Properties

Label 63.10.a.e.1.1
Level $63$
Weight $10$
Character 63.1
Self dual yes
Analytic conductor $32.447$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,10,Mod(1,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 63.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.4472576783\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 426x + 2016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.96128\) of defining polynomial
Character \(\chi\) \(=\) 63.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-41.8019 q^{2} +1235.40 q^{4} +1791.89 q^{5} +2401.00 q^{7} -30239.6 q^{8} -74904.4 q^{10} -17401.5 q^{11} -122541. q^{13} -100366. q^{14} +631550. q^{16} -331933. q^{17} +761707. q^{19} +2.21370e6 q^{20} +727418. q^{22} -1.23249e6 q^{23} +1.25774e6 q^{25} +5.12246e6 q^{26} +2.96620e6 q^{28} -634604. q^{29} -5.38069e6 q^{31} -1.09173e7 q^{32} +1.38754e7 q^{34} +4.30232e6 q^{35} -3.03611e6 q^{37} -3.18408e7 q^{38} -5.41861e7 q^{40} +7.37009e6 q^{41} -2.06990e7 q^{43} -2.14979e7 q^{44} +5.15203e7 q^{46} -2.03632e7 q^{47} +5.76480e6 q^{49} -5.25760e7 q^{50} -1.51388e8 q^{52} +5.97380e7 q^{53} -3.11816e7 q^{55} -7.26054e7 q^{56} +2.65277e7 q^{58} -6.03461e7 q^{59} -9.44357e6 q^{61} +2.24923e8 q^{62} +1.33012e8 q^{64} -2.19580e8 q^{65} -2.19187e8 q^{67} -4.10071e8 q^{68} -1.79846e8 q^{70} +5.58741e7 q^{71} +4.54332e8 q^{73} +1.26915e8 q^{74} +9.41015e8 q^{76} -4.17811e7 q^{77} +4.51057e7 q^{79} +1.13167e9 q^{80} -3.08084e8 q^{82} +3.34665e8 q^{83} -5.94786e8 q^{85} +8.65259e8 q^{86} +5.26216e8 q^{88} -6.51886e8 q^{89} -2.94221e8 q^{91} -1.52262e9 q^{92} +8.51220e8 q^{94} +1.36489e9 q^{95} -1.42804e9 q^{97} -2.40980e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 21 q^{2} + 1557 q^{4} - 1554 q^{5} + 7203 q^{7} - 14055 q^{8} - 97860 q^{10} + 3444 q^{11} - 19782 q^{13} - 50421 q^{14} + 482961 q^{16} - 1016694 q^{17} + 222852 q^{19} + 1922088 q^{20} - 2847048 q^{22}+ \cdots - 121060821 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −41.8019 −1.84740 −0.923701 0.383114i \(-0.874852\pi\)
−0.923701 + 0.383114i \(0.874852\pi\)
\(3\) 0 0
\(4\) 1235.40 2.41290
\(5\) 1791.89 1.28217 0.641086 0.767469i \(-0.278484\pi\)
0.641086 + 0.767469i \(0.278484\pi\)
\(6\) 0 0
\(7\) 2401.00 0.377964
\(8\) −30239.6 −2.61019
\(9\) 0 0
\(10\) −74904.4 −2.36869
\(11\) −17401.5 −0.358361 −0.179180 0.983816i \(-0.557345\pi\)
−0.179180 + 0.983816i \(0.557345\pi\)
\(12\) 0 0
\(13\) −122541. −1.18997 −0.594986 0.803736i \(-0.702842\pi\)
−0.594986 + 0.803736i \(0.702842\pi\)
\(14\) −100366. −0.698253
\(15\) 0 0
\(16\) 631550. 2.40917
\(17\) −331933. −0.963895 −0.481948 0.876200i \(-0.660070\pi\)
−0.481948 + 0.876200i \(0.660070\pi\)
\(18\) 0 0
\(19\) 761707. 1.34090 0.670450 0.741954i \(-0.266101\pi\)
0.670450 + 0.741954i \(0.266101\pi\)
\(20\) 2.21370e6 3.09375
\(21\) 0 0
\(22\) 727418. 0.662037
\(23\) −1.23249e6 −0.918347 −0.459173 0.888347i \(-0.651854\pi\)
−0.459173 + 0.888347i \(0.651854\pi\)
\(24\) 0 0
\(25\) 1.25774e6 0.643963
\(26\) 5.12246e6 2.19836
\(27\) 0 0
\(28\) 2.96620e6 0.911989
\(29\) −634604. −0.166614 −0.0833071 0.996524i \(-0.526548\pi\)
−0.0833071 + 0.996524i \(0.526548\pi\)
\(30\) 0 0
\(31\) −5.38069e6 −1.04643 −0.523215 0.852201i \(-0.675268\pi\)
−0.523215 + 0.852201i \(0.675268\pi\)
\(32\) −1.09173e7 −1.84052
\(33\) 0 0
\(34\) 1.38754e7 1.78070
\(35\) 4.30232e6 0.484615
\(36\) 0 0
\(37\) −3.03611e6 −0.266324 −0.133162 0.991094i \(-0.542513\pi\)
−0.133162 + 0.991094i \(0.542513\pi\)
\(38\) −3.18408e7 −2.47718
\(39\) 0 0
\(40\) −5.41861e7 −3.34671
\(41\) 7.37009e6 0.407329 0.203665 0.979041i \(-0.434715\pi\)
