Properties

Label 63.2.a
Level $63$
Weight $2$
Character orbit 63.a
Rep. character $\chi_{63}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $16$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 63.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(16\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(63))\).

Total New Old
Modular forms 12 3 9
Cusp forms 5 3 2
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)FrickeDim
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(3\)

Trace form

\( 3 q + q^{2} + q^{4} + 2 q^{5} + q^{7} - 3 q^{8} - 10 q^{10} - 4 q^{11} + 2 q^{13} - q^{14} - 11 q^{16} + 6 q^{17} - 4 q^{19} - 2 q^{20} + 8 q^{22} + 13 q^{25} - 2 q^{26} + 3 q^{28} + 2 q^{29} - 8 q^{31}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(63))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 7
63.2.a.a 63.a 1.a $1$ $0.503$ \(\Q\) None 21.2.a.a \(1\) \(0\) \(2\) \(-1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}+2q^{5}-q^{7}-3q^{8}+2q^{10}+\cdots\)
63.2.a.b 63.a 1.a $2$ $0.503$ \(\Q(\sqrt{3}) \) None 63.2.a.b \(0\) \(0\) \(0\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{4}-2\beta q^{5}+q^{7}-\beta q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(63))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(63)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)