Defining parameters
Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 63.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(16\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(63))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12 | 3 | 9 |
Cusp forms | 5 | 3 | 2 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(1\) |
Plus space | \(+\) | \(0\) | |
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(63))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 7 | |||||||
63.2.a.a | $1$ | $0.503$ | \(\Q\) | None | \(1\) | \(0\) | \(2\) | \(-1\) | $-$ | $+$ | \(q+q^{2}-q^{4}+2q^{5}-q^{7}-3q^{8}+2q^{10}+\cdots\) | |
63.2.a.b | $2$ | $0.503$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(0\) | \(0\) | \(2\) | $+$ | $-$ | \(q+\beta q^{2}+q^{4}-2\beta q^{5}+q^{7}-\beta q^{8}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(63))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(63)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)