0.203665 + 0.979041i \(0.434715\pi\)
\(42\) 0 0
\(43\) −2.06990e7 −0.923297 −0.461649 0.887063i \(-0.652742\pi\)
−0.461649 + 0.887063i \(0.652742\pi\)
\(44\) −2.14979e7 −0.864687
\(45\) 0 0
\(46\) 5.15203e7 1.69656
\(47\) −2.03632e7 −0.608702 −0.304351 0.952560i \(-0.598440\pi\)
−0.304351 + 0.952560i \(0.598440\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) −5.25760e7 −1.18966
\(51\) 0 0
\(52\) −1.51388e8 −2.87128
\(53\) 5.97380e7 1.03994 0.519971 0.854184i \(-0.325943\pi\)
0.519971 + 0.854184i \(0.325943\pi\)
\(54\) 0 0
\(55\) −3.11816e7 −0.459480
\(56\) −7.26054e7 −0.986558
\(57\) 0 0
\(58\) 2.65277e7 0.307803
\(59\) −6.03461e7 −0.648358 −0.324179 0.945996i \(-0.605088\pi\)
−0.324179 + 0.945996i \(0.605088\pi\)
\(60\) 0 0
\(61\) −9.44357e6 −0.0873277 −0.0436639 0.999046i \(-0.513903\pi\)
−0.0436639 + 0.999046i \(0.513903\pi\)
\(62\) 2.24923e8 1.93318
\(63\) 0 0
\(64\) 1.33012e8 0.991013
\(65\) −2.19580e8 −1.52575
\(66\) 0 0
\(67\) −2.19187e8 −1.32885 −0.664427 0.747353i \(-0.731324\pi\)
−0.664427 + 0.747353i \(0.731324\pi\)
\(68\) −4.10071e8 −2.32578
\(69\) 0 0
\(70\) −1.79846e8 −0.895279
\(71\) 5.58741e7 0.260944 0.130472 0.991452i \(-0.458351\pi\)
0.130472 + 0.991452i \(0.458351\pi\)
\(72\) 0 0
\(73\) 4.54332e8 1.87250 0.936248 0.351340i \(-0.114274\pi\)
0.936248 + 0.351340i \(0.114274\pi\)
\(74\) 1.26915e8 0.492007
\(75\) 0 0
\(76\) 9.41015e8 3.23545
\(77\) −4.17811e7 −0.135448
\(78\) 0 0
\(79\) 4.51057e7 0.130289 0.0651447 0.997876i \(-0.479249\pi\)
0.0651447 + 0.997876i \(0.479249\pi\)
\(80\) 1.13167e9 3.08897
\(81\) 0 0
\(82\) −3.08084e8 −0.752501
\(83\) 3.34665e8 0.774031 0.387016 0.922073i \(-0.373506\pi\)
0.387016 + 0.922073i \(0.373506\pi\)
\(84\) 0 0
\(85\) −5.94786e8 −1.23588
\(86\) 8.65259e8 1.70570
\(87\) 0 0
\(88\) 5.26216e8 0.935389
\(89\) −6.51886e8 −1.10133 −0.550664 0.834727i \(-0.685625\pi\)
−0.550664 + 0.834727i \(0.685625\pi\)
\(90\) 0 0
\(91\) −2.94221e8 −0.449767
\(92\) −1.52262e9 −2.21588
\(93\) 0 0
\(94\) 8.51220e8 1.12452
\(95\) 1.36489e9 1.71926
\(96\) 0 0
\(97\) −1.42804e9 −1.63783 −0.818914 0.573916i \(-0.805424\pi\)
−0.818914 + 0.573916i \(0.805424\pi\)
\(98\) −2.40980e8 −0.263915
\(99\) 0 0
\(100\) 1.55382e9 1.55382
\(101\) −8.91532e8 −0.852493 −0.426247 0.904607i \(-0.640164\pi\)
−0.426247 + 0.904607i \(0.640164\pi\)
\(102\) 0 0
\(103\) −7.12000e8 −0.623322 −0.311661 0.950193i \(-0.600885\pi\)
−0.311661 + 0.950193i \(0.600885\pi\)
\(104\) 3.70560e9 3.10605
\(105\) 0 0
\(106\) −2.49716e9 −1.92119
\(107\) −2.48598e9 −1.83346 −0.916729 0.399510i \(-0.869180\pi\)
−0.916729 + 0.399510i \(0.869180\pi\)
\(108\) 0 0
\(109\) 3.83455e8 0.260193 0.130096 0.991501i \(-0.458471\pi\)
0.130096 + 0.991501i \(0.458471\pi\)
\(110\) 1.30345e9 0.848844
\(111\) 0 0
\(112\) 1.51635e9 0.910581
\(113\) −2.39582e9 −1.38230 −0.691148 0.722713i \(-0.742895\pi\)
−0.691148 + 0.722713i \(0.742895\pi\)
\(114\) 0 0
\(115\) −2.20848e9 −1.17748
\(116\) −7.83991e8 −0.402023
\(117\) 0 0
\(118\) 2.52258e9 1.19778
\(119\) −7.96970e8 −0.364318
\(120\) 0 0
\(121\) −2.05513e9 −0.871578
\(122\) 3.94760e8 0.161329
\(123\) 0 0
\(124\) −6.64732e9 −2.52493
\(125\) −1.24605e9 −0.456501
\(126\) 0 0
\(127\) 1.88261e9 0.642161 0.321080 0.947052i \(-0.395954\pi\)
0.321080 + 0.947052i \(0.395954\pi\)
\(128\) 2.95237e7 0.00972134
\(129\) 0 0
\(130\) 9.17888e9 2.81867
\(131\) 1.49241e9 0.442760 0.221380 0.975188i \(-0.428944\pi\)
0.221380 + 0.975188i \(0.428944\pi\)
\(132\) 0 0
\(133\) 1.82886e9 0.506813
\(134\) 9.16242e9 2.45493
\(135\) 0 0
\(136\) 1.00375e10 2.51595
\(137\) 3.21118e9 0.778792 0.389396 0.921070i \(-0.372684\pi\)
