Properties

Label 63.10.a.e.1.2
Level $63$
Weight $10$
Character 63.1
Self dual yes
Analytic conductor $32.447$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,10,Mod(1,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 63.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.4472576783\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 426x + 2016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-22.2358\) of defining polynomial
Character \(\chi\) \(=\) 63.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-13.3607 q^{2} -333.491 q^{4} -1922.19 q^{5} +2401.00 q^{7} +11296.4 q^{8} +25681.8 q^{10} +90199.9 q^{11} -3199.89 q^{13} -32079.1 q^{14} +19819.7 q^{16} -116494. q^{17} -142449. q^{19} +641033. q^{20} -1.20514e6 q^{22} -1.27391e6 q^{23} +1.74168e6 q^{25} +42752.8 q^{26} -800712. q^{28} +1.42931e6 q^{29} +9.67494e6 q^{31} -6.04855e6 q^{32} +1.55645e6 q^{34} -4.61518e6 q^{35} -8.67744e6 q^{37} +1.90323e6 q^{38} -2.17138e7 q^{40} -1.32544e7 q^{41} -2.97554e7 q^{43} -3.00809e7 q^{44} +1.70204e7 q^{46} +1.07969e7 q^{47} +5.76480e6 q^{49} -2.32702e7 q^{50} +1.06713e6 q^{52} -7.07399e7 q^{53} -1.73381e8 q^{55} +2.71226e7 q^{56} -1.90966e7 q^{58} -6.40400e6 q^{59} +1.69190e8 q^{61} -1.29264e8 q^{62} +7.06653e7 q^{64} +6.15078e6 q^{65} -1.16276e8 q^{67} +3.88498e7 q^{68} +6.16621e7 q^{70} -1.44496e8 q^{71} +1.60155e8 q^{73} +1.15937e8 q^{74} +4.75056e7 q^{76} +2.16570e8 q^{77} -4.89322e8 q^{79} -3.80972e7 q^{80} +1.77088e8 q^{82} +8.31590e7 q^{83} +2.23924e8 q^{85} +3.97553e8 q^{86} +1.01893e9 q^{88} -2.08083e6 q^{89} -7.68292e6 q^{91} +4.24838e8 q^{92} -1.44255e8 q^{94} +2.73815e8 q^{95} -3.15885e8 q^{97} -7.70219e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 21 q^{2} + 1557 q^{4} - 1554 q^{5} + 7203 q^{7} - 14055 q^{8} - 97860 q^{10} + 3444 q^{11} - 19782 q^{13} - 50421 q^{14} + 482961 q^{16} - 1016694 q^{17} + 222852 q^{19} + 1922088 q^{20} - 2847048 q^{22}+ \cdots - 121060821 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −13.3607 −0.590466 −0.295233 0.955425i \(-0.595397\pi\)
−0.295233 + 0.955425i \(0.595397\pi\)
\(3\) 0 0
\(4\) −333.491 −0.651350
\(5\) −1922.19 −1.37541 −0.687703 0.725992i \(-0.741381\pi\)
−0.687703 + 0.725992i \(0.741381\pi\)
\(6\) 0 0
\(7\) 2401.00 0.377964
\(8\) 11296.4 0.975066
\(9\) 0 0
\(10\) 25681.8 0.812131
\(11\) 90199.9 1.85754 0.928772 0.370652i \(-0.120866\pi\)
0.928772 + 0.370652i \(0.120866\pi\)
\(12\) 0 0
\(13\) −3199.89 −0.0310734 −0.0155367 0.999879i \(-0.504946\pi\)
−0.0155367 + 0.999879i \(0.504946\pi\)
\(14\) −32079.1 −0.223175
\(15\) 0 0
\(16\) 19819.7 0.0756061
\(17\) −116494. −0.338286 −0.169143 0.985591i \(-0.554100\pi\)
−0.169143 + 0.985591i \(0.554100\pi\)
\(18\) 0 0
\(19\) −142449. −0.250767 −0.125383 0.992108i \(-0.540016\pi\)
−0.125383 + 0.992108i \(0.540016\pi\)
\(20\) 641033. 0.895870
\(21\) 0 0
\(22\) −1.20514e6 −1.09682
\(23\) −1.27391e6 −0.949213 −0.474606 0.880198i \(-0.657410\pi\)
−0.474606 + 0.880198i \(0.657410\pi\)
\(24\) 0 0
\(25\) 1.74168e6 0.891742
\(26\) 42752.8 0.0183478
\(27\) 0 0
\(28\) −800712. −0.246187
\(29\) 1.42931e6 0.375262 0.187631 0.982240i \(-0.439919\pi\)
0.187631 + 0.982240i \(0.439919\pi\)
\(30\) 0 0
\(31\) 9.67494e6 1.88157 0.940786 0.339001i \(-0.110089\pi\)
0.940786 + 0.339001i \(0.110089\pi\)
\(32\) −6.04855e6 −1.01971
\(33\) 0 0
\(34\) 1.55645e6 0.199747
\(35\) −4.61518e6 −0.519855
\(36\) 0 0
\(37\) −8.67744e6 −0.761174 −0.380587 0.924745i \(-0.624278\pi\)
−0.380587 + 0.924745i \(0.624278\pi\)
\(38\) 1.90323e6 0.148069
\(39\) 0 0
\(40\) −2.17138e7 −1.34111
\(41\) −1.32544e7 −0.732541 −0.366271 0.930508i \(-0.619366\pi\)
−0.366271 + 0.930508i \(0.619366\pi\)
\(42\) 0 0
\(43\) −2.97554e7 −1.32726 −0.663632 0.748060i \(-0.730986\pi\)
−0.663632 + 0.748060i \(0.730986\pi\)
\(44\) −3.00809e7 −1.20991
\(45\) 0 0
\(46\) 1.70204e7 0.560478
\(47\) 1.07969e7 0.322745 0.161373 0.986894i \(-0.448408\pi\)
0.161373 + 0.986894i \(0.448408\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) −2.32702e7 −0.526544
\(51\) 0 0
\(52\) 1.06713e6 0.0202397
\(53\) −7.07399e7 −1.23147 −0.615734 0.787954i \(-0.711140\pi\)
−0.615734 + 0.787954i \(0.711140\pi\)
\(54\) 0 0
\(55\) −1.73381e8 −2.55488
\(56\) 2.71226e7 0.368540
\(57\) 0 0
\(58\) −1.90966e7 −0.221579
\(59\) −6.40400e6 −0.0688046 −0.0344023 0.999408i \(-0.510953\pi\)
−0.0344023 + 0.999408i \(0.510953\pi\)
\(60\) 0 0
\(61\) 1.69190e8 1.56455 0.782275 0.622933i \(-0.214059\pi\)
0.782275 + 0.622933i \(0.214059\pi\)
\(62\) −1.29264e8 −1.11100
\(63\) 0 0
\(64\) 7.06653e7 0.526498
\(65\) 6.15078e6 0.0427386
\(66\) 0 0
\(67\) −1.16276e8 −0.704943 −0.352471 0.935823i \(-0.614659\pi\)
−0.352471 + 0.935823i \(0.614659\pi\)
\(68\) 3.88498e7 0.220343
\(69\) 0 0
\(70\) 6.16621e7 0.306957
\(71\) −1.44496e8 −0.674826 −0.337413 0.941357i \(-0.609552\pi\)
