837 0.385965i
\(897\) 10.2166 28.0700i 0.341123 0.937229i
\(898\) 12.9572 + 22.4426i 0.432388 + 0.748919i
\(899\) 27.5523 0.918921
\(900\) 9.71348 55.0879i 0.323783 1.83626i
\(901\) 12.0496 0.401431
\(902\) 5.81908 + 10.0789i 0.193754 + 0.335592i
\(903\) 0.315207 0.0555796i 0.0104894 0.00184957i
\(904\) −50.2327 + 87.0055i −1.67071 + 2.89376i
\(905\) −1.51501 + 2.62408i −0.0503608 + 0.0872275i
\(906\) −81.8740 + 14.4366i −2.72008 + 0.479624i
\(907\) −21.2469 36.8007i −0.705492 1.22195i −0.966514 0.256615i \(-0.917393\pi\)
0.261022 0.965333i \(-0.415941\pi\)
\(908\) −27.1857 −0.902190
\(909\) −27.3926 + 9.97011i −0.908557 + 0.330688i
\(910\) 12.1429 0.402533
\(911\) 7.74675 + 13.4178i 0.256661 + 0.444550i 0.965345 0.260976i \(-0.0840442\pi\)
−0.708684 + 0.705526i \(0.750711\pi\)
\(912\) −9.48293 + 26.0541i −0.314011 + 0.862738i
\(913\) 0.424678 0.735564i 0.0140548 0.0243436i
\(914\) 53.9265 93.4035i 1.78373 3.08951i
\(915\) −2.54189 3.02931i −0.0840323 0.100146i
\(916\) −51.5813 89.3414i −1.70429 2.95192i
\(917\) −19.1976 −0.633960
\(918\) −18.8316 10.8724i −0.621534 0.358843i
\(919\) 6.52940 0.215385 0.107693 0.994184i \(-0.465654\pi\)
0.107693 + 0.994184i \(0.465654\pi\)
\(920\) 8.49067 + 14.7063i 0.279929 + 0.484851i
\(921\) 14.1258 + 16.8345i 0.465462 + 0.554716i
\(922\) −0.639033 + 1.10684i −0.0210454 + 0.0364518i
\(923\) −10.0343 + 17.3799i −0.330283 + 0.572068i
\(924\) −10.1382 + 27.8544i −0.333521 + 0.916341i
\(925\) −9.62495 16.6709i −0.316466 0.548136i
\(926\) 6.78611 0.223005
\(927\) −15.1591 12.7200i −0.497890 0.417779i
\(928\) −27.8057 −0.912767
\(929\) −29.1386 50.4696i −0.956007 1.65585i −0.732046 0.681255i \(-0.761435\pi\)
−0.223961 0.974598i \(-0.571899\pi\)
\(930\) 17.2981 3.05013i 0.567228 0.100018i
\(931\) −1.20574 + 2.08840i −0.0395164 + 0.0684445i
\(932\) 18.8045 32.5704i 0.615963 1.06688i
\(933\) −28.1279 + 4.95972i −0.920868 + 0.162374i
\(934\) 39.7747 + 68.8918i 1.30147 + 2.25421i
\(935\) −5.63816 −0.184387
\(936\) 76.5246 + 64.2118i 2.50129 + 2.09883i
\(937\) 32.4175 1.05903 0.529516 0.848300i \(-0.322374\pi\)
0.529516 + 0.848300i \(0.322374\pi\)
\(938\) 3.74510 + 6.48670i 0.122282 + 0.211798i
\(939\) −16.8942 + 46.4165i −0.551323 + 1.51475i
\(940\) −1.98293 + 3.43453i −0.0646759 + 0.112022i
\(941\) 13.6613 23.6621i 0.445346 0.771363i −0.552730 0.833360i \(-0.686414\pi\)
0.998076 + 0.0619979i \(0.0197472\pi\)
\(942\) 50.9051 + 60.6664i 1.65858 + 1.97662i
\(943\) 1.87346 + 3.24492i 0.0610081 + 0.105669i
\(944\) 44.2131 1.43901
\(945\) −3.95723 + 2.28471i −0.128729 + 0.0743216i