0.389396 + 0.921070i \(0.372684\pi\)
\(138\) 0 0
\(139\) −3.03934e9 −0.690577 −0.345289 0.938497i \(-0.612219\pi\)
−0.345289 + 0.938497i \(0.612219\pi\)
\(140\) 5.31510e9 1.16933
\(141\) 0 0
\(142\) −2.33565e9 −0.482070
\(143\) 2.13240e9 0.426439
\(144\) 0 0
\(145\) −1.13714e9 −0.213628
\(146\) −1.89920e10 −3.45925
\(147\) 0 0
\(148\) −3.75082e9 −0.642611
\(149\) 3.64286e9 0.605487 0.302743 0.953072i \(-0.402098\pi\)
0.302743 + 0.953072i \(0.402098\pi\)
\(150\) 0 0
\(151\) 5.05862e9 0.791837 0.395919 0.918286i \(-0.370426\pi\)
0.395919 + 0.918286i \(0.370426\pi\)
\(152\) −2.30337e10 −3.50000
\(153\) 0 0
\(154\) 1.74653e9 0.250226
\(155\) −9.64159e9 −1.34170
\(156\) 0 0
\(157\) −1.19687e10 −1.57216 −0.786082 0.618122i \(-0.787894\pi\)
−0.786082 + 0.618122i \(0.787894\pi\)
\(158\) −1.88551e9 −0.240697
\(159\) 0 0
\(160\) −1.95626e10 −2.35986
\(161\) −2.95920e9 −0.347102
\(162\) 0 0
\(163\) 1.40960e10 1.56405 0.782027 0.623245i \(-0.214186\pi\)
0.782027 + 0.623245i \(0.214186\pi\)
\(164\) 9.10503e9 0.982843
\(165\) 0 0
\(166\) −1.39896e10 −1.42995
\(167\) −3.56028e9 −0.354210 −0.177105 0.984192i \(-0.556673\pi\)
−0.177105 + 0.984192i \(0.556673\pi\)
\(168\) 0 0
\(169\) 4.41184e9 0.416034
\(170\) 2.48632e10 2.28317
\(171\) 0 0
\(172\) −2.55716e10 −2.22782
\(173\) −2.64068e9 −0.224134 −0.112067 0.993701i \(-0.535747\pi\)
−0.112067 + 0.993701i \(0.535747\pi\)
\(174\) 0 0
\(175\) 3.01983e9 0.243395
\(176\) −1.09899e10 −0.863353
\(177\) 0 0
\(178\) 2.72501e10 2.03459
\(179\) −1.26973e9 −0.0924430 −0.0462215 0.998931i \(-0.514718\pi\)
−0.0462215 + 0.998931i \(0.514718\pi\)
\(180\) 0 0
\(181\) −2.17242e10 −1.50449 −0.752247 0.658881i \(-0.771030\pi\)
−0.752247 + 0.658881i \(0.771030\pi\)
\(182\) 1.22990e10 0.830901
\(183\) 0 0
\(184\) 3.72699e10 2.39706
\(185\) −5.44037e9 −0.341473
\(186\) 0 0
\(187\) 5.77614e9 0.345422
\(188\) −2.51567e10 −1.46874
\(189\) 0 0
\(190\) −5.70552e10 −3.17617
\(191\) 1.07035e10 0.581937 0.290968 0.956733i \(-0.406023\pi\)
0.290968 + 0.956733i \(0.406023\pi\)
\(192\) 0 0
\(193\) 7.66063e9 0.397426 0.198713 0.980058i \(-0.436324\pi\)
0.198713 + 0.980058i \(0.436324\pi\)
\(194\) 5.96950e10 3.02573
\(195\) 0 0
\(196\) 7.12185e9 0.344699
\(197\) 4.26160e9 0.201592 0.100796 0.994907i \(-0.467861\pi\)
0.100796 + 0.994907i \(0.467861\pi\)
\(198\) 0 0
\(199\) 3.16291e10 1.42971 0.714856 0.699272i \(-0.246492\pi\)
0.714856 + 0.699272i \(0.246492\pi\)
\(200\) −3.80336e10 −1.68086
\(201\) 0 0
\(202\) 3.72678e10 1.57490
\(203\) −1.52368e9 −0.0629742
\(204\) 0 0
\(205\) 1.32064e10 0.522266
\(206\) 2.97630e10 1.15153
\(207\) 0 0
\(208\) −7.73909e10 −2.86685
\(209\) −1.32549e10 −0.480526
\(210\) 0 0
\(211\) 1.76561e10 0.613229 0.306615 0.951834i \(-0.400804\pi\)
0.306615 + 0.951834i \(0.400804\pi\)
\(212\) 7.38005e10 2.50927
\(213\) 0 0
\(214\) 1.03919e11 3.38713
\(215\) −3.70903e10 −1.18383
\(216\) 0 0
\(217\) −1.29190e10 −0.395513
\(218\) −1.60292e10 −0.480681
\(219\) 0 0
\(220\) −3.85219e10 −1.10868
\(221\) 4.06754e10 1.14701
\(222\) 0 0
\(223\) −1.04686e10 −0.283476 −0.141738 0.989904i \(-0.545269\pi\)
−0.141738 + 0.989904i \(0.545269\pi\)
\(224\) −2.62125e10 −0.695652
\(225\) 0 0
\(226\) 1.00150e11 2.55366
\(227\) −1.95043e10 −0.487543 −0.243772 0.969833i \(-0.578385\pi\)
−0.243772 + 0.969833i \(0.578385\pi\)
\(228\) 0 0
\(229\) −5.96135e10 −1.43247 −0.716234 0.697860i \(-0.754136\pi\)
−0.716234 + 0.697860i \(0.754136\pi\)
\(230\) 9.23187e10 2.17528
\(231\) 0 0
\(232\) 1.91902e10 0.434894
\(233\) −8.42619e10 −1.87296 −0.936482 0.350716i \(-0.885938\pi\)
−0.936482 + 0.350716i \(0.885938\pi\)
