Properties

Label 63.2.a.a
Level $63$
Weight $2$
Character orbit 63.a
Self dual yes
Analytic conductor $0.503$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,2,Mod(1,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 63.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.503057532734\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - q^{4} + 2 q^{5} - q^{7} - 3 q^{8} + 2 q^{10} - 4 q^{11} - 2 q^{13} - q^{14} - q^{16} + 6 q^{17} + 4 q^{19} - 2 q^{20} - 4 q^{22} - q^{25} - 2 q^{26} + q^{28} + 2 q^{29} + 5 q^{32} + 6 q^{34}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 −1.00000 2.00000 0 −1.00000 −3.00000 0 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.2.a.a 1
3.b odd 2 1 21.2.a.a 1
4.b odd 2 1 1008.2.a.l 1
5.b even 2 1 1575.2.a.c 1
5.c odd 4 2 1575.2.d.a 2
7.b odd 2 1 441.2.a.f 1
7.c even 3 2 441.2.e.a 2
7.d odd 6 2 441.2.e.b 2
8.b even 2 1 4032.2.a.h 1
8.d odd 2 1 4032.2.a.k 1
9.c even 3 2 567.2.f.b 2
9.d odd 6 2 567.2.f.g 2
11.b odd 2 1 7623.2.a.g 1
12.b even 2 1 336.2.a.a 1
15.d odd 2 1 525.2.a.d 1
15.e even 4 2 525.2.d.a 2
21.c even 2 1 147.2.a.a 1
21.g even 6 2 147.2.e.c 2
21.h odd 6 2 147.2.e.b 2
24.f even 2 1 1344.2.a.s 1
24.h odd 2 1 1344.2.a.g 1
28.d even 2 1 7056.2.a.p 1
33.d even 2 1 2541.2.a.j 1
39.d odd 2 1 3549.2.a.c 1
48.i odd 4 2 5376.2.c.r 2
48.k even 4 2 5376.2.c.l 2
51.c odd 2 1 6069.2.a.b 1
57.d even 2 1 7581.2.a.d 1
60.h even 2 1 8400.2.a.bn 1
84.h odd 2 1 2352.2.a.v 1
84.j odd 6 2 2352.2.q.e 2
84.n even 6 2 2352.2.q.x 2
105.g even 2 1 3675.2.a.n 1
168.e odd 2 1 9408.2.a.m 1
168.i even 2 1 9408.2.a.bv 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.2.a.a 1 3.b odd 2 1
63.2.a.a 1 1.a even 1 1 trivial
147.2.a.a 1 21.c even 2 1
147.2.e.b 2 21.h odd 6 2
147.2.e.c 2 21.g even 6 2
336.2.a.a 1 12.b even 2 1
441.2.a.f 1 7.b odd 2 1
441.2.e.a 2 7.c even 3 2
441.2.e.b 2 7.d odd 6 2
525.2.a.d 1 15.d odd 2 1
525.2.d.a 2 15.e even 4 2
567.2.f.b 2 9.c even 3 2
567.2.f.g 2 9.d odd 6 2
1008.2.a.l 1 4.b odd 2 1
1344.2.a.g 1 24.h odd 2 1
1344.2.a.s 1 24.f even 2 1
1575.2.a.c 1 5.b even 2 1
1575.2.d.a 2 5.c odd 4 2
2352.2.a.v 1 84.h odd 2 1
2352.2.q.e 2 84.j odd 6 2
2352.2.q.x 2 84.n even 6 2
2541.2.a.j 1 33.d even 2 1
3549.2.a.c 1 39.d odd 2 1
3675.2.a.n 1 105.g even 2 1
4032.2.a.h 1 8.b even 2 1
4032.2.a.k 1 8.d odd 2 1
5376.2.c.l 2 48.k even 4 2
5376.2.c.r 2 48.i odd 4 2
6069.2.a.b 1 51.c odd 2 1
7056.2.a.p 1 28.d even 2 1
7581.2.a.d 1 57.d even 2 1
7623.2.a.g 1 11.b odd 2 1
8400.2.a.bn 1 60.h even 2 1
9408.2.a.m 1 168.e odd 2 1
9408.2.a.bv 1 168.i even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(63))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 2 \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T + 4 \) Copy content Toggle raw display
$13$ \( T + 2 \) Copy content Toggle raw display
$17$ \( T - 6 \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 2 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T - 6 \) Copy content Toggle raw display
$41$ \( T + 2 \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T + 12 \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T - 4 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 6 \) Copy content Toggle raw display
$79$ \( T + 16 \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T - 14 \) Copy content Toggle raw display
$97$ \( T - 18 \) Copy content Toggle raw display
show more
show less