−0.337413 + 0.941357i \(0.609552\pi\)
\(72\) 0 0
\(73\) 1.60155e8 0.660066 0.330033 0.943969i \(-0.392940\pi\)
0.330033 + 0.943969i \(0.392940\pi\)
\(74\) 1.15937e8 0.449447
\(75\) 0 0
\(76\) 4.75056e7 0.163337
\(77\) 2.16570e8 0.702085
\(78\) 0 0
\(79\) −4.89322e8 −1.41343 −0.706713 0.707500i \(-0.749823\pi\)
−0.706713 + 0.707500i \(0.749823\pi\)
\(80\) −3.80972e7 −0.103989
\(81\) 0 0
\(82\) 1.77088e8 0.432541
\(83\) 8.31590e7 0.192335 0.0961674 0.995365i \(-0.469342\pi\)
0.0961674 + 0.995365i \(0.469342\pi\)
\(84\) 0 0
\(85\) 2.23924e8 0.465281
\(86\) 3.97553e8 0.783704
\(87\) 0 0
\(88\) 1.01893e9 1.81123
\(89\) −2.08083e6 −0.00351546 −0.00175773 0.999998i \(-0.500560\pi\)
−0.00175773 + 0.999998i \(0.500560\pi\)
\(90\) 0 0
\(91\) −7.68292e6 −0.0117447
\(92\) 4.24838e8 0.618270
\(93\) 0 0
\(94\) −1.44255e8 −0.190570
\(95\) 2.73815e8 0.344906
\(96\) 0 0
\(97\) −3.15885e8 −0.362290 −0.181145 0.983456i \(-0.557980\pi\)
−0.181145 + 0.983456i \(0.557980\pi\)
\(98\) −7.70219e7 −0.0843523
\(99\) 0 0
\(100\) −5.80836e8 −0.580836
\(101\) 5.74841e8 0.549669 0.274835 0.961492i \(-0.411377\pi\)
0.274835 + 0.961492i \(0.411377\pi\)
\(102\) 0 0
\(103\) −1.51870e9 −1.32955 −0.664775 0.747044i \(-0.731473\pi\)
−0.664775 + 0.747044i \(0.731473\pi\)
\(104\) −3.61471e7 −0.0302987
\(105\) 0 0
\(106\) 9.45137e8 0.727140
\(107\) 2.01863e8 0.148878 0.0744390 0.997226i \(-0.476283\pi\)
0.0744390 + 0.997226i \(0.476283\pi\)
\(108\) 0 0
\(109\) −8.73952e8 −0.593019 −0.296509 0.955030i \(-0.595823\pi\)
−0.296509 + 0.955030i \(0.595823\pi\)
\(110\) 2.31650e9 1.50857
\(111\) 0 0
\(112\) 4.75871e7 0.0285764
\(113\) −1.52955e9 −0.882491 −0.441245 0.897386i \(-0.645463\pi\)
−0.441245 + 0.897386i \(0.645463\pi\)
\(114\) 0 0
\(115\) 2.44870e9 1.30555
\(116\) −4.76661e8 −0.244427
\(117\) 0 0
\(118\) 8.55621e7 0.0406268
\(119\) −2.79703e8 −0.127860
\(120\) 0 0
\(121\) 5.77807e9 2.45047
\(122\) −2.26050e9 −0.923814
\(123\) 0 0
\(124\) −3.22651e9 −1.22556
\(125\) 4.06429e8 0.148898
\(126\) 0 0
\(127\) −8.71958e8 −0.297426 −0.148713 0.988880i \(-0.547513\pi\)
−0.148713 + 0.988880i \(0.547513\pi\)
\(128\) 2.15272e9 0.708830
\(129\) 0 0
\(130\) −8.21789e7 −0.0252357
\(131\) −2.24404e9 −0.665747 −0.332874 0.942971i \(-0.608018\pi\)
−0.332874 + 0.942971i \(0.608018\pi\)
\(132\) 0 0
\(133\) −3.42021e8 −0.0947809
\(134\) 1.55353e9 0.416245
\(135\) 0 0
\(136\) −1.31596e9 −0.329852
\(137\) −4.16141e9 −1.00925 −0.504624 0.863339i \(-0.668369\pi\)
−0.504624 + 0.863339i \(0.668369\pi\)
\(138\) 0 0
\(139\) −6.03383e9 −1.37097 −0.685483 0.728089i \(-0.740409\pi\)
−0.685483 + 0.728089i \(0.740409\pi\)
\(140\) 1.53912e9 0.338607
\(141\) 0 0
\(142\) 1.93057e9 0.398462
\(143\) −2.88629e8 −0.0577203
\(144\) 0 0
\(145\) −2.74740e9 −0.516137
\(146\) −2.13979e9 −0.389747
\(147\) 0 0
\(148\) 2.89385e9 0.495790
\(149\) 4.37832e9 0.727728 0.363864 0.931452i \(-0.381457\pi\)
0.363864 + 0.931452i \(0.381457\pi\)
\(150\) 0 0
\(151\) −2.69365e9 −0.421642 −0.210821 0.977525i \(-0.567614\pi\)
−0.210821 + 0.977525i \(0.567614\pi\)
\(152\) −1.60916e9 −0.244514
\(153\) 0 0
\(154\) −2.89353e9 −0.414558
\(155\) −1.85971e10 −2.58793
\(156\) 0 0
\(157\) −1.33044e9 −0.174762 −0.0873810 0.996175i \(-0.527850\pi\)
−0.0873810 + 0.996175i \(0.527850\pi\)
\(158\) 6.53770e9 0.834580
\(159\) 0 0
\(160\) 1.16265e10 1.40251
\(161\) −3.05866e9 −0.358769
\(162\) 0 0
\(163\) −3.56094e9 −0.395112 −0.197556 0.980292i \(-0.563301\pi\)
−0.197556 + 0.980292i \(0.563301\pi\)
\(164\) 4.42022e9 0.477140
\(165\) 0 0
\(166\) −1.11106e9 −0.113567
\(167\) 1.04285e10 1.03752 0.518762 0.854919i \(-0.326393\pi\)
0.518762 + 0.854919i \(0.326393\pi\)
\(168\) 0 0
\(169\) −1.05943e10 −0.999034
\(170\) −2.99179e9 −0.274733
\(171\) 0 0
\(172\) 9.92314e9 0.864512
\(173\) −2.04717e10 −1.73759 −0.868793 0.495176i \(-0.835104\pi\)
−0.868793 + 0.495176i \(0.835104\pi\)
\(174\) 0 0
\(175\) 4.18178e9 0.337047
\(176\) 1.78773e9 0.140442
\(177\) 0 0
\(178\) 2.78014e7 0.00207576
\(179\) −5.46705e9 −0.398029 −0.199014 0.979997i \(-0.563774\pi\)
−0.199014 + 0.979997i \(0.563774\pi\)
\(180\) 0 0
\(181\) −2.11628e9 −0.146561 −0.0732807 0.997311i \(-0.523347\pi\)
−0.0732807 + 0.997311i \(0.523347\pi\)
\(182\) 1.02649e8 0.00693482
\(183\) 0 0
\(184\) −1.43906e10 −0.925545
\(185\) 1.66797e10 1.04692
\(186\) 0 0
\(187\) −1.05078e10 −0.628381
\(188\) −3.60068e9 −0.210220
\(189\) 0 0
\(190\) −3.65836e9 −0.203655
\(191\) −1.72421e10 −0.937431 −0.468715 0.883349i \(-0.655283\pi\)
−0.468715 + 0.883349i \(0.655283\pi\)
\(192\) 0 0
\(193\) 2.02030e10 1.04811 0.524055 0.851684i \(-0.324418\pi\)
0.524055 + 0.851684i \(0.324418\pi\)
\(194\) 4.22045e9 0.213920
\(195\) 0 0
\(196\) −1.92251e9 −0.0930500
\(197\) 2.22592e10 1.05296 0.526481 0.850187i \(-0.323511\pi\)