\(234\) 0 0
\(235\) −3.64885e10 −0.780460
\(236\) −7.45517e10 −1.56442
\(237\) 0 0
\(238\) 3.33149e10 0.673042
\(239\) 7.28353e10 1.44395 0.721974 0.691920i \(-0.243235\pi\)
0.721974 + 0.691920i \(0.243235\pi\)
\(240\) 0 0
\(241\) 4.45555e10 0.850795 0.425397 0.905007i \(-0.360134\pi\)
0.425397 + 0.905007i \(0.360134\pi\)
\(242\) 8.59086e10 1.61015
\(243\) 0 0
\(244\) −1.16666e10 −0.210713
\(245\) 1.03299e10 0.183167
\(246\) 0 0
\(247\) −9.33404e10 −1.59564
\(248\) 1.62710e11 2.73138
\(249\) 0 0
\(250\) 5.20874e10 0.843340
\(251\) 9.55068e10 1.51881 0.759404 0.650620i \(-0.225491\pi\)
0.759404 + 0.650620i \(0.225491\pi\)
\(252\) 0 0
\(253\) 2.14472e10 0.329100
\(254\) −7.86968e10 −1.18633
\(255\) 0 0
\(256\) −6.93361e10 −1.00897
\(257\) −9.12794e10 −1.30519 −0.652595 0.757707i \(-0.726320\pi\)
−0.652595 + 0.757707i \(0.726320\pi\)
\(258\) 0 0
\(259\) −7.28970e9 −0.100661
\(260\) −2.71270e11 −3.68147
\(261\) 0 0
\(262\) −6.23858e10 −0.817956
\(263\) −1.50976e11 −1.94584 −0.972921 0.231138i \(-0.925755\pi\)
−0.972921 + 0.231138i \(0.925755\pi\)
\(264\) 0 0
\(265\) 1.07044e11 1.33338
\(266\) −7.64498e10 −0.936287
\(267\) 0 0
\(268\) −2.70784e11 −3.20639
\(269\) −2.39622e10 −0.279024 −0.139512 0.990220i \(-0.544553\pi\)
−0.139512 + 0.990220i \(0.544553\pi\)
\(270\) 0 0
\(271\) −5.51248e10 −0.620848 −0.310424 0.950598i \(-0.600471\pi\)
−0.310424 + 0.950598i \(0.600471\pi\)
\(272\) −2.09632e11 −2.32219
\(273\) 0 0
\(274\) −1.34233e11 −1.43874
\(275\) −2.18866e10 −0.230771
\(276\) 0 0
\(277\) 2.19632e10 0.224149 0.112074 0.993700i \(-0.464251\pi\)
0.112074 + 0.993700i \(0.464251\pi\)
\(278\) 1.27050e11 1.27577
\(279\) 0 0
\(280\) −1.30101e11 −1.26494
\(281\) 1.62670e10 0.155643 0.0778213 0.996967i \(-0.475204\pi\)
0.0778213 + 0.996967i \(0.475204\pi\)
\(282\) 0 0
\(283\) 1.35590e10 0.125657 0.0628287 0.998024i \(-0.479988\pi\)
0.0628287 + 0.998024i \(0.479988\pi\)
\(284\) 6.90270e10 0.629632
\(285\) 0 0
\(286\) −8.91387e10 −0.787805
\(287\) 1.76956e10 0.153956
\(288\) 0 0
\(289\) −8.40858e9 −0.0709059
\(290\) 4.75346e10 0.394657
\(291\) 0 0
\(292\) 5.61284e11 4.51814
\(293\) −5.41900e10 −0.429551 −0.214776 0.976663i \(-0.568902\pi\)
−0.214776 + 0.976663i \(0.568902\pi\)
\(294\) 0 0
\(295\) −1.08133e11 −0.831306
\(296\) 9.18109e10 0.695155
\(297\) 0 0
\(298\) −1.52279e11 −1.11858
\(299\) 1.51030e11 1.09281
\(300\) 0 0
\(301\) −4.96983e10 −0.348974
\(302\) −2.11460e11 −1.46284
\(303\) 0 0
\(304\) 4.81056e11 3.23046
\(305\) −1.69218e10 −0.111969
\(306\) 0 0
\(307\) 7.32498e10 0.470634 0.235317 0.971919i \(-0.424387\pi\)
0.235317 + 0.971919i \(0.424387\pi\)
\(308\) −5.16165e10 −0.326821
\(309\) 0 0
\(310\) 4.03037e11 2.47866
\(311\) 2.44502e11 1.48204 0.741021 0.671482i \(-0.234342\pi\)
0.741021 + 0.671482i \(0.234342\pi\)
\(312\) 0 0
\(313\) −4.39895e10 −0.259060 −0.129530 0.991576i \(-0.541347\pi\)
−0.129530 + 0.991576i \(0.541347\pi\)
\(314\) 5.00314e11 2.90442
\(315\) 0 0
\(316\) 5.57237e10 0.314375
\(317\) 2.17653e11 1.21059 0.605297 0.795999i \(-0.293054\pi\)
0.605297 + 0.795999i \(0.293054\pi\)
\(318\) 0 0
\(319\) 1.10431e10 0.0597080
\(320\) 2.38342e11 1.27065
\(321\) 0 0
\(322\) 1.23700e11 0.641238
\(323\) −2.52835e11 −1.29249
\(324\) 0 0
\(325\) −1.54125e11 −0.766298
\(326\) −5.89240e11 −2.88944
\(327\) 0 0
\(328\) −2.22869e11 −1.06321
\(329\) −4.88920e10 −0.230068
\(330\) 0 0
\(331\) −3.66945e11 −1.68026 −0.840128 0.542389i \(-0.817520\pi\)
−0.840128 + 0.542389i \(0.817520\pi\)
\(332\) 4.13446e11 1.86766
\(333\) 0 0
\(334\) 1.48827e11 0.654368
\(335\) −3.92758e11 −1.70382
\(336\) 0 0