\(946\) 1.81521 0.0590175
\(947\) 19.1065 + 33.0935i 0.620879 + 1.07539i 0.989322 + 0.145744i \(0.0465575\pi\)
−0.368443 + 0.929650i \(0.620109\pi\)
\(948\) 29.2631 + 34.8744i 0.950422 + 1.13267i
\(949\) −34.8499 + 60.3618i −1.13127 + 1.95943i
\(950\) 12.9042 22.3507i 0.418668 0.725153i
\(951\) 15.3400 42.1464i 0.497434 1.36669i
\(952\) −5.04576 8.73951i −0.163534 0.283249i
\(953\) 58.9377 1.90918 0.954590 0.297924i \(-0.0962943\pi\)
0.954590 + 0.297924i \(0.0962943\pi\)
\(954\) 52.0433 18.9422i 1.68496 0.613277i
\(955\) −4.97535 −0.160998
\(956\) −32.1202 55.6338i −1.03884 1.79933i
\(957\) −40.0317 + 7.05866i −1.29404 + 0.228174i
\(958\) 20.8145 36.0518i 0.672486 1.16478i
\(959\) −9.07785 + 15.7233i −0.293139 + 0.507732i
\(960\) 2.45723 0.433277i 0.0793069 0.0139839i
\(961\) 5.12882 + 8.88338i 0.165446 + 0.286561i
\(962\) 62.8887 2.02761
\(963\) −1.24463 + 7.05866i −0.0401077 + 0.227462i
\(964\) −23.8384 −0.767784
\(965\) 4.21941 + 7.30823i 0.135828 + 0.235260i
\(966\) −4.74376 + 13.0334i −0.152628 + 0.419342i
\(967\) −12.3594 + 21.4071i −0.397451 + 0.688405i −0.993411 0.114609i \(-0.963438\pi\)
0.595960 + 0.803014i \(0.296772\pi\)
\(968\) −12.3637 + 21.4145i −0.397383 + 0.688287i
\(969\) −4.43717 5.28801i −0.142542 0.169875i
\(970\) 13.9201 + 24.1103i 0.446947 + 0.774135i
\(971\) 8.17623 0.262388 0.131194 0.991357i \(-0.458119\pi\)
0.131194 + 0.991357i \(0.458119\pi\)
\(972\) −67.7233 11.9415i −2.17223 0.383022i
\(973\) 22.0574 0.707127
\(974\) 3.76692 + 6.52450i 0.120700 + 0.209058i
\(975\) −25.6621 30.5829i −0.821845 0.979436i
\(976\) 8.61721 14.9254i 0.275830 0.477752i
\(977\) 7.92427 13.7252i 0.253520 0.439109i −0.710973 0.703220i \(-0.751745\pi\)
0.964492 + 0.264111i \(0.0850784\pi\)
\(978\) −1.43717 + 3.94858i −0.0459555 + 0.126262i
\(979\) −21.3897 37.0480i −0.683616 1.18406i
\(980\) −3.87939 −0.123922
\(981\) −2.06196 + 11.6939i −0.0658332 + 0.373359i
\(982\) −67.0651 −2.14013
\(983\) −26.6532 46.1646i −0.850104 1.47242i −0.881114 0.472904i \(-0.843206\pi\)
0.0310096 0.999519i \(-0.490128\pi\)
\(984\) −12.3400 + 2.17588i −0.393386 + 0.0693645i
\(985\) 3.65822 6.33623i 0.116561 0.201889i
\(986\) 12.6582 21.9247i 0.403120 0.698224i
\(987\) −1.74376 + 0.307471i −0.0555044 + 0.00978692i
\(988\) 29.0069 + 50.2414i 0.922831 + 1.59839i
\(989\) 0.584407 0.0185831
\(990\) −24.3516 + 8.86327i −0.773946 + 0.281693i
\(991\) 40.2094 1.27730 0.638648 0.769499i \(-0.279494\pi\)
0.638648 + 0.769499i \(0.279494\pi\)
\(992\) 10.4666 + 18.1286i 0.332314 + 0.575584i