0.526481 + 0.850187i \(0.323511\pi\)
\(198\) 0 0
\(199\) 1.70588e10 0.771098 0.385549 0.922687i \(-0.374012\pi\)
0.385549 + 0.922687i \(0.374012\pi\)
\(200\) 1.96747e10 0.869508
\(201\) 0 0
\(202\) −7.68029e9 −0.324561
\(203\) 3.43176e9 0.141836
\(204\) 0 0
\(205\) 2.54774e10 1.00754
\(206\) 2.02909e10 0.785054
\(207\) 0 0
\(208\) −6.34207e7 −0.00234934
\(209\) −1.28489e10 −0.465810
\(210\) 0 0
\(211\) −3.19873e10 −1.11098 −0.555490 0.831523i \(-0.687469\pi\)
−0.555490 + 0.831523i \(0.687469\pi\)
\(212\) 2.35911e10 0.802116
\(213\) 0 0
\(214\) −2.69704e9 −0.0879074
\(215\) 5.71954e10 1.82553
\(216\) 0 0
\(217\) 2.32295e10 0.711167
\(218\) 1.16766e10 0.350157
\(219\) 0 0
\(220\) 5.78211e10 1.66412
\(221\) 3.72768e8 0.0105117
\(222\) 0 0
\(223\) −2.30967e10 −0.625428 −0.312714 0.949847i \(-0.601238\pi\)
−0.312714 + 0.949847i \(0.601238\pi\)
\(224\) −1.45226e10 −0.385414
\(225\) 0 0
\(226\) 2.04359e10 0.521081
\(227\) 2.30894e10 0.577160 0.288580 0.957456i \(-0.406817\pi\)
0.288580 + 0.957456i \(0.406817\pi\)
\(228\) 0 0
\(229\) 4.25496e10 1.02244 0.511218 0.859451i \(-0.329195\pi\)
0.511218 + 0.859451i \(0.329195\pi\)
\(230\) −3.27164e10 −0.770885
\(231\) 0 0
\(232\) 1.61460e10 0.365905
\(233\) 1.26679e10 0.281582 0.140791 0.990039i \(-0.455036\pi\)
0.140791 + 0.990039i \(0.455036\pi\)
\(234\) 0 0
\(235\) −2.07537e10 −0.443906
\(236\) 2.13568e9 0.0448158
\(237\) 0 0
\(238\) 3.73703e9 0.0754971
\(239\) −6.37875e10 −1.26458 −0.632289 0.774733i \(-0.717884\pi\)
−0.632289 + 0.774733i \(0.717884\pi\)
\(240\) 0 0
\(241\) −2.91604e10 −0.556823 −0.278412 0.960462i \(-0.589808\pi\)
−0.278412 + 0.960462i \(0.589808\pi\)
\(242\) −7.71992e10 −1.44692
\(243\) 0 0
\(244\) −5.64232e10 −1.01907
\(245\) −1.10810e10 −0.196487
\(246\) 0 0
\(247\) 4.55822e8 0.00779218
\(248\) 1.09292e11 1.83466
\(249\) 0 0
\(250\) −5.43018e9 −0.0879194
\(251\) −6.28939e10 −1.00018 −0.500088 0.865974i \(-0.666699\pi\)
−0.500088 + 0.865974i \(0.666699\pi\)
\(252\) 0 0
\(253\) −1.14907e11 −1.76320
\(254\) 1.16500e10 0.175620
\(255\) 0 0
\(256\) −6.49425e10 −0.945038
\(257\) −1.14480e11 −1.63694 −0.818469 0.574551i \(-0.805177\pi\)
−0.818469 + 0.574551i \(0.805177\pi\)
\(258\) 0 0
\(259\) −2.08345e10 −0.287697
\(260\) −2.05123e9 −0.0278378
\(261\) 0 0
\(262\) 2.99820e10 0.393101
\(263\) −1.40705e10 −0.181346 −0.0906728 0.995881i \(-0.528902\pi\)
−0.0906728 + 0.995881i \(0.528902\pi\)
\(264\) 0 0
\(265\) 1.35975e11 1.69377
\(266\) 4.56965e9 0.0559649
\(267\) 0 0
\(268\) 3.87770e10 0.459164
\(269\) −8.39143e10 −0.977127 −0.488563 0.872528i \(-0.662479\pi\)
−0.488563 + 0.872528i \(0.662479\pi\)
\(270\) 0 0
\(271\) 1.98401e10 0.223451 0.111726 0.993739i \(-0.464362\pi\)
0.111726 + 0.993739i \(0.464362\pi\)
\(272\) −2.30888e9 −0.0255765
\(273\) 0 0
\(274\) 5.55995e10 0.595927
\(275\) 1.57100e11 1.65645
\(276\) 0 0
\(277\) −7.17911e10 −0.732675 −0.366338 0.930482i \(-0.619389\pi\)
−0.366338 + 0.930482i \(0.619389\pi\)
\(278\) 8.06163e10 0.809508
\(279\) 0 0
\(280\) −5.21347e10 −0.506893
\(281\) −1.02853e11 −0.984101 −0.492050 0.870567i \(-0.663752\pi\)
−0.492050 + 0.870567i \(0.663752\pi\)
\(282\) 0 0
\(283\) −5.52883e10 −0.512382 −0.256191 0.966626i \(-0.582468\pi\)
−0.256191 + 0.966626i \(0.582468\pi\)
\(284\) 4.81880e10 0.439548
\(285\) 0 0
\(286\) 3.85630e9 0.0340819
\(287\) −3.18238e10 −0.276875
\(288\) 0 0
\(289\) −1.05017e11 −0.885562
\(290\) 3.67072e10 0.304762
\(291\) 0 0
\(292\) −5.34102e10 −0.429934
\(293\) −1.05721e11 −0.838028 −0.419014 0.907980i \(-0.637624\pi\)
−0.419014 + 0.907980i \(0.637624\pi\)
\(294\) 0 0
\(295\) 1.23097e10 0.0946343
\(296\) −9.80236e10 −0.742195
\(297\) 0 0
\(298\) −5.84975e10 −0.429699
\(299\) 4.07637e9 0.0294953
\(300\) 0 0
\(301\) −7.14426e10 −0.501658
\(302\) 3.59891e10 0.248966
\(303\) 0 0
\(304\) −2.82330e9 −0.0189595
\(305\) −3.25214e11 −2.15189
\(306\) 0 0
\(307\) −8.10064e10 −0.520471 −0.260236 0.965545i \(-0.583800\pi\)
−0.260236 + 0.965545i \(0.583800\pi\)
\(308\) −7.22241e10 −0.457303
\(309\) 0 0
\(310\) 2.48470e11 1.52808
\(311\) 3.18435e11 1.93018 0.965091 0.261913i \(-0.0843534\pi\)
0.965091 + 0.261913i \(0.0843534\pi\)
\(312\) 0 0
\(313\) 1.28876e11 0.758965 0.379483 0.925199i \(-0.376102\pi\)
0.379483 + 0.925199i \(0.376102\pi\)
\(314\) 1.77757e10 0.103191
\(315\) 0 0
\(316\) 1.63185e11 0.920635
\(317\) 7.44722e10 0.414217 0.207108 0.978318i \(-0.433595\pi\)
0.207108 + 0.978318i \(0.433595\pi\)
\(318\) 0 0
\(319\) 1.28923e11 0.697065
\(320\) −1.35832e11 −0.724148
\(321\) 0 0
\(322\) 4.08659e10 0.211841
\(323\) 1.65945e10 0.0848309
\(324\) 0 0
\(325\) −5.57319e9 −0.0277095
\(326\) 4.75768e10 0.233301
\(327\) 0 0
\(328\) −1.49726e11 −0.714276
\(329\) 2.59234e10 0.121986
\(330\) 0 0
\(331\) 2.83840e11 1.29971 0.649857 0.760057i \(-0.274829\pi\)
0.649857 + 0.760057i \(0.274829\pi\)
