Defining parameters
Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 63.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(80\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(63, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 76 | 24 | 52 |
Cusp forms | 68 | 24 | 44 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(63, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
63.10.c.a | $4$ | $32.447$ | \(\Q(\sqrt{-2}, \sqrt{7})\) | \(\Q(\sqrt{-7}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-4\beta _{1}+\beta _{2})q^{2}+(-2^{9}+85\beta _{3})q^{4}+\cdots\) |
63.10.c.b | $20$ | $32.447$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-11580\) | \(q-\beta _{11}q^{2}+(-205-\beta _{1})q^{4}-\beta _{10}q^{5}+\cdots\) |
Decomposition of \(S_{10}^{\mathrm{old}}(63, [\chi])\) into lower level spaces
\( S_{10}^{\mathrm{old}}(63, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)