Defining parameters
Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 63.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(16\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(63, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 8 | 16 |
Cusp forms | 8 | 4 | 4 |
Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(63, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
63.2.e.a | $2$ | $0.503$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-1\) | \(q+2\zeta_{6}q^{4}+(1-3\zeta_{6})q^{7}-7q^{13}+(-4+\cdots)q^{16}+\cdots\) |
63.2.e.b | $2$ | $0.503$ | \(\Q(\sqrt{-3}) \) | None | \(2\) | \(0\) | \(-2\) | \(-5\) | \(q+(2-2\zeta_{6})q^{2}-2\zeta_{6}q^{4}+(-2+2\zeta_{6})q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(63, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(63, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)