\(332\) −2.77328e10 −0.125277
\(333\) 0 0
\(334\) −1.39332e11 −0.612623
\(335\) 2.23505e11 0.969583
\(336\) 0 0
\(337\) −5.61414e9 −0.0237109 −0.0118555 0.999930i \(-0.503774\pi\)
−0.0118555 + 0.999930i \(0.503774\pi\)
\(338\) 1.41547e11 0.589896
\(339\) 0 0
\(340\) −7.46766e10 −0.303061
\(341\) 8.72679e11 3.49510
\(342\) 0 0
\(343\) 1.38413e10 0.0539949
\(344\) −3.36128e11 −1.29417
\(345\) 0 0
\(346\) 2.73517e11 1.02599
\(347\) −3.39846e11 −1.25834 −0.629171 0.777267i \(-0.716606\pi\)
−0.629171 + 0.777267i \(0.716606\pi\)
\(348\) 0 0
\(349\) 3.46718e10 0.125101 0.0625506 0.998042i \(-0.480077\pi\)
0.0625506 + 0.998042i \(0.480077\pi\)
\(350\) −5.58717e10 −0.199015
\(351\) 0 0
\(352\) −5.45578e11 −1.89415
\(353\) 3.46900e11 1.18910 0.594550 0.804059i \(-0.297330\pi\)
0.594550 + 0.804059i \(0.297330\pi\)
\(354\) 0 0
\(355\) 2.77748e11 0.928160
\(356\) 6.93939e8 0.00228979
\(357\) 0 0
\(358\) 7.30438e10 0.235023
\(359\) 2.51011e11 0.797569 0.398785 0.917045i \(-0.369432\pi\)
0.398785 + 0.917045i \(0.369432\pi\)
\(360\) 0 0
\(361\) −3.02396e11 −0.937116
\(362\) 2.82750e10 0.0865396
\(363\) 0 0
\(364\) 2.56219e9 0.00764988
\(365\) −3.07848e11 −0.907859
\(366\) 0 0
\(367\) 4.79871e11 1.38079 0.690394 0.723433i \(-0.257437\pi\)
0.690394 + 0.723433i \(0.257437\pi\)
\(368\) −2.52485e10 −0.0717663
\(369\) 0 0
\(370\) −2.22853e11 −0.618173
\(371\) −1.69847e11 −0.465451
\(372\) 0 0
\(373\) −1.84794e11 −0.494308 −0.247154 0.968976i \(-0.579495\pi\)
−0.247154 + 0.968976i \(0.579495\pi\)
\(374\) 1.40391e11 0.371038
\(375\) 0 0
\(376\) 1.21966e11 0.314698
\(377\) −4.57361e9 −0.0116607
\(378\) 0 0
\(379\) −7.08908e11 −1.76487 −0.882437 0.470431i \(-0.844098\pi\)
−0.882437 + 0.470431i \(0.844098\pi\)
\(380\) −9.13148e10 −0.224654
\(381\) 0 0
\(382\) 2.30367e11 0.553521
\(383\) −1.23789e11 −0.293959 −0.146980 0.989140i \(-0.546955\pi\)
−0.146980 + 0.989140i \(0.546955\pi\)
\(384\) 0 0
\(385\) −4.16288e11 −0.965653
\(386\) −2.69926e11 −0.618874
\(387\) 0 0
\(388\) 1.05345e11 0.235977
\(389\) 2.97971e11 0.659782 0.329891 0.944019i \(-0.392988\pi\)
0.329891 + 0.944019i \(0.392988\pi\)
\(390\) 0 0
\(391\) 1.48403e11 0.321106
\(392\) 6.51213e10 0.139295
\(393\) 0 0
\(394\) −2.97400e11 −0.621738
\(395\) 9.40570e11 1.94404
\(396\) 0 0
\(397\) 5.33426e11 1.07775 0.538873 0.842387i \(-0.318850\pi\)
0.538873 + 0.842387i \(0.318850\pi\)
\(398\) −2.27918e11 −0.455307
\(399\) 0 0
\(400\) 3.45196e10 0.0674212
\(401\) −4.15640e11 −0.802726 −0.401363 0.915919i \(-0.631463\pi\)
−0.401363 + 0.915919i \(0.631463\pi\)
\(402\) 0 0
\(403\) −3.09587e10 −0.0584669
\(404\) −1.91704e11 −0.358027
\(405\) 0 0
\(406\) −4.58508e10 −0.0837491
\(407\) −7.82704e11 −1.41391
\(408\) 0 0
\(409\) 1.07978e12 1.90801 0.954006 0.299788i \(-0.0969159\pi\)
0.954006 + 0.299788i \(0.0969159\pi\)
\(410\) −3.40397e11 −0.594919
\(411\) 0 0
\(412\) 5.06473e11 0.866002
\(413\) −1.53760e10 −0.0260057
\(414\) 0 0
\(415\) −1.59847e11 −0.264539
\(416\) 1.93547e10 0.0316859
\(417\) 0 0
\(418\) 1.71671e11 0.275045
\(419\) 2.20998e11 0.350289 0.175144 0.984543i \(-0.443961\pi\)
0.175144 + 0.984543i \(0.443961\pi\)
\(420\) 0 0
\(421\) 3.47478e11 0.539086 0.269543 0.962988i \(-0.413127\pi\)
0.269543 + 0.962988i \(0.413127\pi\)
\(422\) 4.27373e11 0.655996
\(423\) 0 0
\(424\) −7.99105e11 −1.20076
\(425\) −2.02896e11 −0.301664
\(426\) 0 0
\(427\) 4.06224e11 0.591344
\(428\) −6.73196e10 −0.0969716
\(429\) 0 0
\(430\) −7.64172e11 −1.07791
\(431\) −1.23574e11 −0.172496 −0.0862479 0.996274i \(-0.527488\pi\)
−0.0862479 + 0.996274i \(0.527488\pi\)
\(432\) 0 0
\(433\) −7.27679e11 −0.994820 −0.497410 0.867516i \(-0.665716\pi\)
−0.497410 + 0.867516i \(0.665716\pi\)
\(434\) −3.10363e11 −0.419920
\(435\) 0 0
\(436\) 2.91455e11 0.386262
\(437\) 1.81468e11 0.238031
\(438\) 0 0
\(439\) −5.85966e11 −0.752977 −0.376489 0.926421i \(-0.622869\pi\)
−0.376489 + 0.926421i \(0.622869\pi\)
\(440\) −1.95858e12 −2.49117
\(441\) 0 0
\(442\) −4.98045e9 −0.00620681
\(443\) 2.11546e11 0.260969 0.130484 0.991450i \(-0.458347\pi\)
0.130484 + 0.991450i \(0.458347\pi\)
\(444\) 0 0
\(445\) 3.99975e9 0.00483519
\(446\) 3.08588e11 0.369294
\(447\) 0 0
\(448\) 1.69667e11 0.198997
\(449\) 9.21048e11 1.06948 0.534741 0.845016i \(-0.320409\pi\)
0.534741 + 0.845016i \(0.320409\pi\)
\(450\) 0 0
\(451\) −1.19554e12 −1.36073
\(452\) 5.10091e11 0.574810
\(453\) 0 0
\(454\) −3.08491e11 −0.340794
\(455\) 1.47680e10 0.0161537
\(456\) 0 0
\(457\) 8.11185e11 0.869955 0.434977 0.900441i \(-0.356756\pi\)
0.434977 + 0.900441i \(0.356756\pi\)
\(458\) −5.68493e11 −0.603713
\(459\) 0 0
\(460\) −8.16618e11 −0.850372
\(461\) 1.90069e11 0.196001 0.0980004 0.995186i \(-0.468755\pi\)
0.0980004 + 0.995186i \(0.468755\pi\)
\(462\) 0 0
\(463\) 4.76945e11 0.482341 0.241170 0.970483i \(-0.422469\pi\)