\(337\) 1.99451e11 0.842367 0.421183 0.906976i \(-0.361615\pi\)
0.421183 + 0.906976i \(0.361615\pi\)
\(338\) −1.84423e11 −0.768583
\(339\) 0 0
\(340\) −7.34801e11 −2.98205
\(341\) 9.36322e10 0.374999
\(342\) 0 0
\(343\) 1.38413e10 0.0539949
\(344\) 6.25931e11 2.40998
\(345\) 0 0
\(346\) 1.10385e11 0.414066
\(347\) −6.63180e10 −0.245555 −0.122777 0.992434i \(-0.539180\pi\)
−0.122777 + 0.992434i \(0.539180\pi\)
\(348\) 0 0
\(349\) −1.20301e11 −0.434065 −0.217033 0.976164i \(-0.569638\pi\)
−0.217033 + 0.976164i \(0.569638\pi\)
\(350\) −1.26235e11 −0.449649
\(351\) 0 0
\(352\) 1.89978e11 0.659571
\(353\) −2.43060e11 −0.833159 −0.416580 0.909099i \(-0.636771\pi\)
−0.416580 + 0.909099i \(0.636771\pi\)
\(354\) 0 0
\(355\) 1.00120e11 0.334575
\(356\) −8.05341e11 −2.65739
\(357\) 0 0
\(358\) 5.30773e10 0.170779
\(359\) −2.81654e11 −0.894933 −0.447466 0.894301i \(-0.647674\pi\)
−0.447466 + 0.894301i \(0.647674\pi\)
\(360\) 0 0
\(361\) 2.57510e11 0.798015
\(362\) 9.08115e11 2.77941
\(363\) 0 0
\(364\) −3.63482e11 −1.08524
\(365\) 8.14113e11 2.40086
\(366\) 0 0
\(367\) −2.41000e11 −0.693458 −0.346729 0.937965i \(-0.612708\pi\)
−0.346729 + 0.937965i \(0.612708\pi\)
\(368\) −7.78376e11 −2.21246
\(369\) 0 0
\(370\) 2.27418e11 0.630837
\(371\) 1.43431e11 0.393061
\(372\) 0 0
\(373\) −1.33921e11 −0.358227 −0.179114 0.983828i \(-0.557323\pi\)
−0.179114 + 0.983828i \(0.557323\pi\)
\(374\) −2.41454e11 −0.638134
\(375\) 0 0
\(376\) 6.15775e11 1.58883
\(377\) 7.77651e10 0.198266
\(378\) 0 0
\(379\) 5.67201e11 1.41208 0.706042 0.708170i \(-0.250479\pi\)
0.706042 + 0.708170i \(0.250479\pi\)
\(380\) 1.68619e12 4.14841
\(381\) 0 0
\(382\) −4.47427e11 −1.07507
\(383\) 1.03509e11 0.245800 0.122900 0.992419i \(-0.460781\pi\)
0.122900 + 0.992419i \(0.460781\pi\)
\(384\) 0 0
\(385\) −7.48671e10 −0.173667
\(386\) −3.20229e11 −0.734206
\(387\) 0 0
\(388\) −1.76421e12 −3.95191
\(389\) 5.83600e11 1.29224 0.646119 0.763237i \(-0.276391\pi\)
0.646119 + 0.763237i \(0.276391\pi\)
\(390\) 0 0
\(391\) 4.09102e11 0.885190
\(392\) −1.74326e11 −0.372884
\(393\) 0 0
\(394\) −1.78143e11 −0.372422
\(395\) 8.08243e10 0.167053
\(396\) 0 0
\(397\) −6.54542e10 −0.132245 −0.0661226 0.997812i \(-0.521063\pi\)
−0.0661226 + 0.997812i \(0.521063\pi\)
\(398\) −1.32216e12 −2.64125
\(399\) 0 0
\(400\) 7.94326e11 1.55142
\(401\) −4.06647e10 −0.0785359 −0.0392679 0.999229i \(-0.512503\pi\)
−0.0392679 + 0.999229i \(0.512503\pi\)
\(402\) 0 0
\(403\) 6.59356e11 1.24522
\(404\) −1.10140e12 −2.05698
\(405\) 0 0
\(406\) 6.36930e10 0.116339
\(407\) 5.28330e10 0.0954400
\(408\) 0 0
\(409\) 1.06163e12 1.87594 0.937970 0.346716i \(-0.112703\pi\)
0.937970 + 0.346716i \(0.112703\pi\)
\(410\) −5.52052e11 −0.964835
\(411\) 0 0
\(412\) −8.79607e11 −1.50401
\(413\) −1.44891e11 −0.245056
\(414\) 0 0
\(415\) 5.99682e11 0.992441
\(416\) 1.33782e12 2.19017
\(417\) 0 0
\(418\) 5.54079e11 0.887726
\(419\) 1.19335e12 1.89149 0.945744 0.324912i \(-0.105335\pi\)
0.945744 + 0.324912i \(0.105335\pi\)
\(420\) 0 0
\(421\) −5.88397e11 −0.912853 −0.456427 0.889761i \(-0.650871\pi\)
−0.456427 + 0.889761i \(0.650871\pi\)
\(422\) −7.38058e11 −1.13288
\(423\) 0 0
\(424\) −1.80646e12 −2.71444
\(425\) −4.17485e11 −0.620713
\(426\) 0 0
\(427\) −2.26740e10 −0.0330068
\(428\) −3.07119e12 −4.42394
\(429\) 0 0
\(430\) 1.55045e12 2.18700
\(431\) 1.22932e12 1.71599 0.857997 0.513655i \(-0.171709\pi\)
0.857997 + 0.513655i \(0.171709\pi\)
\(432\) 0 0
\(433\) −4.73819e10 −0.0647764 −0.0323882 0.999475i \(-0.510311\pi\)
−0.0323882 + 0.999475i \(0.510311\pi\)
\(434\) 5.40041e11 0.730672
\(435\) 0 0
\(436\) 4.73722e11 0.627819
