Properties

Label 63.10.a.e.1.3
Level $63$
Weight $10$
Character 63.1
Self dual yes
Analytic conductor $32.447$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,10,Mod(1,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 63.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.4472576783\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 426x + 2016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(18.2745\) of defining polynomial
Character \(\chi\) \(=\) 63.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+34.1627 q^{2} +655.088 q^{4} -1423.70 q^{5} +2401.00 q^{7} +4888.28 q^{8} -48637.4 q^{10} -69354.4 q^{11} +105959. q^{13} +82024.6 q^{14} -168409. q^{16} -568267. q^{17} -396405. q^{19} -932649. q^{20} -2.36933e6 q^{22} +620765. q^{23} +73796.7 q^{25} +3.61984e6 q^{26} +1.57287e6 q^{28} -4.87652e6 q^{29} -1.42482e6 q^{31} -8.25609e6 q^{32} -1.94135e7 q^{34} -3.41830e6 q^{35} +1.31092e7 q^{37} -1.35423e7 q^{38} -6.95944e6 q^{40} +2.03049e7 q^{41} -1.11768e7 q^{43} -4.54332e7 q^{44} +2.12070e7 q^{46} +1.99352e7 q^{47} +5.76480e6 q^{49} +2.52109e6 q^{50} +6.94125e7 q^{52} -5.65007e7 q^{53} +9.87398e7 q^{55} +1.17367e7 q^{56} -1.66595e8 q^{58} +1.09340e8 q^{59} +3.20008e7 q^{61} -4.86755e7 q^{62} -1.95825e8 q^{64} -1.50854e8 q^{65} +8.02869e7 q^{67} -3.72265e8 q^{68} -1.16778e8 q^{70} -2.07893e8 q^{71} -2.70274e8 q^{73} +4.47844e8 q^{74} -2.59680e8 q^{76} -1.66520e8 q^{77} -5.16196e8 q^{79} +2.39763e8 q^{80} +6.93671e8 q^{82} +6.82693e8 q^{83} +8.09042e8 q^{85} -3.81830e8 q^{86} -3.39023e8 q^{88} +1.47150e8 q^{89} +2.54408e8 q^{91} +4.06656e8 q^{92} +6.81040e8 q^{94} +5.64362e8 q^{95} +1.09643e9 q^{97} +1.96941e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 21 q^{2} + 1557 q^{4} - 1554 q^{5} + 7203 q^{7} - 14055 q^{8} - 97860 q^{10} + 3444 q^{11} - 19782 q^{13} - 50421 q^{14} + 482961 q^{16} - 1016694 q^{17} + 222852 q^{19} + 1922088 q^{20} - 2847048 q^{22}+ \cdots - 121060821 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 34.1627 1.50979 0.754896 0.655845i \(-0.227688\pi\)
0.754896 + 0.655845i \(0.227688\pi\)
\(3\) 0 0
\(4\) 655.088 1.27947
\(5\) −1423.70 −1.01872 −0.509358 0.860554i \(-0.670117\pi\)
−0.509358 + 0.860554i \(0.670117\pi\)
\(6\) 0 0
\(7\) 2401.00 0.377964
\(8\) 4888.28 0.421940
\(9\) 0 0
\(10\) −48637.4 −1.53805
\(11\) −69354.4 −1.42826 −0.714129 0.700014i \(-0.753177\pi\)
−0.714129 + 0.700014i \(0.753177\pi\)
\(12\) 0 0
\(13\) 105959. 1.02895 0.514473 0.857506i \(-0.327987\pi\)
0.514473 + 0.857506i \(0.327987\pi\)
\(14\) 82024.6 0.570647
\(15\) 0 0
\(16\) −168409. −0.642428
\(17\) −568267. −1.65018 −0.825092 0.564998i \(-0.808877\pi\)
−0.825092 + 0.564998i \(0.808877\pi\)
\(18\) 0 0
\(19\) −396405. −0.697828 −0.348914 0.937155i \(-0.613449\pi\)
−0.348914 + 0.937155i \(0.613449\pi\)
\(20\) −932649. −1.30342
\(21\) 0 0
\(22\) −2.36933e6 −2.15637
\(23\) 620765. 0.462543 0.231271 0.972889i \(-0.425712\pi\)
0.231271 + 0.972889i \(0.425712\pi\)
\(24\) 0 0
\(25\) 73796.7 0.0377839
\(26\) 3.61984e6 1.55349
\(27\) 0 0
\(28\) 1.57287e6 0.483594
\(29\) −4.87652e6 −1.28032 −0.640161 0.768241i \(-0.721132\pi\)
−0.640161 + 0.768241i \(0.721132\pi\)
\(30\) 0 0
\(31\) −1.42482e6 −0.277096 −0.138548 0.990356i \(-0.544244\pi\)
−0.138548 + 0.990356i \(0.544244\pi\)
\(32\) −8.25609e6 −1.39187
\(33\) 0 0
\(34\) −1.94135e7 −2.49143
\(35\) −3.41830e6 −0.385039
\(36\) 0 0
\(37\) 1.31092e7 1.14992 0.574960 0.818182i \(-0.305018\pi\)
0.574960 + 0.818182i \(0.305018\pi\)
\(38\) −1.35423e7 −1.05357
\(39\) 0 0
\(40\) −6.95944e6 −0.429837
\(41\) 2.03049e7 1.12221 0.561105 0.827744i \(-0.310376\pi\)
0.561105 + 0.827744i \(0.310376\pi\)
\(42\) 0 0
\(43\) −1.11768e7 −0.498551 −0.249276 0.968433i \(-0.580193\pi\)
−0.249276 + 0.968433i \(0.580193\pi\)
\(44\) −4.54332e7 −1.82741
\(45\) 0 0
\(46\) 2.12070e7 0.698343
\(47\) 1.99352e7 0.595909 0.297955 0.954580i \(-0.403696\pi\)
0.297955 + 0.954580i \(0.403696\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) 2.52109e6 0.0570458
\(51\) 0 0
\(52\) 6.94125e7 1.31651
\(53\) −5.65007e7 −0.983586 −0.491793 0.870712i \(-0.663658\pi\)
−0.491793 + 0.870712i \(0.663658\pi\)
\(54\) 0 0
\(55\) 9.87398e7 1.45499
\(56\) 1.17367e7 0.159478
\(57\) 0 0
\(58\) −1.66595e8 −1.93302
\(59\) 1.09340e8 1.17475 0.587375 0.809315i \(-0.300161\pi\)
0.587375 + 0.809315i \(0.300161\pi\)
\(60\) 0 0
\(61\) 3.20008e7 0.295921 0.147961 0.988993i \(-0.452729\pi\)
0.147961 + 0.988993i \(0.452729\pi\)
\(62\) −4.86755e7 −0.418358
\(63\) 0 0
\(64\) −1.95825e8 −1.45901
\(65\) −1.50854e8 −1.04821
\(66\) 0 0
\(67\) 8.02869e7 0.486752 0.243376 0.969932i \(-0.421745\pi\)
0.243376 + 0.969932i \(0.421745\pi\)
\(68\) −3.72265e8 −2.11136
\(69\) 0 0
\(70\) −1.16778e8 −0.581328
\(71\) −2.07893e8 −0.970906 −0.485453 0.874263i \(-0.661345\pi\)