\(993\) −4.86887 + 13.3771i −0.154509 + 0.424510i
\(994\) 4.65910 8.06980i 0.147778 0.255958i
\(995\) 2.90033 5.02352i 0.0919466 0.159256i
\(996\) 1.07532 + 1.28152i 0.0340729 + 0.0406065i
\(997\) −14.3601 24.8724i −0.454789 0.787717i 0.543887 0.839158i \(-0.316952\pi\)
−0.998676 + 0.0514412i \(0.983619\pi\)
\(998\) −34.0411 −1.07755
\(999\) −20.4947 + 11.8326i −0.648424 + 0.374368i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.2.f.a.22.1 6
3.2 odd 2 189.2.f.b.64.3 6
4.3 odd 2 1008.2.r.h.337.3 6
7.2 even 3 441.2.g.c.67.1 6
7.3 odd 6 441.2.h.e.373.3 6
7.4 even 3 441.2.h.d.373.3 6
7.5 odd 6 441.2.g.b.67.1 6
7.6 odd 2 441.2.f.c.148.1 6
9.2 odd 6 189.2.f.b.127.3 6
9.4 even 3 567.2.a.h.1.3 3
9.5 odd 6 567.2.a.c.1.1 3
9.7 even 3 inner 63.2.f.a.43.1 yes 6
12.11 even 2 3024.2.r.k.1009.1 6
21.2 odd 6 1323.2.g.d.361.3 6
21.5 even 6 1323.2.g.e.361.3 6
21.11 odd 6 1323.2.h.c.226.1 6
21.17 even 6 1323.2.h.b.226.1 6
21.20 even 2 1323.2.f.d.442.3 6
36.7 odd 6 1008.2.r.h.673.3 6
36.11 even 6 3024.2.r.k.2017.1 6
36.23 even 6 9072.2.a.bs.1.3 3
36.31 odd 6 9072.2.a.ca.1.1 3
63.2 odd 6 1323.2.h.c.802.1 6
63.11 odd 6 1323.2.g.d.667.3 6
63.13 odd 6 3969.2.a.q.1.3 3
63.16 even 3 441.2.h.d.214.3 6
63.20 even 6 1323.2.f.d.883.3 6
63.25 even 3 441.2.g.c.79.1 6
63.34 odd 6 441.2.f.c.295.1 6
63.38 even 6 1323.2.g.e.667.3 6
63.41 even 6 3969.2.a.l.1.1 3
63.47 even 6 1323.2.h.b.802.1 6
63.52 odd 6 441.2.g.b.79.1 6
63.61 odd 6 441.2.h.e.214.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.f.a.22.1 6 1.1 even 1 trivial
63.2.f.a.43.1 yes 6 9.7 even 3 inner
189.2.f.b.64.3 6 3.2 odd 2
189.2.f.b.127.3 6 9.2 odd 6
441.2.f.c.148.1 6 7.6 odd 2
441.2.f.c.295.1 6 63.34 odd 6
441.2.g.b.67.1 6 7.5 odd 6
441.2.g.b.79.1 6 63.52 odd 6
441.2.g.c.67.1 6 7.2 even 3
441.2.g.c.79.1 6 63.25 even 3
441.2.h.d.214.3 6 63.16 even 3
441.2.h.d.373.3 6 7.4 even 3
441.2.h.e.214.3 6 63.61 odd 6
441.2.h.e.373.3 6 7.3 odd 6
567.2.a.c.1.1 3 9.5 odd 6
567.2.a.h.1.3 3 9.4 even 3
1008.2.r.h.337.3 6 4.3 odd 2
1008.2.r.h.673.3 6 36.7 odd 6
1323.2.f.d.442.3 6 21.20 even 2
1323.2.f.d.883.3 6 63.20 even 6
1323.2.g.d.361.3 6 21.2 odd 6
1323.2.g.d.667.3 6 63.11 odd 6
1323.2.g.e.361.3 6 21.5 even 6
1323.2.g.e.667.3 6 63.38 even 6
1323.2.h.b.226.1 6 21.17 even 6
1323.2.h.b.802.1 6 63.47 even 6
1323.2.h.c.226.1 6 21.11 odd 6
1323.2.h.c.802.1 6 63.2 odd 6
3024.2.r.k.1009.1 6 12.11 even 2
3024.2.r.k.2017.1 6 36.11 even 6
3969.2.a.l.1.1 3 63.41 even 6
3969.2.a.q.1.3 3 63.13 odd 6
9072.2.a.bs.1.3 3 36.23 even 6
9072.2.a.ca.1.1 3 36.31 odd 6