0.241170 + 0.970483i \(0.422469\pi\)
\(464\) 2.83284e10 0.0283721
\(465\) 0 0
\(466\) −1.69253e11 −0.166264
\(467\) −1.06392e12 −1.03510 −0.517549 0.855653i \(-0.673156\pi\)
−0.517549 + 0.855653i \(0.673156\pi\)
\(468\) 0 0
\(469\) −2.79179e11 −0.266443
\(470\) 2.77285e11 0.262111
\(471\) 0 0
\(472\) −7.23420e10 −0.0670890
\(473\) −2.68393e12 −2.46545
\(474\) 0 0
\(475\) −2.48102e11 −0.223619
\(476\) 9.32784e10 0.0832817
\(477\) 0 0
\(478\) 8.52248e11 0.746690
\(479\) 8.43415e11 0.732034 0.366017 0.930608i \(-0.380721\pi\)
0.366017 + 0.930608i \(0.380721\pi\)
\(480\) 0 0
\(481\) 2.77668e10 0.0236523
\(482\) 3.89605e11 0.328785
\(483\) 0 0
\(484\) −1.92694e12 −1.59611
\(485\) 6.07191e11 0.498296
\(486\) 0 0
\(487\) 1.15202e12 0.928065 0.464032 0.885818i \(-0.346402\pi\)
0.464032 + 0.885818i \(0.346402\pi\)
\(488\) 1.91123e12 1.52554
\(489\) 0 0
\(490\) 1.48051e11 0.116019
\(491\) 9.68703e11 0.752184 0.376092 0.926582i \(-0.377268\pi\)
0.376092 + 0.926582i \(0.377268\pi\)
\(492\) 0 0
\(493\) −1.66506e11 −0.126946
\(494\) −6.09011e9 −0.00460102
\(495\) 0 0
\(496\) 1.91754e11 0.142258
\(497\) −3.46934e11 −0.255060
\(498\) 0 0
\(499\) 2.62821e12 1.89761 0.948805 0.315863i \(-0.102294\pi\)
0.948805 + 0.315863i \(0.102294\pi\)
\(500\) −1.35540e11 −0.0969848
\(501\) 0 0
\(502\) 8.40308e11 0.590570
\(503\) −3.95070e11 −0.275181 −0.137590 0.990489i \(-0.543936\pi\)
−0.137590 + 0.990489i \(0.543936\pi\)
\(504\) 0 0
\(505\) −1.10495e12 −0.756019
\(506\) 1.53524e12 1.04111
\(507\) 0 0
\(508\) 2.90790e11 0.193728
\(509\) −6.64157e11 −0.438572 −0.219286 0.975661i \(-0.570373\pi\)
−0.219286 + 0.975661i \(0.570373\pi\)
\(510\) 0 0
\(511\) 3.84532e11 0.249482
\(512\) −2.34512e11 −0.150817
\(513\) 0 0
\(514\) 1.52954e12 0.966556
\(515\) 2.91923e12 1.82867
\(516\) 0 0
\(517\) 9.73882e11 0.599513
\(518\) 2.78364e11 0.169875
\(519\) 0 0
\(520\) 6.94815e10 0.0416730
\(521\) −5.22766e11 −0.310841 −0.155420 0.987848i \(-0.549673\pi\)
−0.155420 + 0.987848i \(0.549673\pi\)
\(522\) 0 0
\(523\) −3.09135e12 −1.80672 −0.903360 0.428882i \(-0.858907\pi\)
−0.903360 + 0.428882i \(0.858907\pi\)
\(524\) 7.48366e11 0.433634
\(525\) 0 0
\(526\) 1.87991e11 0.107078
\(527\) −1.12708e12 −0.636510
\(528\) 0 0
\(529\) −1.78305e11 −0.0989947
\(530\) −1.81673e12 −1.00011
\(531\) 0 0
\(532\) 1.14061e11 0.0617355
\(533\) 4.24125e10 0.0227626
\(534\) 0 0
\(535\) −3.88019e11 −0.204768
\(536\) −1.31350e12 −0.687366
\(537\) 0 0
\(538\) 1.12116e12 0.576960
\(539\) 5.19984e11 0.265363
\(540\) 0 0
\(541\) −1.47490e12 −0.740243 −0.370121 0.928983i \(-0.620684\pi\)
−0.370121 + 0.928983i \(0.620684\pi\)
\(542\) −2.65079e11 −0.131940
\(543\) 0 0
\(544\) 7.04621e11 0.344954
\(545\) 1.67990e12 0.815642
\(546\) 0 0
\(547\) 2.12294e12 1.01390 0.506949 0.861976i \(-0.330773\pi\)
0.506949 + 0.861976i \(0.330773\pi\)
\(548\) 1.38779e12 0.657374
\(549\) 0 0
\(550\) −2.09897e12 −0.978078
\(551\) −2.03604e11 −0.0941031
\(552\) 0 0
\(553\) −1.17486e12 −0.534225
\(554\) 9.59181e11 0.432620
\(555\) 0 0
\(556\) 2.01223e12 0.892978
\(557\) 3.52857e12 1.55328 0.776641 0.629943i \(-0.216922\pi\)
0.776641 + 0.629943i \(0.216922\pi\)
\(558\) 0 0
\(559\) 9.52137e10 0.0412426
\(560\) −9.14713e10 −0.0393042
\(561\) 0 0
\(562\) 1.37419e12 0.581078
\(563\) 3.35280e12 1.40644 0.703218 0.710974i \(-0.251746\pi\)
0.703218 + 0.710974i \(0.251746\pi\)
\(564\) 0 0
\(565\) 2.94008e12 1.21378
\(566\) 7.38691e11 0.302544
\(567\) 0 0
\(568\) −1.63228e12 −0.658000
\(569\) −2.99364e12 −1.19727 −0.598637 0.801020i \(-0.704291\pi\)
−0.598637 + 0.801020i \(0.704291\pi\)
\(570\) 0 0
\(571\) 4.67267e12 1.83951 0.919756 0.392490i \(-0.128386\pi\)
0.919756 + 0.392490i \(0.128386\pi\)
\(572\) 9.62553e10 0.0375961
\(573\) 0 0
\(574\) 4.25189e11 0.163485
\(575\) −2.21875e12 −0.846453
\(576\) 0 0
\(577\) −3.62799e12 −1.36262 −0.681310 0.731995i \(-0.738589\pi\)
−0.681310 + 0.731995i \(0.738589\pi\)
\(578\) 1.40310e12 0.522895
\(579\) 0 0
\(580\) 9.16232e11 0.336186
\(581\) 1.99665e11 0.0726957
\(582\) 0 0
\(583\) −6.38073e12 −2.28751
\(584\) 1.80917e12 0.643608
\(585\) 0 0
\(586\) 1.41252e12 0.494827
\(587\) −3.97200e12 −1.38082 −0.690411 0.723417i \(-0.742570\pi\)
−0.690411 + 0.723417i \(0.742570\pi\)
\(588\) 0 0
\(589\) −1.37819e12 −0.471835
\(590\) −1.64466e11 −0.0558783
\(591\) 0 0
\(592\) −1.71984e11 −0.0575494
\(593\) −2.67436e12 −0.888123 −0.444061 0.895996i \(-0.646463\pi\)
−0.444061 + 0.895996i \(0.646463\pi\)
\(594\) 0 0
\(595\) 5.37641e11 0.175860
\(596\) −1.46013e12 −0.474005
\(597\) 0 0
\(598\) −5.44632e10 −0.0174160
\(599\) −4.84522e12 −1.53777 −0.768887 0.639384i \(-0.779189\pi\)
−0.768887 + 0.639384i \(0.779189\pi\)
\(600\) 0 0
\(601\) −4.64764e12 −1.45311 −0.726553 0.687110i \(-0.758879\pi\)
−0.726553 + 0.687110i \(0.758879\pi\)