−0.485453 + 0.874263i \(0.661345\pi\)
\(72\) 0 0
\(73\) −2.70274e8 −1.11391 −0.556957 0.830541i \(-0.688031\pi\)
−0.556957 + 0.830541i \(0.688031\pi\)
\(74\) 4.47844e8 1.73614
\(75\) 0 0
\(76\) −2.59680e8 −0.892849
\(77\) −1.66520e8 −0.539831
\(78\) 0 0
\(79\) −5.16196e8 −1.49105 −0.745526 0.666477i \(-0.767802\pi\)
−0.745526 + 0.666477i \(0.767802\pi\)
\(80\) 2.39763e8 0.654452
\(81\) 0 0
\(82\) 6.93671e8 1.69430
\(83\) 6.82693e8 1.57897 0.789486 0.613769i \(-0.210347\pi\)
0.789486 + 0.613769i \(0.210347\pi\)
\(84\) 0 0
\(85\) 8.09042e8 1.68107
\(86\) −3.81830e8 −0.752708
\(87\) 0 0
\(88\) −3.39023e8 −0.602639
\(89\) 1.47150e8 0.248602 0.124301 0.992245i \(-0.460331\pi\)
0.124301 + 0.992245i \(0.460331\pi\)
\(90\) 0 0
\(91\) 2.54408e8 0.388905
\(92\) 4.06656e8 0.591809
\(93\) 0 0
\(94\) 6.81040e8 0.899699
\(95\) 5.64362e8 0.710889
\(96\) 0 0
\(97\) 1.09643e9 1.25750 0.628750 0.777608i \(-0.283567\pi\)
0.628750 + 0.777608i \(0.283567\pi\)
\(98\) 1.96941e8 0.215684
\(99\) 0 0
\(100\) 4.83433e7 0.0483433
\(101\) −2.08683e8 −0.199545 −0.0997727 0.995010i \(-0.531812\pi\)
−0.0997727 + 0.995010i \(0.531812\pi\)
\(102\) 0 0
\(103\) 6.78194e8 0.593727 0.296863 0.954920i \(-0.404059\pi\)
0.296863 + 0.954920i \(0.404059\pi\)
\(104\) 5.17957e8 0.434154
\(105\) 0 0
\(106\) −1.93021e9 −1.48501
\(107\) 4.59542e8 0.338921 0.169461 0.985537i \(-0.445797\pi\)
0.169461 + 0.985537i \(0.445797\pi\)
\(108\) 0 0
\(109\) 5.21086e8 0.353582 0.176791 0.984248i \(-0.443428\pi\)
0.176791 + 0.984248i \(0.443428\pi\)
\(110\) 3.37322e9 2.19673
\(111\) 0 0
\(112\) −4.04349e8 −0.242815
\(113\) −4.45612e8 −0.257101 −0.128551 0.991703i \(-0.541032\pi\)
−0.128551 + 0.991703i \(0.541032\pi\)
\(114\) 0 0
\(115\) −8.83783e8 −0.471200
\(116\) −3.19455e9 −1.63813
\(117\) 0 0
\(118\) 3.73535e9 1.77363
\(119\) −1.36441e9 −0.623711
\(120\) 0 0
\(121\) 2.45208e9 1.03992
\(122\) 1.09323e9 0.446779
\(123\) 0 0
\(124\) −9.33380e8 −0.354536
\(125\) 2.67560e9 0.980226
\(126\) 0 0
\(127\) 9.28626e8 0.316755 0.158378 0.987379i \(-0.449374\pi\)
0.158378 + 0.987379i \(0.449374\pi\)
\(128\) −2.46278e9 −0.810925
\(129\) 0 0
\(130\) −5.15357e9 −1.58257
\(131\) −2.57694e9 −0.764509 −0.382255 0.924057i \(-0.624852\pi\)
−0.382255 + 0.924057i \(0.624852\pi\)
\(132\) 0 0
\(133\) −9.51769e8 −0.263754
\(134\) 2.74281e9 0.734894
\(135\) 0 0
\(136\) −2.77785e9 −0.696279
\(137\) 4.44116e9 1.07710 0.538548 0.842595i \(-0.318973\pi\)
0.538548 + 0.842595i \(0.318973\pi\)
\(138\) 0 0
\(139\) −7.28389e9 −1.65499 −0.827497 0.561470i \(-0.810236\pi\)
−0.827497 + 0.561470i \(0.810236\pi\)
\(140\) −2.23929e9 −0.492645
\(141\) 0 0
\(142\) −7.10218e9 −1.46587
\(143\) −7.34872e9 −1.46960
\(144\) 0 0
\(145\) 6.94270e9 1.30428
\(146\) −9.23328e9 −1.68178
\(147\) 0 0
\(148\) 8.58766e9 1.47129
\(149\) −4.87355e9 −0.810042 −0.405021 0.914307i \(-0.632736\pi\)
−0.405021 + 0.914307i \(0.632736\pi\)
\(150\) 0 0
\(151\) −8.63776e9 −1.35209 −0.676044 0.736861i \(-0.736307\pi\)
−0.676044 + 0.736861i \(0.736307\pi\)
\(152\) −1.93774e9 −0.294442
\(153\) 0 0
\(154\) −5.68876e9 −0.815032
\(155\) 2.02851e9 0.282283
\(156\) 0 0
\(157\) −9.34170e9 −1.22709 −0.613546 0.789659i \(-0.710258\pi\)
−0.613546 + 0.789659i \(0.710258\pi\)
\(158\) −1.76346e10 −2.25118
\(159\) 0 0
\(160\) 1.17542e10 1.41792
\(161\) 1.49046e9 0.174825
\(162\) 0 0
\(163\) −2.10680e9 −0.233765 −0.116883 0.993146i \(-0.537290\pi\)
−0.116883 + 0.993146i \(0.537290\pi\)
\(164\) 1.33015e10 1.43583
\(165\) 0 0
\(166\) 2.33226e10 2.38392
\(167\) −1.39800e10 −1.39086 −0.695431 0.718593i \(-0.744787\pi\)
−0.695431 + 0.718593i \(0.744787\pi\)
\(168\) 0 0
\(169\) 6.22820e8 0.0587316
\(170\) 2.76390e10 2.53806
\(171\) 0 0
\(172\) −7.32180e9 −0.637881
\(173\) 1.24435e10 1.05618 0.528088 0.849190i \(-0.322909\pi\)
0.528088 + 0.849190i \(0.322909\pi\)
\(174\) 0 0
\(175\) 1.77186e8 0.0142810
\(176\) 1.16799e10 0.917553
\(177\) 0 0
\(178\) 5.02704e9 0.375338
\(179\) −7.30178e9 −0.531606 −0.265803 0.964027i \(-0.585637\pi\)
−0.265803 + 0.964027i \(0.585637\pi\)
\(180\) 0 0
\(181\) −1.27074e10 −0.880038 −0.440019 0.897988i \(-0.645028\pi\)
−0.440019 + 0.897988i \(0.645028\pi\)
\(182\) 8.69125e9 0.587166
\(183\) 0 0
\(184\) 3.03447e9 0.195165
\(185\) −1.86635e10 −1.17144
\(186\) 0 0
\(187\) 3.94118e10 2.35689
\(188\) 1.30593e10 0.762448
\(189\) 0 0
\(190\) 1.92801e10 1.07329
\(191\) −1.61547e10 −0.878311 −0.439155 0.898411i \(-0.644722\pi\)
−0.439155 + 0.898411i \(0.644722\pi\)
\(192\) 0 0
\(193\) −1.52841e10 −0.792924 −0.396462 0.918051i \(-0.629762\pi\)
−0.396462 + 0.918051i \(0.629762\pi\)
\(194\) 3.74570e10 1.89856
\(195\) 0 0
\(196\) 3.77645e9 0.182781
\(197\) −2.33886e10 −1.10639 −0.553193 0.833053i \(-0.686591\pi\)
−0.553193 + 0.833053i \(0.686591\pi\)
\(198\) 0 0