\(437\) −9.38793e11 −1.23141
\(438\) 0 0
\(439\) 6.14236e11 0.789305 0.394652 0.918830i \(-0.370865\pi\)
0.394652 + 0.918830i \(0.370865\pi\)
\(440\) 9.42921e11 1.19933
\(441\) 0 0
\(442\) −1.70031e12 −2.11899
\(443\) 8.19199e11 1.01058 0.505292 0.862948i \(-0.331385\pi\)
0.505292 + 0.862948i \(0.331385\pi\)
\(444\) 0 0
\(445\) −1.16811e12 −1.41209
\(446\) 4.37607e11 0.523694
\(447\) 0 0
\(448\) 3.19361e11 0.374568
\(449\) −4.81029e11 −0.558551 −0.279276 0.960211i \(-0.590094\pi\)
−0.279276 + 0.960211i \(0.590094\pi\)
\(450\) 0 0
\(451\) −1.28251e11 −0.145971
\(452\) −2.95980e12 −3.33534
\(453\) 0 0
\(454\) 8.15316e11 0.900689
\(455\) −5.27212e11 −0.576679
\(456\) 0 0
\(457\) 1.15328e12 1.23684 0.618419 0.785849i \(-0.287774\pi\)
0.618419 + 0.785849i \(0.287774\pi\)
\(458\) 2.49196e12 2.64635
\(459\) 0 0
\(460\) −2.72836e12 −2.84113
\(461\) 6.06986e11 0.625928 0.312964 0.949765i \(-0.398678\pi\)
0.312964 + 0.949765i \(0.398678\pi\)
\(462\) 0 0
\(463\) −8.87758e11 −0.897801 −0.448900 0.893582i \(-0.648184\pi\)
−0.448900 + 0.893582i \(0.648184\pi\)
\(464\) −4.00784e11 −0.401402
\(465\) 0 0
\(466\) 3.52231e12 3.46012
\(467\) 1.09779e12 1.06806 0.534029 0.845466i \(-0.320677\pi\)
0.534029 + 0.845466i \(0.320677\pi\)
\(468\) 0 0
\(469\) −5.26267e11 −0.502260
\(470\) 1.52529e12 1.44182
\(471\) 0 0
\(472\) 1.82484e12 1.69234
\(473\) 3.60195e11 0.330874
\(474\) 0 0
\(475\) 9.58029e11 0.863490
\(476\) −9.84579e11 −0.879062
\(477\) 0 0
\(478\) −3.04466e12 −2.66755
\(479\) 3.12229e11 0.270996 0.135498 0.990778i \(-0.456737\pi\)
0.135498 + 0.990778i \(0.456737\pi\)
\(480\) 0 0
\(481\) 3.72048e11 0.316918
\(482\) −1.86251e12 −1.57176
\(483\) 0 0
\(484\) −2.53892e12 −2.10303
\(485\) −2.55889e12 −2.09998
\(486\) 0 0
\(487\) 1.08377e12 0.873088 0.436544 0.899683i \(-0.356202\pi\)
0.436544 + 0.899683i \(0.356202\pi\)
\(488\) 2.85570e11 0.227942
\(489\) 0 0
\(490\) −4.31809e11 −0.338384
\(491\) −2.14702e12 −1.66713 −0.833567 0.552419i \(-0.813705\pi\)
−0.833567 + 0.552419i \(0.813705\pi\)
\(492\) 0 0
\(493\) 2.10646e11 0.160599
\(494\) 3.90181e12 2.94778
\(495\) 0 0
\(496\) −3.39817e12 −2.52103
\(497\) 1.34154e11 0.0986277
\(498\) 0 0
\(499\) −1.85705e12 −1.34082 −0.670411 0.741990i \(-0.733882\pi\)
−0.670411 + 0.741990i \(0.733882\pi\)
\(500\) −1.53938e12 −1.10149
\(501\) 0 0
\(502\) −3.99237e12 −2.80585
\(503\) 1.59040e12 1.10777 0.553885 0.832593i \(-0.313145\pi\)
0.553885 + 0.832593i \(0.313145\pi\)
\(504\) 0 0
\(505\) −1.59753e12 −1.09304
\(506\) −8.96533e11 −0.607979
\(507\) 0 0
\(508\) 2.32578e12 1.54947
\(509\) −2.32864e12 −1.53771 −0.768853 0.639426i \(-0.779172\pi\)
−0.768853 + 0.639426i \(0.779172\pi\)
\(510\) 0 0
\(511\) 1.09085e12 0.707737
\(512\) 2.88327e12 1.85426
\(513\) 0 0
\(514\) 3.81566e12 2.41121
\(515\) −1.27582e12 −0.799205
\(516\) 0 0
\(517\) 3.54350e11 0.218135
\(518\) 3.04724e11 0.185961
\(519\) 0 0
\(520\) 6.64003e12 3.98249
\(521\) 1.48366e12 0.882197 0.441099 0.897459i \(-0.354589\pi\)
0.441099 + 0.897459i \(0.354589\pi\)
\(522\) 0 0
\(523\) −1.95584e12 −1.14308 −0.571540 0.820574i \(-0.693654\pi\)
−0.571540 + 0.820574i \(0.693654\pi\)
\(524\) 1.84373e12 1.06833
\(525\) 0 0
\(526\) 6.31110e12 3.59475
\(527\) 1.78603e12 1.00865
\(528\) 0 0
\(529\) −2.82131e11 −0.156639
\(530\) −4.47464e12 −2.46330
\(531\) 0 0
\(532\) 2.25938e12 1.22289
\(533\) −9.03139e11 −0.484710
\(534\) 0 0
\(535\) −4.45460e12 −2.35081
\(536\) 6.62812e12 3.46856
\(537\) 0 0
\(538\) 1.00167e12 0.515470
\(539\) −1.00316e11 −0.0511944
\(540\) 0 0
\(541\) −1.34802e12 −0.676563 −0.338281 0.941045i \(-0.609846\pi\)
−0.338281 + 0.941045i \(0.609846\pi\)