\(602\) 9.54525e11 0.296212
\(603\) 0 0
\(604\) 8.98307e11 0.274637
\(605\) −1.11065e13 −3.37039
\(606\) 0 0
\(607\) −6.52447e12 −1.95073 −0.975363 0.220604i \(-0.929197\pi\)
−0.975363 + 0.220604i \(0.929197\pi\)
\(608\) 8.61613e11 0.255709
\(609\) 0 0
\(610\) 4.34510e12 1.27062
\(611\) −3.45489e10 −0.0100288
\(612\) 0 0
\(613\) −9.54536e11 −0.273036 −0.136518 0.990638i \(-0.543591\pi\)
−0.136518 + 0.990638i \(0.543591\pi\)
\(614\) 1.08230e12 0.307321
\(615\) 0 0
\(616\) 2.44645e12 0.684580
\(617\) 4.50764e12 1.25218 0.626088 0.779752i \(-0.284655\pi\)
0.626088 + 0.779752i \(0.284655\pi\)
\(618\) 0 0
\(619\) 3.64346e12 0.997484 0.498742 0.866750i \(-0.333796\pi\)
0.498742 + 0.866750i \(0.333796\pi\)
\(620\) 6.20195e12 1.68564
\(621\) 0 0
\(622\) −4.25452e12 −1.13971
\(623\) −4.99608e9 −0.00132872
\(624\) 0 0
\(625\) −4.18296e12 −1.09654
\(626\) −1.72187e12 −0.448143
\(627\) 0 0
\(628\) 4.43690e11 0.113831
\(629\) 1.01087e12 0.257495
\(630\) 0 0
\(631\) 3.61498e12 0.907766 0.453883 0.891061i \(-0.350038\pi\)
0.453883 + 0.891061i \(0.350038\pi\)
\(632\) −5.52757e12 −1.37818
\(633\) 0 0
\(634\) −9.95003e11 −0.244581
\(635\) 1.67607e12 0.409081
\(636\) 0 0
\(637\) −1.84467e10 −0.00443906
\(638\) −1.72251e12 −0.411593
\(639\) 0 0
\(640\) −4.13793e12 −0.974929
\(641\) 2.66304e12 0.623041 0.311521 0.950239i \(-0.399162\pi\)
0.311521 + 0.950239i \(0.399162\pi\)
\(642\) 0 0
\(643\) 4.09899e12 0.945644 0.472822 0.881158i \(-0.343235\pi\)
0.472822 + 0.881158i \(0.343235\pi\)
\(644\) 1.02004e12 0.233684
\(645\) 0 0
\(646\) −2.21715e11 −0.0500898
\(647\) −6.11325e12 −1.37152 −0.685761 0.727827i \(-0.740531\pi\)
−0.685761 + 0.727827i \(0.740531\pi\)
\(648\) 0 0
\(649\) −5.77640e11 −0.127807
\(650\) 7.44619e10 0.0163615
\(651\) 0 0
\(652\) 1.18754e12 0.257356
\(653\) −7.66270e12 −1.64920 −0.824598 0.565719i \(-0.808599\pi\)
−0.824598 + 0.565719i \(0.808599\pi\)
\(654\) 0 0
\(655\) 4.31346e12 0.915673
\(656\) −2.62698e11 −0.0553846
\(657\) 0 0
\(658\) −3.46356e11 −0.0720287
\(659\) 8.20110e9 0.00169390 0.000846950 1.00000i \(-0.499730\pi\)
0.000846950 1.00000i \(0.499730\pi\)
\(660\) 0 0
\(661\) 3.20922e12 0.653872 0.326936 0.945046i \(-0.393984\pi\)
0.326936 + 0.945046i \(0.393984\pi\)
\(662\) −3.79231e12 −0.767437
\(663\) 0 0
\(664\) 9.39395e11 0.187539
\(665\) 6.57429e11 0.130362
\(666\) 0 0
\(667\) −1.82081e12 −0.356203
\(668\) −3.47781e12 −0.675791
\(669\) 0 0
\(670\) −2.98618e12 −0.572506
\(671\) 1.52609e13 2.90622
\(672\) 0 0
\(673\) −4.91229e12 −0.923031 −0.461515 0.887132i \(-0.652694\pi\)
−0.461515 + 0.887132i \(0.652694\pi\)
\(674\) 7.50089e10 0.0140005
\(675\) 0 0
\(676\) 3.53309e12 0.650721
\(677\) 3.11910e12 0.570664 0.285332 0.958429i \(-0.407896\pi\)
0.285332 + 0.958429i \(0.407896\pi\)
\(678\) 0 0
\(679\) −7.58440e11 −0.136933
\(680\) 2.52953e12 0.453680
\(681\) 0 0
\(682\) −1.16596e13 −2.06374
\(683\) −2.91806e12 −0.513099 −0.256550 0.966531i \(-0.582586\pi\)
−0.256550 + 0.966531i \(0.582586\pi\)
\(684\) 0 0
\(685\) 7.99902e12 1.38813
\(686\) −1.84930e11 −0.0318822
\(687\) 0 0
\(688\) −5.89742e11 −0.100349
\(689\) 2.26360e11 0.0382660
\(690\) 0 0
\(691\) 4.74697e12 0.792073 0.396037 0.918235i \(-0.370385\pi\)
0.396037 + 0.918235i \(0.370385\pi\)
\(692\) 6.82712e12 1.13178
\(693\) 0 0
\(694\) 4.54058e12 0.743009
\(695\) 1.15982e13 1.88563
\(696\) 0 0
\(697\) 1.54406e12 0.247809
\(698\) −4.63240e11 −0.0738680
\(699\) 0 0
\(700\) −1.39459e12 −0.219535
\(701\) 2.24423e11 0.0351023 0.0175512 0.999846i \(-0.494413\pi\)
0.0175512 + 0.999846i \(0.494413\pi\)
\(702\) 0 0
\(703\) 1.23610e12 0.190877
\(704\) 6.37400e12 0.977992
\(705\) 0 0
\(706\) −4.63484e12 −0.702123
\(707\) 1.38019e12 0.207755
\(708\) 0 0
\(709\) 4.25463e12 0.632344 0.316172 0.948702i \(-0.397602\pi\)
0.316172 + 0.948702i \(0.397602\pi\)
\(710\) −3.71091e12 −0.548047
\(711\) 0 0
\(712\) −2.35059e10 −0.00342781
\(713\) −1.23250e13 −1.78601
\(714\) 0 0
\(715\) 5.54800e11 0.0793888
\(716\) 1.82321e12 0.259256
\(717\) 0 0
\(718\) −3.35369e12 −0.470938
\(719\) 4.28931e12 0.598559 0.299280 0.954165i \(-0.403254\pi\)
0.299280 + 0.954165i \(0.403254\pi\)
\(720\) 0 0
\(721\) −3.64640e12 −0.502523
\(722\) 4.04023e12 0.553335
\(723\) 0 0
\(724\) 7.05761e11 0.0954627
\(725\) 2.48940e12 0.334637
\(726\) 0 0
\(727\) 1.28935e13 1.71185 0.855926 0.517098i \(-0.172988\pi\)
0.855926 + 0.517098i \(0.172988\pi\)
\(728\) −8.67892e10 −0.0114518
\(729\) 0 0
\(730\) 4.11307e12 0.536060
\(731\) 3.46633e12 0.448995
\(732\) 0 0
\(733\) 2.71447e12 0.347310 0.173655 0.984807i \(-0.444442\pi\)
0.173655 + 0.984807i \(0.444442\pi\)
\(734\) −6.41143e12 −0.815309
\(735\) 0 0
\(736\) 7.70531e12 0.967921
\(737\) −1.04881e13 −1.30946
\(738\) 0 0
\(739\) −9.62579e12 −1.18723 −0.593617 0.804747i \(-0.702301\pi\)
−0.593617 + 0.804747i \(0.702301\pi\)