\(199\) −2.53610e10 −1.14638 −0.573189 0.819423i \(-0.694294\pi\)
−0.573189 + 0.819423i \(0.694294\pi\)
\(200\) 3.60738e8 0.0159425
\(201\) 0 0
\(202\) −7.12918e9 −0.301272
\(203\) −1.17085e10 −0.483916
\(204\) 0 0
\(205\) −2.89082e10 −1.14322
\(206\) 2.31689e10 0.896403
\(207\) 0 0
\(208\) −1.78444e10 −0.661024
\(209\) 2.74924e10 0.996678
\(210\) 0 0
\(211\) −9.23757e8 −0.0320838 −0.0160419 0.999871i \(-0.505107\pi\)
−0.0160419 + 0.999871i \(0.505107\pi\)
\(212\) −3.70129e10 −1.25847
\(213\) 0 0
\(214\) 1.56992e10 0.511700
\(215\) 1.59124e10 0.507883
\(216\) 0 0
\(217\) −3.42098e9 −0.104733
\(218\) 1.78017e10 0.533835
\(219\) 0 0
\(220\) 6.46833e10 1.86162
\(221\) −6.02130e10 −1.69795
\(222\) 0 0
\(223\) 6.68635e9 0.181058 0.0905290 0.995894i \(-0.471144\pi\)
0.0905290 + 0.995894i \(0.471144\pi\)
\(224\) −1.98229e10 −0.526078
\(225\) 0 0
\(226\) −1.52233e10 −0.388169
\(227\) 4.82876e10 1.20703 0.603516 0.797351i \(-0.293766\pi\)
0.603516 + 0.797351i \(0.293766\pi\)
\(228\) 0 0
\(229\) −2.34264e10 −0.562918 −0.281459 0.959573i \(-0.590818\pi\)
−0.281459 + 0.959573i \(0.590818\pi\)
\(230\) −3.01924e10 −0.711413
\(231\) 0 0
\(232\) −2.38378e10 −0.540219
\(233\) 3.29140e10 0.731609 0.365805 0.930692i \(-0.380794\pi\)
0.365805 + 0.930692i \(0.380794\pi\)
\(234\) 0 0
\(235\) −2.83817e10 −0.607063
\(236\) 7.16275e10 1.50306
\(237\) 0 0
\(238\) −4.66119e10 −0.941673
\(239\) −2.51973e10 −0.499533 −0.249766 0.968306i \(-0.580354\pi\)
−0.249766 + 0.968306i \(0.580354\pi\)
\(240\) 0 0
\(241\) 7.00815e10 1.33822 0.669109 0.743165i \(-0.266676\pi\)
0.669109 + 0.743165i \(0.266676\pi\)
\(242\) 8.37696e10 1.57006
\(243\) 0 0
\(244\) 2.09633e10 0.378622
\(245\) −8.20735e9 −0.145531
\(246\) 0 0
\(247\) −4.20027e10 −0.718028
\(248\) −6.96489e9 −0.116918
\(249\) 0 0
\(250\) 9.14056e10 1.47994
\(251\) −4.19681e10 −0.667401 −0.333701 0.942679i \(-0.608297\pi\)
−0.333701 + 0.942679i \(0.608297\pi\)
\(252\) 0 0
\(253\) −4.30527e10 −0.660630
\(254\) 3.17243e10 0.478235
\(255\) 0 0
\(256\) 1.61271e10 0.234680
\(257\) −8.37595e10 −1.19766 −0.598832 0.800875i \(-0.704368\pi\)
−0.598832 + 0.800875i \(0.704368\pi\)
\(258\) 0 0
\(259\) 3.14751e10 0.434629
\(260\) −9.88226e10 −1.34115
\(261\) 0 0
\(262\) −8.80350e10 −1.15425
\(263\) 2.34604e9 0.0302367 0.0151184 0.999886i \(-0.495187\pi\)
0.0151184 + 0.999886i \(0.495187\pi\)
\(264\) 0 0
\(265\) 8.04400e10 1.00200
\(266\) −3.25150e10 −0.398214
\(267\) 0 0
\(268\) 5.25950e10 0.622784
\(269\) 6.44659e10 0.750663 0.375332 0.926891i \(-0.377529\pi\)
0.375332 + 0.926891i \(0.377529\pi\)
\(270\) 0 0
\(271\) −1.40530e10 −0.158273 −0.0791365 0.996864i \(-0.525216\pi\)
−0.0791365 + 0.996864i \(0.525216\pi\)
\(272\) 9.57011e10 1.06012
\(273\) 0 0
\(274\) 1.51722e11 1.62619
\(275\) −5.11812e9 −0.0539652
\(276\) 0 0
\(277\) −7.52768e10 −0.768249 −0.384124 0.923281i \(-0.625497\pi\)
−0.384124 + 0.923281i \(0.625497\pi\)
\(278\) −2.48837e11 −2.49870
\(279\) 0 0
\(280\) −1.67096e10 −0.162463
\(281\) −9.56085e10 −0.914783 −0.457391 0.889266i \(-0.651216\pi\)
−0.457391 + 0.889266i \(0.651216\pi\)
\(282\) 0 0
\(283\) 4.82806e10 0.447439 0.223719 0.974654i \(-0.428180\pi\)
0.223719 + 0.974654i \(0.428180\pi\)
\(284\) −1.36188e11 −1.24224
\(285\) 0 0
\(286\) −2.51052e11 −2.21879
\(287\) 4.87522e10 0.424156
\(288\) 0 0
\(289\) 2.04340e11 1.72311
\(290\) 2.37181e11 1.96920
\(291\) 0 0
\(292\) −1.77053e11 −1.42522
\(293\) 7.07439e10 0.560770 0.280385 0.959888i \(-0.409538\pi\)
0.280385 + 0.959888i \(0.409538\pi\)
\(294\) 0 0
\(295\) −1.55668e11 −1.19674
\(296\) 6.40812e10 0.485197
\(297\) 0 0
\(298\) −1.66494e11 −1.22299
\(299\) 6.57756e10 0.475932
\(300\) 0 0
\(301\) −2.68355e10 −0.188435
\(302\) −2.95089e11 −2.04137
\(303\) 0 0
\(304\) 6.67581e10 0.448304
\(305\) −4.55595e10 −0.301460
\(306\) 0 0
\(307\) 1.30493e11 0.838429 0.419214 0.907887i \(-0.362306\pi\)
0.419214 + 0.907887i \(0.362306\pi\)
\(308\) −1.09085e11 −0.690697
\(309\) 0 0
\(310\) 6.92993e10 0.426188
\(311\) −8.51715e10 −0.516265 −0.258132 0.966110i \(-0.583107\pi\)
−0.258132 + 0.966110i \(0.583107\pi\)
\(312\) 0 0
\(313\) −1.21745e11 −0.716969 −0.358484 0.933536i \(-0.616706\pi\)
−0.358484 + 0.933536i \(0.616706\pi\)
\(314\) −3.19137e11 −1.85265
\(315\) 0 0
\(316\) −3.38154e11 −1.90775
\(317\) 2.14595e11 1.19358 0.596791 0.802397i \(-0.296442\pi\)
0.596791 + 0.802397i \(0.296442\pi\)
\(318\) 0 0
\(319\) 3.38208e11 1.82863
\(320\) 2.78796e11 1.48632
\(321\) 0 0
\(322\) 5.09180e10 0.263949
\(323\) 2.25264e11 1.15154
\(324\) 0 0
\(325\) 7.81943e9 0.0388776
\(326\) −7.19740e10 −0.352936
\(327\) 0 0
\(328\) 9.92562e10 0.473506
\(329\) 4.78644e10 0.225233
\(330\) 0 0
\(331\) −5.48000e10 −0.250931 −0.125466 0.992098i \(-0.540042\pi\)
−0.125466 + 0.992098i \(0.540042\pi\)
\(332\) 4.47224e11 2.02025