\(542\) 2.30433e12 1.14696
\(543\) 0 0
\(544\) 3.62381e12 1.77407
\(545\) 6.87109e11 0.333612
\(546\) 0 0
\(547\) 1.02503e12 0.489548 0.244774 0.969580i \(-0.421286\pi\)
0.244774 + 0.969580i \(0.421286\pi\)
\(548\) 3.96710e12 1.87914
\(549\) 0 0
\(550\) 9.14903e11 0.426327
\(551\) −4.83382e11 −0.223413
\(552\) 0 0
\(553\) 1.08299e11 0.0492448
\(554\) −9.18103e11 −0.414093
\(555\) 0 0
\(556\) −3.75481e12 −1.66629
\(557\) −1.75343e12 −0.771864 −0.385932 0.922527i \(-0.626120\pi\)
−0.385932 + 0.922527i \(0.626120\pi\)
\(558\) 0 0
\(559\) 2.53648e12 1.09870
\(560\) 2.71713e12 1.16752
\(561\) 0 0
\(562\) −6.79991e11 −0.287535
\(563\) 2.17456e12 0.912185 0.456092 0.889932i \(-0.349249\pi\)
0.456092 + 0.889932i \(0.349249\pi\)
\(564\) 0 0
\(565\) −4.29304e12 −1.77234
\(566\) −5.66792e11 −0.232140
\(567\) 0 0
\(568\) −1.68961e12 −0.681114
\(569\) −3.13812e12 −1.25506 −0.627531 0.778592i \(-0.715934\pi\)
−0.627531 + 0.778592i \(0.715934\pi\)
\(570\) 0 0
\(571\) 2.05979e12 0.810887 0.405444 0.914120i \(-0.367117\pi\)
0.405444 + 0.914120i \(0.367117\pi\)
\(572\) 2.63438e12 1.02895
\(573\) 0 0
\(574\) −7.39710e11 −0.284419
\(575\) −1.55015e12 −0.591381
\(576\) 0 0
\(577\) 3.94380e12 1.48123 0.740617 0.671927i \(-0.234533\pi\)
0.740617 + 0.671927i \(0.234533\pi\)
\(578\) 3.51495e11 0.130992
\(579\) 0 0
\(580\) −1.40483e12 −0.515462
\(581\) 8.03530e11 0.292556
\(582\) 0 0
\(583\) −1.03953e12 −0.372675
\(584\) −1.37389e13 −4.88757
\(585\) 0 0
\(586\) 2.26525e12 0.793555
\(587\) −3.68239e12 −1.28014 −0.640071 0.768315i \(-0.721095\pi\)
−0.640071 + 0.768315i \(0.721095\pi\)
\(588\) 0 0
\(589\) −4.09851e12 −1.40316
\(590\) 4.52019e12 1.53576
\(591\) 0 0
\(592\) −1.91746e12 −0.641620
\(593\) 1.17114e12 0.388921 0.194460 0.980910i \(-0.437704\pi\)
0.194460 + 0.980910i \(0.437704\pi\)
\(594\) 0 0
\(595\) −1.42808e12 −0.467118
\(596\) 4.50040e12 1.46098
\(597\) 0 0
\(598\) −6.31336e12 −2.01886
\(599\) −2.83757e12 −0.900586 −0.450293 0.892881i \(-0.648681\pi\)
−0.450293 + 0.892881i \(0.648681\pi\)
\(600\) 0 0
\(601\) 2.37066e12 0.741198 0.370599 0.928793i \(-0.379152\pi\)
0.370599 + 0.928793i \(0.379152\pi\)
\(602\) 2.07749e12 0.644695
\(603\) 0 0
\(604\) 6.24943e12 1.91062
\(605\) −3.68257e12 −1.11751
\(606\) 0 0
\(607\) 4.40080e12 1.31578 0.657889 0.753115i \(-0.271450\pi\)
0.657889 + 0.753115i \(0.271450\pi\)
\(608\) −8.31580e12 −2.46796
\(609\) 0 0
\(610\) 7.07366e11 0.206852
\(611\) 2.49533e12 0.724339
\(612\) 0 0
\(613\) −1.87570e12 −0.536527 −0.268264 0.963346i \(-0.586450\pi\)
−0.268264 + 0.963346i \(0.586450\pi\)
\(614\) −3.06198e12 −0.869451
\(615\) 0 0
\(616\) 1.26345e12 0.353544
\(617\) 3.18170e12 0.883845 0.441922 0.897053i \(-0.354297\pi\)
0.441922 + 0.897053i \(0.354297\pi\)
\(618\) 0 0
\(619\) −1.16476e11 −0.0318880 −0.0159440 0.999873i \(-0.505075\pi\)
−0.0159440 + 0.999873i \(0.505075\pi\)
\(620\) −1.19113e13 −3.23739
\(621\) 0 0
\(622\) −1.02207e13 −2.73793
\(623\) −1.56518e12 −0.416263
\(624\) 0 0
\(625\) −4.68931e12 −1.22927
\(626\) 1.83885e12 0.478587
\(627\) 0 0
\(628\) −1.47861e13 −3.79347
\(629\) 1.00778e12 0.256708
\(630\) 0 0
\(631\) −3.71283e12 −0.932338 −0.466169 0.884696i \(-0.654366\pi\)
−0.466169 + 0.884696i \(0.654366\pi\)
\(632\) −1.36398e12 −0.340080
\(633\) 0 0
\(634\) −9.09834e12 −2.23646
\(635\) 3.37343e12 0.823360
\(636\) 0 0
\(637\) −7.06425e11 −0.169996
\(638\) −4.61622e11 −0.110305
\(639\) 0 0
\(640\) 5.29032e10 0.0124644
\(641\) −2.93764e11 −0.0687285 −0.0343642 0.999409i \(-0.510941\pi\)
−0.0343642 + 0.999409i \(0.510941\pi\)
\(642\) 0 0
\(643\) 5.27980e12 1.21806 0.609029 0.793148i \(-0.291559\pi\)