\(740\) −5.56252e12 −0.681913
\(741\) 0 0
\(742\) 2.26927e12 0.274833
\(743\) 1.24362e13 1.49706 0.748529 0.663103i \(-0.230761\pi\)
0.748529 + 0.663103i \(0.230761\pi\)
\(744\) 0 0
\(745\) −8.41595e12 −1.00092
\(746\) 2.46898e12 0.291872
\(747\) 0 0
\(748\) 3.50425e12 0.409296
\(749\) 4.84674e11 0.0562706
\(750\) 0 0
\(751\) 4.26959e12 0.489786 0.244893 0.969550i \(-0.421247\pi\)
0.244893 + 0.969550i \(0.421247\pi\)
\(752\) 2.13992e11 0.0244015
\(753\) 0 0
\(754\) 6.11068e10 0.00688523
\(755\) 5.17770e12 0.579930
\(756\) 0 0
\(757\) 9.76840e12 1.08116 0.540582 0.841291i \(-0.318204\pi\)
0.540582 + 0.841291i \(0.318204\pi\)
\(758\) 9.47153e12 1.04210
\(759\) 0 0
\(760\) 3.09311e12 0.336306
\(761\) −1.23336e13 −1.33309 −0.666543 0.745466i \(-0.732227\pi\)
−0.666543 + 0.745466i \(0.732227\pi\)
\(762\) 0 0
\(763\) −2.09836e12 −0.224140
\(764\) 5.75008e12 0.610595
\(765\) 0 0
\(766\) 1.65391e12 0.173573
\(767\) 2.04921e10 0.00213800
\(768\) 0 0
\(769\) −1.68919e13 −1.74185 −0.870926 0.491415i \(-0.836480\pi\)
−0.870926 + 0.491415i \(0.836480\pi\)
\(770\) 5.56191e12 0.570185
\(771\) 0 0
\(772\) −6.73751e12 −0.682687
\(773\) −1.47186e13 −1.48272 −0.741359 0.671109i \(-0.765818\pi\)
−0.741359 + 0.671109i \(0.765818\pi\)
\(774\) 0 0
\(775\) 1.68507e13 1.67788
\(776\) −3.56835e12 −0.353257
\(777\) 0 0
\(778\) −3.98111e12 −0.389579
\(779\) 1.88808e12 0.183697
\(780\) 0 0
\(781\) −1.30335e13 −1.25352
\(782\) −1.98278e12 −0.189602
\(783\) 0 0
\(784\) 1.14257e11 0.0108009
\(785\) 2.55736e12 0.240369
\(786\) 0 0
\(787\) −1.82466e13 −1.69549 −0.847744 0.530406i \(-0.822040\pi\)
−0.847744 + 0.530406i \(0.822040\pi\)
\(788\) −7.42326e12 −0.685846
\(789\) 0 0
\(790\) −1.25667e13 −1.14789
\(791\) −3.67245e12 −0.333550
\(792\) 0 0
\(793\) −5.41388e11 −0.0486160
\(794\) −7.12695e12 −0.636373
\(795\) 0 0
\(796\) −5.68895e12 −0.502254
\(797\) 1.21558e13 1.06714 0.533568 0.845757i \(-0.320851\pi\)
0.533568 + 0.845757i \(0.320851\pi\)
\(798\) 0 0
\(799\) −1.25778e12 −0.109180
\(800\) −1.05347e13 −0.909318
\(801\) 0 0
\(802\) 5.55325e12 0.473982
\(803\) 1.44460e13 1.22610
\(804\) 0 0
\(805\) 5.87932e12 0.493453
\(806\) 4.13631e11 0.0345227
\(807\) 0 0
\(808\) 6.49362e12 0.535964
\(809\) 2.61893e12 0.214959 0.107479 0.994207i \(-0.465722\pi\)
0.107479 + 0.994207i \(0.465722\pi\)
\(810\) 0 0
\(811\) 1.16994e13 0.949662 0.474831 0.880077i \(-0.342509\pi\)
0.474831 + 0.880077i \(0.342509\pi\)
\(812\) −1.14446e12 −0.0923845
\(813\) 0 0
\(814\) 1.04575e13 0.834868
\(815\) 6.84480e12 0.543440
\(816\) 0 0
\(817\) 4.23863e12 0.332833
\(818\) −1.44267e13 −1.12662
\(819\) 0 0
\(820\) −8.49649e12 −0.656262
\(821\) −5.17673e12 −0.397659 −0.198830 0.980034i \(-0.563714\pi\)
−0.198830 + 0.980034i \(0.563714\pi\)
\(822\) 0 0
\(823\) −7.84017e12 −0.595698 −0.297849 0.954613i \(-0.596269\pi\)
−0.297849 + 0.954613i \(0.596269\pi\)
\(824\) −1.71558e13 −1.29640
\(825\) 0 0
\(826\) 2.05435e11 0.0153555
\(827\) 1.43263e13 1.06502 0.532512 0.846422i \(-0.321248\pi\)
0.532512 + 0.846422i \(0.321248\pi\)
\(828\) 0 0
\(829\) 4.95546e12 0.364408 0.182204 0.983261i \(-0.441677\pi\)
0.182204 + 0.983261i \(0.441677\pi\)
\(830\) 2.13568e12 0.156201
\(831\) 0 0
\(832\) −2.26121e11 −0.0163601
\(833\) −6.71566e11 −0.0483266
\(834\) 0 0
\(835\) −2.00456e13 −1.42702
\(836\) 4.28500e12 0.303405
\(837\) 0 0
\(838\) −2.95270e12 −0.206834
\(839\) −7.38235e12 −0.514358 −0.257179 0.966364i \(-0.582793\pi\)
−0.257179 + 0.966364i \(0.582793\pi\)
\(840\) 0 0
\(841\) −1.24642e13 −0.859179
\(842\) −4.64256e12 −0.318312
\(843\) 0 0
\(844\) 1.06675e13 0.723636
\(845\) 2.03642e13 1.37408
\(846\) 0 0
\(847\) 1.38732e13 0.926189
\(848\) −1.40204e12 −0.0931065
\(849\) 0 0
\(850\) 2.71084e12 0.178123
\(851\) 1.10543e13 0.722516
\(852\) 0 0
\(853\) 2.13356e13 1.37985 0.689927 0.723879i \(-0.257643\pi\)
0.689927 + 0.723879i \(0.257643\pi\)
\(854\) −5.42745e12 −0.349169
\(855\) 0 0
\(856\) 2.28032e12 0.145166
\(857\) −1.65008e13 −1.04494 −0.522468 0.852659i \(-0.674989\pi\)
−0.522468 + 0.852659i \(0.674989\pi\)
\(858\) 0 0
\(859\) −1.94817e13 −1.22083 −0.610417 0.792080i \(-0.708998\pi\)
−0.610417 + 0.792080i \(0.708998\pi\)
\(860\) −1.90742e13 −1.18906
\(861\) 0 0
\(862\) 1.65103e12 0.101853
\(863\) −1.61059e13 −0.988411 −0.494205 0.869345i \(-0.664541\pi\)
−0.494205 + 0.869345i \(0.664541\pi\)
\(864\) 0 0
\(865\) 3.93504e13 2.38989
\(866\) 9.72232e12 0.587408
\(867\) 0 0
\(868\) −7.74684e12 −0.463219
\(869\) −4.41368e13 −2.62550
\(870\) 0 0
\(871\) 3.72070e11 0.0219050
\(872\) −9.87249e12 −0.578232
\(873\) 0 0
\(874\) −2.42454e12 −0.140549
\(875\) 9.75836e11 0.0562782
\(876\) 0 0
\(877\) −1.84919e13 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(878\) 7.82892e12 0.444607
\(879\) 0 0
\(880\) −3.43636e12 −0.193164