\(333\) 0 0
\(334\) −4.77595e11 −2.09991
\(335\) −1.14304e11 −0.495863
\(336\) 0 0
\(337\) −2.34297e11 −0.989538 −0.494769 0.869025i \(-0.664747\pi\)
−0.494769 + 0.869025i \(0.664747\pi\)
\(338\) 2.12772e10 0.0886725
\(339\) 0 0
\(340\) 5.29994e11 2.15088
\(341\) 9.88172e10 0.395765
\(342\) 0 0
\(343\) 1.38413e10 0.0539949
\(344\) −5.46353e10 −0.210359
\(345\) 0 0
\(346\) 4.25104e11 1.59460
\(347\) −3.43449e10 −0.127169 −0.0635843 0.997976i \(-0.520253\pi\)
−0.0635843 + 0.997976i \(0.520253\pi\)
\(348\) 0 0
\(349\) −2.13485e11 −0.770288 −0.385144 0.922856i \(-0.625848\pi\)
−0.385144 + 0.922856i \(0.625848\pi\)
\(350\) 6.05314e9 0.0215613
\(351\) 0 0
\(352\) 5.72595e11 1.98795
\(353\) −2.75882e11 −0.945664 −0.472832 0.881153i \(-0.656768\pi\)
−0.472832 + 0.881153i \(0.656768\pi\)
\(354\) 0 0
\(355\) 2.95977e11 0.989079
\(356\) 9.63962e10 0.318079
\(357\) 0 0
\(358\) −2.49448e11 −0.802614
\(359\) 3.46238e11 1.10015 0.550073 0.835117i \(-0.314600\pi\)
0.550073 + 0.835117i \(0.314600\pi\)
\(360\) 0 0
\(361\) −1.65550e11 −0.513036
\(362\) −4.34117e11 −1.32867
\(363\) 0 0
\(364\) 1.66659e11 0.497592
\(365\) 3.84789e11 1.13476
\(366\) 0 0
\(367\) 3.56842e11 1.02678 0.513391 0.858155i \(-0.328389\pi\)
0.513391 + 0.858155i \(0.328389\pi\)
\(368\) −1.04542e11 −0.297150
\(369\) 0 0
\(370\) −6.37596e11 −1.76863
\(371\) −1.35658e11 −0.371760
\(372\) 0 0
\(373\) 6.73833e11 1.80245 0.901224 0.433354i \(-0.142670\pi\)
0.901224 + 0.433354i \(0.142670\pi\)
\(374\) 1.34641e12 3.55841
\(375\) 0 0
\(376\) 9.74487e10 0.251438
\(377\) −5.16711e11 −1.31738
\(378\) 0 0
\(379\) 5.90163e11 1.46925 0.734625 0.678473i \(-0.237358\pi\)
0.734625 + 0.678473i \(0.237358\pi\)
\(380\) 3.69707e11 0.909561
\(381\) 0 0
\(382\) −5.51887e11 −1.32607
\(383\) 1.58931e11 0.377412 0.188706 0.982034i \(-0.439571\pi\)
0.188706 + 0.982034i \(0.439571\pi\)
\(384\) 0 0
\(385\) 2.37074e11 0.549935
\(386\) −5.22145e11 −1.19715
\(387\) 0 0
\(388\) 7.18258e11 1.60893
\(389\) 3.75434e11 0.831304 0.415652 0.909524i \(-0.363553\pi\)
0.415652 + 0.909524i \(0.363553\pi\)
\(390\) 0 0
\(391\) −3.52760e11 −0.763280
\(392\) 2.81799e10 0.0602771
\(393\) 0 0
\(394\) −7.99018e11 −1.67041
\(395\) 7.34908e11 1.51896
\(396\) 0 0
\(397\) −4.33507e11 −0.875869 −0.437935 0.899007i \(-0.644290\pi\)
−0.437935 + 0.899007i \(0.644290\pi\)
\(398\) −8.66400e11 −1.73079
\(399\) 0 0
\(400\) −1.24280e10 −0.0242734
\(401\) 1.77805e11 0.343395 0.171698 0.985150i \(-0.445075\pi\)
0.171698 + 0.985150i \(0.445075\pi\)
\(402\) 0 0
\(403\) −1.50972e11 −0.285118
\(404\) −1.36706e11 −0.255312
\(405\) 0 0
\(406\) −3.99994e11 −0.730612
\(407\) −9.09178e11 −1.64238
\(408\) 0 0
\(409\) −7.67870e11 −1.35685 −0.678427 0.734668i \(-0.737338\pi\)
−0.678427 + 0.734668i \(0.737338\pi\)
\(410\) −9.87580e11 −1.72602
\(411\) 0 0
\(412\) 4.44277e11 0.759655
\(413\) 2.62526e11 0.444014
\(414\) 0 0
\(415\) −9.71951e11 −1.60852
\(416\) −8.74807e11 −1.43216
\(417\) 0 0
\(418\) 9.39215e11 1.50478
\(419\) −4.96552e11 −0.787048 −0.393524 0.919314i \(-0.628744\pi\)
−0.393524 + 0.919314i \(0.628744\pi\)
\(420\) 0 0
\(421\) −4.48514e11 −0.695835 −0.347917 0.937525i \(-0.613111\pi\)
−0.347917 + 0.937525i \(0.613111\pi\)
\(422\) −3.15580e10 −0.0484399
\(423\) 0 0
\(424\) −2.76191e11 −0.415014
\(425\) −4.19362e10 −0.0623504
\(426\) 0 0
\(427\) 7.68338e10 0.111848
\(428\) 3.01041e11 0.433639
\(429\) 0 0
\(430\) 5.43611e11 0.766797
\(431\) 1.65940e11 0.231635 0.115817 0.993271i \(-0.463051\pi\)
0.115817 + 0.993271i \(0.463051\pi\)
\(432\) 0 0
\(433\) −4.10674e11 −0.561438 −0.280719 0.959790i \(-0.590573\pi\)
−0.280719 + 0.959790i \(0.590573\pi\)
\(434\) −1.16870e11 −0.158124
\(435\) 0 0
\(436\) 3.41358e11 0.452398
\(437\) −2.46074e11 −0.322775
\(438\) 0 0
\(439\) −3.29593e11 −0.423534 −0.211767 0.977320i \(-0.567922\pi\)
−0.211767 + 0.977320i \(0.567922\pi\)
\(440\) 4.82667e11 0.613919
\(441\) 0 0
\(442\) −2.05704e12 −2.56355
\(443\) −5.09091e11 −0.628027 −0.314014 0.949418i \(-0.601674\pi\)
−0.314014 + 0.949418i \(0.601674\pi\)
\(444\) 0 0
\(445\) −2.09497e11 −0.253255
\(446\) 2.28424e11 0.273360
\(447\) 0 0
\(448\) −4.70175e11 −0.551453
\(449\) −1.49596e12 −1.73705 −0.868525 0.495646i \(-0.834931\pi\)
−0.868525 + 0.495646i \(0.834931\pi\)
\(450\) 0 0
\(451\) −1.40824e12 −1.60281
\(452\) −2.91915e11 −0.328953
\(453\) 0 0
\(454\) 1.64963e12 1.82237
\(455\) −3.62200e11 −0.396184
\(456\) 0 0
\(457\) 1.43920e12 1.54347 0.771735 0.635944i \(-0.219389\pi\)
0.771735 + 0.635944i \(0.219389\pi\)
\(458\) −8.00307e11 −0.849889
\(459\) 0 0
\(460\) −5.78956e11 −0.602886
\(461\) 1.37741e12 1.42039 0.710195 0.704005i \(-0.248607\pi\)
0.710195 + 0.704005i \(0.248607\pi\)
\(462\) 0 0
\(463\) 1.76612e12 1.78610 0.893049 0.449960i \(-0.148562\pi\)
0.893049 + 0.449960i \(0.148562\pi\)
\(464\) 8.21248e11 0.822514
\(465\) 0 0
\(466\) 1.12443e12 1.10458
\(467\) 1.17323e12 1.14145 0.570727 0.821140i \(-0.306661\pi\)
0.570727 + 0.821140i \(0.306661\pi\)
\(468\) 0 0
\(469\) 1.92769e11 0.183975
\(470\) −9.69596e11 −0.916538
\(471\) 0 0
\(472\) 5.34485e11 0.495674
\(473\) 7.75161e11 0.712060
\(474\) 0 0
\(475\) −2.92534e10 −0.0263667
\(476\) −8.93808e11 −0.798019
\(477\) 0 0
\(478\) −8.60808e11 −0.754190
\(479\) 1.98723e12 1.72480 0.862401 0.506225i \(-0.168960\pi\)
0.862401 + 0.506225i \(0.168960\pi\)
\(480\) 0 0
\(481\) 1.38903e12 1.18321
\(482\) 2.39417e12 2.02043
\(483\) 0 0
\(484\) 1.60633e12 1.33055
\(485\) −1.56099e12 −1.28104
\(486\) 0 0
\(487\) −1.23240e12 −0.992825 −0.496413 0.868087i \(-0.665350\pi\)
−0.496413 + 0.868087i \(0.665350\pi\)
\(488\) 1.56428e11 0.124861
\(489\) 0 0
\(490\) −2.80385e11 −0.219721
\(491\) 2.03763e12 1.58219 0.791095 0.611693i \(-0.209511\pi\)
0.791095 + 0.611693i \(0.209511\pi\)
\(492\) 0 0
\(493\) 2.77117e12 2.11277
\(494\) −1.43493e12 −1.08407
\(495\) 0 0
\(496\) 2.39951e11 0.178014
\(497\) −4.99151e11 −0.366968
\(498\) 0 0
\(499\) −3.26299e11 −0.235594 −0.117797 0.993038i \(-0.537583\pi\)
−0.117797 + 0.993038i \(0.537583\pi\)
\(500\) 1.75275e12 1.25417
\(501\) 0 0
\(502\) −1.43374e12 −1.00764
\(503\) 4.46869e11 0.311261 0.155630 0.987815i \(-0.450259\pi\)
0.155630 + 0.987815i \(0.450259\pi\)
\(504\) 0 0
\(505\) 2.97103e11 0.203280
\(506\) −1.47080e12 −0.997413
\(507\) 0 0
\(508\) 6.08332e11 0.405279
\(509\) −1.34100e12 −0.885523 −0.442761 0.896639i \(-0.646001\pi\)
−0.442761 + 0.896639i \(0.646001\pi\)
\(510\) 0 0
\(511\) −6.48928e11 −0.421020
\(512\) 1.81189e12 1.16524
\(513\) 0 0
\(514\) −2.86145e12 −1.80822
\(515\) −9.65545e11 −0.604839
\(516\) 0 0
\(517\) −1.38259e12 −0.851112
\(518\) 1.07527e12 0.656199
\(519\) 0 0
\(520\) −7.37415e11 −0.442280
\(521\) −2.98523e12 −1.77504 −0.887520 0.460769i \(-0.847574\pi\)
−0.887520 + 0.460769i \(0.847574\pi\)
\(522\) 0 0
\(523\) 1.64651e12 0.962289 0.481145 0.876641i \(-0.340221\pi\)
0.481145 + 0.876641i \(0.340221\pi\)
\(524\) −1.68812e12 −0.978166
\(525\) 0 0
\(526\) 8.01470e10 0.0456511
\(527\) 8.09676e11 0.457260
\(528\) 0 0
\(529\) −1.41580e12 −0.786054
\(530\) 2.74805e12 1.51280
\(531\) 0 0
\(532\) −6.23493e11 −0.337465
\(533\) 2.15149e12 1.15470
\(534\) 0 0
\(535\) −6.54250e11 −0.345265
\(536\) 3.92464e11 0.205380
\(537\) 0 0
\(538\) 2.20233e12 1.13334
\(539\) −3.99814e11 −0.204037
\(540\) 0 0
\(541\) −4.57968e11 −0.229852 −0.114926 0.993374i \(-0.536663\pi\)
−0.114926 + 0.993374i \(0.536663\pi\)
\(542\) −4.80087e11 −0.238959
\(543\) 0 0
\(544\) 4.69166e12 2.29684
\(545\) −7.41871e11 −0.360200
\(546\) 0 0
\(547\) 2.39624e12 1.14443 0.572213 0.820105i \(-0.306085\pi\)
0.572213 + 0.820105i \(0.306085\pi\)
\(548\) 2.90935e12 1.37811
\(549\) 0 0
\(550\) −1.74849e11 −0.0814761
\(551\) 1.93308e12 0.893444
\(552\) 0 0
\(553\) −1.23939e12 −0.563565
\(554\) −2.57166e12 −1.15990
\(555\) 0 0
\(556\) −4.77159e12 −2.11751
\(557\) −1.07863e12 −0.474814 −0.237407 0.971410i \(-0.576298\pi\)
−0.237407 + 0.971410i \(0.576298\pi\)
\(558\) 0 0
\(559\) −1.18428e12 −0.512983
\(560\) 5.75672e11 0.247360
\(561\) 0 0
\(562\) −3.26624e12 −1.38113
\(563\) −2.33140e11 −0.0977976 −0.0488988 0.998804i \(-0.515571\pi\)
−0.0488988 + 0.998804i \(0.515571\pi\)
\(564\) 0 0
\(565\) 6.34418e11 0.261913
\(566\) 1.64939e12 0.675539
\(567\) 0 0
\(568\) −1.01624e12 −0.409664
\(569\) −4.50535e11 −0.180187 −0.0900934 0.995933i \(-0.528717\pi\)
−0.0900934 + 0.995933i \(0.528717\pi\)
\(570\) 0 0
\(571\) −4.38839e12 −1.72760 −0.863800 0.503835i \(-0.831922\pi\)
−0.863800 + 0.503835i \(0.831922\pi\)
\(572\) −4.81406e12 −1.88031
\(573\) 0 0
\(574\) 1.66550e12 0.640387
\(575\) 4.58104e10 0.0174767
\(576\) 0 0
\(577\) 3.13994e12 1.17932 0.589658 0.807653i \(-0.299263\pi\)
0.589658 + 0.807653i \(0.299263\pi\)
\(578\) 6.98079e12 2.60153
\(579\) 0 0
\(580\) 4.54808e12 1.66879
\(581\) 1.63915e12 0.596795
\(582\) 0 0
\(583\) 3.91857e12 1.40481
\(584\) −1.32117e12 −0.470005
\(585\) 0 0
\(586\) 2.41680e12 0.846645
\(587\) −2.52512e12 −0.877829 −0.438915 0.898529i \(-0.644637\pi\)
−0.438915 + 0.898529i \(0.644637\pi\)
\(588\) 0 0
\(589\) 5.64805e11 0.193366
\(590\) −5.31802e12 −1.80682
\(591\) 0 0
\(592\) −2.20770e12 −0.738740
\(593\) 9.35417e11 0.310641 0.155321 0.987864i \(-0.450359\pi\)
0.155321 + 0.987864i \(0.450359\pi\)
\(594\) 0 0
\(595\) 1.94251e12 0.635385
\(596\) −3.19261e12 −1.03642
\(597\) 0 0
\(598\) 2.24707e12 0.718557
\(599\) −4.73586e12 −1.50307 −0.751534 0.659694i \(-0.770686\pi\)
−0.751534 + 0.659694i \(0.770686\pi\)
\(600\) 0 0
\(601\) −5.99855e12 −1.87548 −0.937738 0.347344i \(-0.887084\pi\)
−0.937738 + 0.347344i \(0.887084\pi\)
\(602\) −9.16773e11 −0.284497