\(881\) 2.83078e13 1.58312 0.791562 0.611089i \(-0.209268\pi\)
0.791562 + 0.611089i \(0.209268\pi\)
\(882\) 0 0
\(883\) −7.32328e12 −0.405399 −0.202700 0.979241i \(-0.564971\pi\)
−0.202700 + 0.979241i \(0.564971\pi\)
\(884\) −1.24315e11 −0.00684681
\(885\) 0 0
\(886\) −2.82641e12 −0.154093
\(887\) −1.51372e13 −0.821087 −0.410544 0.911841i \(-0.634661\pi\)
−0.410544 + 0.911841i \(0.634661\pi\)
\(888\) 0 0
\(889\) −2.09357e12 −0.112416
\(890\) −5.34396e10 −0.00285501
\(891\) 0 0
\(892\) 7.70253e12 0.407372
\(893\) −1.53802e12 −0.0809337
\(894\) 0 0
\(895\) 1.05087e13 0.547451
\(896\) 5.16867e12 0.267913
\(897\) 0 0
\(898\) −1.23059e13 −0.631493
\(899\) 1.38285e13 0.706082
\(900\) 0 0
\(901\) 8.24080e12 0.416589
\(902\) 1.59733e13 0.803463
\(903\) 0 0
\(904\) −1.72783e13 −0.860487
\(905\) 4.06789e12 0.201582
\(906\) 0 0
\(907\) −2.24337e13 −1.10070 −0.550349 0.834935i \(-0.685505\pi\)
−0.550349 + 0.834935i \(0.685505\pi\)
\(908\) −7.70011e12 −0.375933
\(909\) 0 0
\(910\) −1.97312e11 −0.00953820
\(911\) 6.34178e12 0.305055 0.152528 0.988299i \(-0.451259\pi\)
0.152528 + 0.988299i \(0.451259\pi\)
\(912\) 0 0
\(913\) 7.50094e12 0.357270
\(914\) −1.08380e13 −0.513679
\(915\) 0 0
\(916\) −1.41899e13 −0.665963
\(917\) −5.38793e12 −0.251629
\(918\) 0 0
\(919\) 9.04471e12 0.418288 0.209144 0.977885i \(-0.432932\pi\)
0.209144 + 0.977885i \(0.432932\pi\)
\(920\) 2.76614e13 1.27300
\(921\) 0 0
\(922\) −2.53946e12 −0.115732
\(923\) 4.62369e11 0.0209692
\(924\) 0 0
\(925\) −1.51134e13 −0.678771
\(926\) −6.37233e12 −0.284806
\(927\) 0 0
\(928\) −8.64522e12 −0.382658
\(929\) −8.50641e12 −0.374693 −0.187346 0.982294i \(-0.559989\pi\)
−0.187346 + 0.982294i \(0.559989\pi\)
\(930\) 0 0
\(931\) −8.21193e11 −0.0358238
\(932\) −4.22464e12 −0.183408
\(933\) 0 0
\(934\) 1.42147e13 0.611191
\(935\) 2.01979e13 0.864280
\(936\) 0 0
\(937\) −3.00276e13 −1.27260 −0.636300 0.771442i \(-0.719536\pi\)
−0.636300 + 0.771442i \(0.719536\pi\)
\(938\) 3.73003e12 0.157326
\(939\) 0 0
\(940\) 6.92118e12 0.289138
\(941\) 3.15982e13 1.31374 0.656870 0.754004i \(-0.271880\pi\)
0.656870 + 0.754004i \(0.271880\pi\)
\(942\) 0 0
\(943\) 1.68849e13 0.695338
\(944\) −1.26925e11 −0.00520205
\(945\) 0 0
\(946\) 3.58592e13 1.45576
\(947\) 8.84885e12 0.357529 0.178765 0.983892i \(-0.442790\pi\)
0.178765 + 0.983892i \(0.442790\pi\)
\(948\) 0 0
\(949\) −5.12477e11 −0.0205105
\(950\) 3.31482e12 0.132040
\(951\) 0 0
\(952\) −3.15963e12 −0.124672
\(953\) 4.90260e12 0.192534 0.0962672 0.995356i \(-0.469310\pi\)
0.0962672 + 0.995356i \(0.469310\pi\)
\(954\) 0 0
\(955\) 3.31425e13 1.28935
\(956\) 2.12726e13 0.823682
\(957\) 0 0
\(958\) −1.12686e13 −0.432241
\(959\) −9.99155e12 −0.381460
\(960\) 0 0
\(961\) 6.71649e13 2.54031
\(962\) −3.70985e11 −0.0139659
\(963\) 0 0
\(964\) 9.72475e12 0.362687
\(965\) −3.88339e13 −1.44158
\(966\) 0 0
\(967\) 1.55633e13 0.572378 0.286189 0.958173i \(-0.407612\pi\)
0.286189 + 0.958173i \(0.407612\pi\)
\(968\) 6.52713e13 2.38937
\(969\) 0 0
\(970\) −8.11251e12 −0.294227
\(971\) 2.49197e13 0.899613 0.449806 0.893126i \(-0.351493\pi\)
0.449806 + 0.893126i \(0.351493\pi\)
\(972\) 0 0
\(973\) −1.44872e13 −0.518176
\(974\) −1.53918e13 −0.547991
\(975\) 0 0
\(976\) 3.35329e12 0.118290
\(977\) −4.47898e12 −0.157273 −0.0786364 0.996903i \(-0.525057\pi\)
−0.0786364 + 0.996903i \(0.525057\pi\)
\(978\) 0 0
\(979\) −1.87691e11 −0.00653012
\(980\) 3.69543e12 0.127981
\(981\) 0 0
\(982\) −1.29426e13 −0.444139
\(983\) 1.43233e13 0.489275 0.244637 0.969615i \(-0.421331\pi\)
0.244637 + 0.969615i \(0.421331\pi\)
\(984\) 0 0
\(985\) −4.27865e13 −1.44825
\(986\) 2.22464e12 0.0749572
\(987\) 0 0
\(988\) −1.52013e11 −0.00507543
\(989\) 3.79057e13 1.25986
\(990\) 0 0
\(991\) −2.28575e13 −0.752829 −0.376415 0.926451i \(-0.622843\pi\)
−0.376415 + 0.926451i \(0.622843\pi\)
\(992\) −5.85194e13 −1.91866
\(993\) 0 0
\(994\) 4.63529e12 0.150605
\(995\) −3.27902e13 −1.06057
\(996\) 0 0
\(997\) −2.67132e13 −0.856243 −0.428121 0.903721i \(-0.640824\pi\)
−0.428121 + 0.903721i \(0.640824\pi\)
\(998\) −3.51147e13 −1.12047
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.10.a.e.1.2 3
3.2 odd 2 7.10.a.b.1.2 3
12.11 even 2 112.10.a.h.1.1 3
15.2 even 4 175.10.b.d.99.4 6
15.8 even 4 175.10.b.d.99.3 6
15.14 odd 2 175.10.a.d.1.2 3
21.2 odd 6 49.10.c.d.18.2 6
21.5 even 6 49.10.c.e.18.2 6
21.11 odd 6 49.10.c.d.30.2 6
21.17 even 6 49.10.c.e.30.2 6
21.20 even 2 49.10.a.c.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.10.a.b.1.2 3 3.2 odd 2
49.10.a.c.1.2 3 21.20 even 2
49.10.c.d.18.2 6 21.2 odd 6
49.10.c.d.30.2 6 21.11 odd 6
49.10.c.e.18.2 6 21.5 even 6
49.10.c.e.30.2 6 21.17 even 6
63.10.a.e.1.2 3 1.1 even 1 trivial
112.10.a.h.1.1 3 12.11 even 2
175.10.a.d.1.2 3 15.14 odd 2
175.10.b.d.99.3 6 15.8 even 4
175.10.b.d.99.4 6 15.2 even 4