\(603\) 0 0
\(604\) −5.65850e12 −1.72995
\(605\) −3.49103e12 −1.05938
\(606\) 0 0
\(607\) 3.43715e12 1.02766 0.513830 0.857892i \(-0.328226\pi\)
0.513830 + 0.857892i \(0.328226\pi\)
\(608\) 3.27276e12 0.971287
\(609\) 0 0
\(610\) −1.55643e12 −0.455141
\(611\) 2.11231e12 0.613159
\(612\) 0 0
\(613\) 4.15273e12 1.18785 0.593925 0.804520i \(-0.297577\pi\)
0.593925 + 0.804520i \(0.297577\pi\)
\(614\) 4.45801e12 1.26585
\(615\) 0 0
\(616\) −8.13995e11 −0.227776
\(617\) 1.12196e12 0.311669 0.155834 0.987783i \(-0.450193\pi\)
0.155834 + 0.987783i \(0.450193\pi\)
\(618\) 0 0
\(619\) −5.98940e12 −1.63974 −0.819871 0.572549i \(-0.805955\pi\)
−0.819871 + 0.572549i \(0.805955\pi\)
\(620\) 1.32885e12 0.361172
\(621\) 0 0
\(622\) −2.90969e12 −0.779452
\(623\) 3.53307e11 0.0939628
\(624\) 0 0
\(625\) −3.95339e12 −1.03636
\(626\) −4.15912e12 −1.08247
\(627\) 0 0
\(628\) −6.11963e12 −1.57003
\(629\) −7.44951e12 −1.89758
\(630\) 0 0
\(631\) 4.97135e12 1.24837 0.624184 0.781277i \(-0.285432\pi\)
0.624184 + 0.781277i \(0.285432\pi\)
\(632\) −2.52331e12 −0.629134
\(633\) 0 0
\(634\) 7.33113e12 1.80206
\(635\) −1.32208e12 −0.322684
\(636\) 0 0
\(637\) 6.10833e11 0.146992
\(638\) 1.15541e13 2.76085
\(639\) 0 0
\(640\) 3.50626e12 0.826103
\(641\) 2.41181e12 0.564263 0.282131 0.959376i \(-0.408959\pi\)
0.282131 + 0.959376i \(0.408959\pi\)
\(642\) 0 0
\(643\) 6.86804e12 1.58447 0.792234 0.610217i \(-0.208918\pi\)
0.792234 + 0.610217i \(0.208918\pi\)
\(644\) 9.76380e11 0.223683
\(645\) 0 0
\(646\) 7.69562e12 1.73859
\(647\) 1.73394e12 0.389013 0.194506 0.980901i \(-0.437690\pi\)
0.194506 + 0.980901i \(0.437690\pi\)
\(648\) 0 0
\(649\) −7.58322e12 −1.67785
\(650\) 2.67132e11 0.0586971
\(651\) 0 0
\(652\) −1.38014e12 −0.299095
\(653\) −2.86440e10 −0.00616488 −0.00308244 0.999995i \(-0.500981\pi\)
−0.00308244 + 0.999995i \(0.500981\pi\)
\(654\) 0 0
\(655\) 3.66878e12 0.778818
\(656\) −3.41953e12 −0.720940
\(657\) 0 0
\(658\) 1.63518e12 0.340054
\(659\) 6.31728e12 1.30481 0.652403 0.757872i \(-0.273761\pi\)
0.652403 + 0.757872i \(0.273761\pi\)
\(660\) 0 0
\(661\) −3.49558e12 −0.712217 −0.356109 0.934445i \(-0.615897\pi\)
−0.356109 + 0.934445i \(0.615897\pi\)
\(662\) −1.87212e12 −0.378854
\(663\) 0 0
\(664\) 3.33719e12 0.666231
\(665\) 1.35503e12 0.268691
\(666\) 0 0
\(667\) −3.02717e12 −0.592203
\(668\) −9.15816e12 −1.77957
\(669\) 0 0
\(670\) −3.90494e12 −0.748649
\(671\) −2.21939e12 −0.422652
\(672\) 0 0
\(673\) −8.02535e12 −1.50798 −0.753991 0.656885i \(-0.771874\pi\)
−0.753991 + 0.656885i \(0.771874\pi\)
\(674\) −8.00422e12 −1.49400
\(675\) 0 0
\(676\) 4.08002e11 0.0751453
\(677\) −1.17163e12 −0.214358 −0.107179 0.994240i \(-0.534182\pi\)
−0.107179 + 0.994240i \(0.534182\pi\)
\(678\) 0 0
\(679\) 2.63253e12 0.475290
\(680\) 3.95482e12 0.709311
\(681\) 0 0
\(682\) 3.37586e12 0.597523
\(683\) −4.69754e12 −0.825995 −0.412997 0.910732i \(-0.635518\pi\)
−0.412997 + 0.910732i \(0.635518\pi\)
\(684\) 0 0
\(685\) −6.32288e12 −1.09726
\(686\) 4.72855e11 0.0815211
\(687\) 0 0
\(688\) 1.88227e12 0.320283
\(689\) −5.98676e12 −1.01206
\(690\) 0 0
\(691\) −7.83193e12 −1.30683 −0.653413 0.757001i \(-0.726664\pi\)
−0.653413 + 0.757001i \(0.726664\pi\)
\(692\) 8.15161e12 1.35134
\(693\) 0 0
\(694\) −1.17332e12 −0.191998
\(695\) 1.03701e13 1.68597
\(696\) 0 0
\(697\) −1.15386e13 −1.85185
\(698\) −7.29322e12 −1.16297
\(699\) 0 0
\(700\) 1.16072e11 0.0182721
\(701\) −7.13243e12 −1.11559 −0.557797 0.829977i \(-0.688353\pi\)
−0.557797 + 0.829977i \(0.688353\pi\)
\(702\) 0 0
\(703\) −5.19655e12 −0.802446
\(704\) 1.35813e13 2.08384
\(705\) 0 0
\(706\) −9.42486e12 −1.42776
\(707\) −5.01049e11 −0.0754211
\(708\) 0 0
\(709\) 8.65274e12 1.28601 0.643007 0.765861i \(-0.277687\pi\)
0.643007 + 0.765861i \(0.277687\pi\)
\(710\) 1.01114e13 1.49330
\(711\) 0 0
\(712\) 7.19310e11 0.104895
\(713\) −8.84475e11 −0.128169
\(714\) 0 0
\(715\) 1.04624e13 1.49711
\(716\) −4.78331e12 −0.680174
\(717\) 0 0
\(718\) 1.18284e13 1.66099
\(719\) −4.58446e11 −0.0639747 −0.0319873 0.999488i \(-0.510184\pi\)
−0.0319873 + 0.999488i \(0.510184\pi\)
\(720\) 0 0
\(721\) 1.62834e12 0.224408
\(722\) −5.65565e12 −0.774577
\(723\) 0 0
\(724\) −8.32444e12 −1.12598
\(725\) −3.59871e11 −0.0483755
\(726\) 0 0
\(727\) −2.53850e12 −0.337033 −0.168517 0.985699i \(-0.553898\pi\)
−0.168517 + 0.985699i \(0.553898\pi\)
\(728\) 1.24361e12 0.164095
\(729\) 0 0
\(730\) 1.31454e13 1.71325
\(731\) 6.35141e12 0.822701
\(732\) 0 0
\(733\) 1.09361e13 1.39925 0.699624 0.714511i \(-0.253351\pi\)
0.699624 + 0.714511i \(0.253351\pi\)
\(734\) 1.21907e13 1.55023
\(735\) 0 0
\(736\) −5.12509e12 −0.643800
\(737\) −5.56824e12 −0.695208
\(738\) 0 0
\(739\) 7.34996e12 0.906536 0.453268 0.891374i \(-0.350258\pi\)
0.453268 + 0.891374i \(0.350258\pi\)
\(740\) −1.22263e13 −1.49882
\(741\) 0 0
\(742\) −4.63444e12 −0.561281
\(743\) 1.60813e12 0.193584 0.0967922 0.995305i \(-0.469142\pi\)
0.0967922 + 0.995305i \(0.469142\pi\)
\(744\) 0 0
\(745\) 6.93848e12 0.825203
\(746\) 2.30199e13 2.72132
\(747\) 0 0
\(748\) 2.58182e13 3.01557
\(749\) 1.10336e12 0.128100
\(750\) 0 0
\(751\) −2.95903e12 −0.339446 −0.169723 0.985492i \(-0.554287\pi\)
−0.169723 + 0.985492i \(0.554287\pi\)
\(752\) −3.35726e12 −0.382829
\(753\) 0 0
\(754\) −1.76522e13 −1.98897
\(755\) 1.22976e13 1.37739
\(756\) 0 0
\(757\) −4.83223e12 −0.534830 −0.267415 0.963581i \(-0.586170\pi\)
−0.267415 + 0.963581i \(0.586170\pi\)
\(758\) 2.01616e13 2.21826
\(759\) 0 0
\(760\) 2.75876e12 0.299953
\(761\) −3.15213e12 −0.340701 −0.170350 0.985384i \(-0.554490\pi\)
−0.170350 + 0.985384i \(0.554490\pi\)
\(762\) 0 0
\(763\) 1.25113e12 0.133642
\(764\) −1.05827e13 −1.12377
\(765\) 0 0
\(766\) 5.42952e12 0.569813
\(767\) 1.15856e13 1.20876
\(768\) 0 0
\(769\) −6.87650e12 −0.709086 −0.354543 0.935040i \(-0.615364\pi\)
−0.354543 + 0.935040i \(0.615364\pi\)
\(770\) 8.09909e12 0.830286
\(771\) 0 0
\(772\) −1.00124e13 −1.01452
\(773\) −1.16083e13 −1.16939 −0.584696 0.811253i \(-0.698786\pi\)
−0.584696 + 0.811253i \(0.698786\pi\)
\(774\) 0 0
\(775\) −1.05147e11 −0.0104698
\(776\) 5.35965e12 0.530590
\(777\) 0 0
\(778\) 1.28258e13 1.25510
\(779\) −8.04899e12 −0.783110
\(780\) 0 0
\(781\) 1.44183e13 1.38670
\(782\) −1.20512e13 −1.15239
\(783\) 0 0
\(784\) −9.70842e11 −0.0917754
\(785\) 1.32998e13 1.25006
\(786\) 0 0
\(787\) −2.50005e12 −0.232307 −0.116154 0.993231i \(-0.537057\pi\)
−0.116154 + 0.993231i \(0.537057\pi\)
\(788\) −1.53216e13 −1.41559
\(789\) 0 0
\(790\) 2.51064e13 2.29331
\(791\) −1.06991e12 −0.0971751
\(792\) 0 0
\(793\) 3.39077e12 0.304487
\(794\) −1.48098e13 −1.32238
\(795\) 0 0
\(796\) −1.66137e13 −1.46675
\(797\) −2.77023e12 −0.243194 −0.121597 0.992580i \(-0.538802\pi\)
−0.121597 + 0.992580i \(0.538802\pi\)
\(798\) 0 0
\(799\) −1.13285e13 −0.983360
\(800\) −6.09272e11 −0.0525904
\(801\) 0 0
\(802\) 6.07429e12 0.518455
\(803\) 1.87447e13 1.59096
\(804\) 0 0
\(805\) −2.12196e12 −0.178097
\(806\) −5.15761e12 −0.430468
\(807\) 0 0
\(808\) −1.02010e12 −0.0841962
\(809\) 2.96640e12 0.243479 0.121739 0.992562i \(-0.461153\pi\)
0.121739 + 0.992562i \(0.461153\pi\)
\(810\) 0 0
\(811\) −9.01447e12 −0.731722 −0.365861 0.930669i \(-0.619225\pi\)
−0.365861 + 0.930669i \(0.619225\pi\)
\(812\) −7.67012e12 −0.619156
\(813\) 0 0
\(814\) −3.10599e13 −2.47965
\(815\) 2.99946e12 0.238140
\(816\) 0 0
\(817\) 4.43055e12 0.347903
\(818\) −2.62325e13 −2.04857
\(819\) 0 0
\(820\) −1.89374e13 −1.46271
\(821\) −1.25176e13 −0.961563 −0.480782 0.876840i \(-0.659647\pi\)
−0.480782 + 0.876840i \(0.659647\pi\)
\(822\) 0 0
\(823\) −1.50348e13 −1.14234 −0.571172 0.820830i \(-0.693511\pi\)
−0.571172 + 0.820830i \(0.693511\pi\)
\(824\) 3.31520e12 0.250517
\(825\) 0 0
\(826\) 8.96858e12 0.670369
\(827\) −2.31522e13 −1.72115 −0.860574 0.509325i \(-0.829895\pi\)
−0.860574 + 0.509325i \(0.829895\pi\)
\(828\) 0 0
\(829\) 4.88071e12 0.358912 0.179456 0.983766i \(-0.442566\pi\)
0.179456 + 0.983766i \(0.442566\pi\)
\(830\) −3.32044e13 −2.42854
\(831\) 0 0
\(832\) −2.07494e13 −1.50124
\(833\) −3.27595e12 −0.235741
\(834\) 0 0
\(835\) 1.99034e13 1.41690
\(836\) 1.80100e13 1.27522
\(837\) 0 0
\(838\) −1.69635e13 −1.18828
\(839\) 1.18015e13 0.822258 0.411129 0.911577i \(-0.365135\pi\)
0.411129 + 0.911577i \(0.365135\pi\)
\(840\) 0 0
\(841\) 9.27330e12 0.639223
\(842\) −1.53224e13 −1.05057
\(843\) 0 0
\(844\) −6.05142e11 −0.0410503
\(845\) −8.86708e11 −0.0598309
\(846\) 0 0
\(847\) 5.88744e12 0.393053
\(848\) 9.51520e12 0.631883
\(849\) 0 0
\(850\) −1.43265e12 −0.0941361
\(851\) 8.13771e12 0.531887
\(852\) 0 0
\(853\) −2.54707e13 −1.64729 −0.823646 0.567104i \(-0.808064\pi\)
−0.823646 + 0.567104i \(0.808064\pi\)
\(854\) 2.62485e12 0.168867
\(855\) 0 0
\(856\) 2.24637e12 0.143004
\(857\) −1.26584e13 −0.801615 −0.400807 0.916162i \(-0.631270\pi\)
−0.400807 + 0.916162i \(0.631270\pi\)
\(858\) 0 0
\(859\) 2.01387e13 1.26201 0.631004 0.775779i \(-0.282643\pi\)
0.631004 + 0.775779i \(0.282643\pi\)
\(860\) 1.04240e13 0.649820
\(861\) 0 0
\(862\) 5.66896e12 0.349720
\(863\) 1.44977e13 0.889716 0.444858 0.895601i \(-0.353254\pi\)
0.444858 + 0.895601i \(0.353254\pi\)
\(864\) 0 0
\(865\) −1.77159e13 −1.07594
\(866\) −1.40297e13 −0.847655
\(867\) 0 0
\(868\) −2.24104e12 −0.134002
\(869\) 3.58004e13 2.12961
\(870\) 0 0
\(871\) 8.50712e12 0.500842
\(872\) 2.54721e12 0.149191
\(873\) 0 0
\(874\) −8.40656e12 −0.487323
\(875\) 6.42411e12 0.370490
\(876\) 0 0
\(877\) 1.83297e13 1.04630 0.523150 0.852241i \(-0.324757\pi\)
0.523150 + 0.852241i \(0.324757\pi\)
\(878\) −1.12598e13 −0.639448
\(879\) 0 0
\(880\) −1.66286e13 −0.934726
\(881\) −4.57369e12 −0.255785 −0.127892 0.991788i \(-0.540821\pi\)
−0.127892 + 0.991788i \(0.540821\pi\)
\(882\) 0 0
\(883\) 3.07854e13 1.70420 0.852101 0.523377i \(-0.175328\pi\)
0.852101 + 0.523377i \(0.175328\pi\)
\(884\) −3.94448e13 −2.17248
\(885\) 0 0
\(886\) −1.73919e13 −0.948190
\(887\) 2.58803e13 1.40382 0.701911 0.712264i \(-0.252330\pi\)
0.701911 + 0.712264i \(0.252330\pi\)
\(888\) 0 0
\(889\) 2.22963e12 0.119722
\(890\) −7.15699e12 −0.382363
\(891\) 0 0
\(892\) 4.38015e12 0.231658
\(893\) −7.90242e12 −0.415842
\(894\) 0 0
\(895\) 1.03955e13 0.541556
\(896\) −5.91314e12 −0.306501
\(897\) 0 0
\(898\) −5.11061e13 −2.62258
\(899\) 6.94814e12 0.354773
\(900\) 0 0
\(901\) 3.21075e13 1.62310
\(902\) −4.81091e13 −2.41990
\(903\) 0 0
\(904\) −2.17827e12 −0.108481
\(905\) 1.80915e13 0.896510
\(906\) 0 0
\(907\) 9.64118e12 0.473040 0.236520 0.971627i \(-0.423993\pi\)
0.236520 + 0.971627i \(0.423993\pi\)
\(908\) 3.16326e13 1.54436
\(909\) 0 0
\(910\) −1.23737e13 −0.598156
\(911\) −7.28746e12 −0.350545 −0.175272 0.984520i \(-0.556081\pi\)
−0.175272 + 0.984520i \(0.556081\pi\)
\(912\) 0 0
\(913\) −4.73478e13 −2.25518
\(914\) 4.91669e13 2.33032
\(915\) 0 0
\(916\) −1.53463e13 −0.720236
\(917\) −6.18722e12 −0.288957
\(918\) 0 0
\(919\) 2.73276e13 1.26381 0.631906 0.775045i \(-0.282273\pi\)
0.631906 + 0.775045i \(0.282273\pi\)
\(920\) −4.32017e12 −0.198818
\(921\) 0 0
\(922\) 4.70559e13 2.14449
\(923\) −2.20281e13 −0.999011
\(924\) 0 0
\(925\) 9.67413e11 0.0434484
\(926\) 6.03353e13 2.69663
\(927\) 0 0
\(928\) 4.02610e13 1.78204
\(929\) 7.21805e12 0.317943 0.158971 0.987283i \(-0.449182\pi\)
0.158971 + 0.987283i \(0.449182\pi\)
\(930\) 0 0
\(931\) −2.28520e12 −0.0996897
\(932\) 2.15616e13 0.936071
\(933\) 0 0
\(934\) 4.00808e13 1.72336
\(935\) −5.61106e13 −2.40100
\(936\) 0 0
\(937\) 1.41988e13 0.601761 0.300880 0.953662i \(-0.402719\pi\)
0.300880 + 0.953662i \(0.402719\pi\)
\(938\) 6.58550e12 0.277764
\(939\) 0 0
\(940\) −1.85925e13 −0.776718
\(941\) 2.53242e13 1.05289 0.526445 0.850209i \(-0.323525\pi\)
0.526445 + 0.850209i \(0.323525\pi\)
\(942\) 0 0
\(943\) 1.26046e13 0.519070
\(944\) −1.84138e13 −0.754693
\(945\) 0 0
\(946\) 2.64816e13 1.07506
\(947\) 1.37160e13 0.554182 0.277091 0.960844i \(-0.410630\pi\)
0.277091 + 0.960844i \(0.410630\pi\)
\(948\) 0 0
\(949\) −2.86380e13 −1.14616
\(950\) −9.99374e11 −0.0398082
\(951\) 0 0
\(952\) −6.66961e12 −0.263169
\(953\) −2.44096e13 −0.958610 −0.479305 0.877648i \(-0.659111\pi\)
−0.479305 + 0.877648i \(0.659111\pi\)
\(954\) 0 0
\(955\) 2.29994e13 0.894750
\(956\) −1.65065e13 −0.639137
\(957\) 0 0
\(958\) 6.78892e13 2.60409
\(959\) 1.06632e13 0.407104
\(960\) 0 0
\(961\) −2.44095e13 −0.923218
\(962\) 4.74531e13 1.78639
\(963\) 0 0
\(964\) 4.59096e13 1.71221
\(965\) 2.17600e13 0.807765
\(966\) 0 0
\(967\) −4.19850e13 −1.54410 −0.772049 0.635563i \(-0.780768\pi\)
−0.772049 + 0.635563i \(0.780768\pi\)
\(968\) 1.19864e13 0.438784
\(969\) 0 0
\(970\) −5.33275e13 −1.93410
\(971\) −3.13254e12 −0.113086 −0.0565432 0.998400i \(-0.518008\pi\)
−0.0565432 + 0.998400i \(0.518008\pi\)
\(972\) 0 0
\(973\) −1.74886e13 −0.625529
\(974\) −4.21022e13 −1.49896
\(975\) 0 0
\(976\) −5.38920e12 −0.190108
\(977\) −4.53124e13 −1.59108 −0.795539 0.605902i \(-0.792812\pi\)
−0.795539 + 0.605902i \(0.792812\pi\)
\(978\) 0 0
\(979\) −1.02055e13 −0.355068
\(980\) −5.37654e12 −0.186202
\(981\) 0 0
\(982\) 6.96109e13 2.38878
\(983\) 2.54481e13 0.869290 0.434645 0.900602i \(-0.356874\pi\)
0.434645 + 0.900602i \(0.356874\pi\)
\(984\) 0 0
\(985\) 3.32984e13 1.12709
\(986\) 9.46704e13 3.18983
\(987\) 0 0
\(988\) −2.75155e13 −0.918694
\(989\) −6.93817e12 −0.230601
\(990\) 0 0
\(991\) −5.41691e13 −1.78410 −0.892052 0.451933i \(-0.850734\pi\)
−0.892052 + 0.451933i \(0.850734\pi\)
\(992\) 1.17634e13 0.385683
\(993\) 0 0
\(994\) −1.70523e13 −0.554045
\(995\) 3.61065e13 1.16783
\(996\) 0 0
\(997\) −4.29329e13 −1.37614 −0.688069 0.725646i \(-0.741541\pi\)
−0.688069 + 0.725646i \(0.741541\pi\)
\(998\) −1.11473e13 −0.355697
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.10.a.e.1.3 3
3.2 odd 2 7.10.a.b.1.1 3
12.11 even 2 112.10.a.h.1.3 3
15.2 even 4 175.10.b.d.99.2 6
15.8 even 4 175.10.b.d.99.5 6
15.14 odd 2 175.10.a.d.1.3 3
21.2 odd 6 49.10.c.d.18.3 6
21.5 even 6 49.10.c.e.18.3 6
21.11 odd 6 49.10.c.d.30.3 6
21.17 even 6 49.10.c.e.30.3 6
21.20 even 2 49.10.a.c.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.10.a.b.1.1 3 3.2 odd 2
49.10.a.c.1.1 3 21.20 even 2
49.10.c.d.18.3 6 21.2 odd 6
49.10.c.d.30.3 6 21.11 odd 6
49.10.c.e.18.3 6 21.5 even 6
49.10.c.e.30.3 6 21.17 even 6
63.10.a.e.1.3 3 1.1 even 1 trivial
112.10.a.h.1.3 3 12.11 even 2
175.10.a.d.1.3 3 15.14 odd 2
175.10.b.d.99.2 6 15.2 even 4
175.10.b.d.99.5 6 15.8 even 4