0.609029 + 0.793148i \(0.291559\pi\)
\(644\) −3.65580e12 −0.837522
\(645\) 0 0
\(646\) 1.05690e13 2.38775
\(647\) 2.62000e12 0.587804 0.293902 0.955836i \(-0.405046\pi\)
0.293902 + 0.955836i \(0.405046\pi\)
\(648\) 0 0
\(649\) 1.05011e12 0.232346
\(650\) 6.44272e12 1.41566
\(651\) 0 0
\(652\) 1.74142e13 3.77390
\(653\) −3.15918e12 −0.679931 −0.339965 0.940438i \(-0.610415\pi\)
−0.339965 + 0.940438i \(0.610415\pi\)
\(654\) 0 0
\(655\) 2.67424e12 0.567694
\(656\) 4.65458e12 0.981326
\(657\) 0 0
\(658\) 2.04378e12 0.425028
\(659\) −8.77292e11 −0.181201 −0.0906004 0.995887i \(-0.528879\pi\)
−0.0906004 + 0.995887i \(0.528879\pi\)
\(660\) 0 0
\(661\) 8.22108e12 1.67503 0.837514 0.546416i \(-0.184008\pi\)
0.837514 + 0.546416i \(0.184008\pi\)
\(662\) 1.53390e13 3.10411
\(663\) 0 0
\(664\) −1.01201e13 −2.02037
\(665\) 3.27711e12 0.649821
\(666\) 0 0
\(667\) 7.82140e11 0.153010
\(668\) −4.39838e12 −0.854671
\(669\) 0 0
\(670\) 1.64180e13 3.14764
\(671\) 1.64333e11 0.0312948
\(672\) 0 0
\(673\) −7.47304e12 −1.40420 −0.702101 0.712077i \(-0.747754\pi\)
−0.702101 + 0.712077i \(0.747754\pi\)
\(674\) −8.33743e12 −1.55619
\(675\) 0 0
\(676\) 5.45039e12 1.00385
\(677\) −8.71309e12 −1.59413 −0.797064 0.603895i \(-0.793614\pi\)
−0.797064 + 0.603895i \(0.793614\pi\)
\(678\) 0 0
\(679\) −3.42873e12 −0.619041
\(680\) 1.79861e13 3.22588
\(681\) 0 0
\(682\) −3.91401e12 −0.692775
\(683\) 3.73903e12 0.657455 0.328727 0.944425i \(-0.393380\pi\)
0.328727 + 0.944425i \(0.393380\pi\)
\(684\) 0 0
\(685\) 5.75407e12 0.998545
\(686\) −5.78593e11 −0.0997504
\(687\) 0 0
\(688\) −1.30725e13 −2.22438
\(689\) −7.32036e12 −1.23750
\(690\) 0 0
\(691\) −6.26971e12 −1.04616 −0.523078 0.852285i \(-0.675216\pi\)
−0.523078 + 0.852285i \(0.675216\pi\)
\(692\) −3.26230e12 −0.540812
\(693\) 0 0
\(694\) 2.77222e12 0.453639
\(695\) −5.44616e12 −0.885439
\(696\) 0 0
\(697\) −2.44637e12 −0.392623
\(698\) 5.02882e12 0.801893
\(699\) 0 0
\(700\) 3.73071e12 0.587287
\(701\) 5.13904e12 0.803805 0.401903 0.915682i \(-0.368349\pi\)
0.401903 + 0.915682i \(0.368349\pi\)
\(702\) 0 0
\(703\) −2.31263e12 −0.357114
\(704\) −2.31461e12 −0.355140
\(705\) 0 0
\(706\) 1.01604e13 1.53918
\(707\) −2.14057e12 −0.322212
\(708\) 0 0
\(709\) −2.95438e12 −0.439094 −0.219547 0.975602i \(-0.570458\pi\)
−0.219547 + 0.975602i \(0.570458\pi\)
\(710\) −4.18522e12 −0.618096
\(711\) 0 0
\(712\) 1.97128e13 2.87467
\(713\) 6.63162e12 0.960986
\(714\) 0 0
\(715\) 3.82103e12 0.546768
\(716\) −1.56863e12 −0.223055
\(717\) 0 0
\(718\) 1.17737e13 1.65330
\(719\) 1.21819e13 1.69994 0.849971 0.526829i \(-0.176619\pi\)
0.849971 + 0.526829i \(0.176619\pi\)
\(720\) 0 0
\(721\) −1.70951e12 −0.235594
\(722\) −1.07644e13 −1.47426
\(723\) 0 0
\(724\) −2.68382e13 −3.63019
\(725\) −7.98167e11 −0.107293
\(726\) 0 0
\(727\) 1.26291e13 1.67675 0.838376 0.545093i \(-0.183506\pi\)
0.838376 + 0.545093i \(0.183506\pi\)
\(728\) 8.89715e12 1.17398
\(729\) 0 0
\(730\) −3.40315e13 −4.43536
\(731\) 6.87068e12 0.889962
\(732\) 0 0
\(733\) 9.16594e12 1.17276 0.586380 0.810036i \(-0.300553\pi\)
0.586380 + 0.810036i \(0.300553\pi\)
\(734\) 1.00743e13 1.28110
\(735\) 0 0
\(736\) 1.34554e13 1.69024
\(737\) 3.81418e12 0.476209
\(738\) 0 0
\(739\) 1.10658e13 1.36484 0.682420 0.730960i \(-0.260927\pi\)
0.682420 + 0.730960i \(0.260927\pi\)
\(740\) −6.72105e12 −0.823938
\(741\) 0 0
\(742\) −5.99569e12 −0.726142
\(743\) −1.84642e12 −0.222270 −0.111135 0.993805i \(-0.535449\pi\)
−0.111135 + 0.993805i \(0.535449\pi\)
\(744\) 0 0
\(745\) 6.52760e12 0.776337
\(746\) 5.59816e12 0.661790
\(747\) 0 0
\(748\) 7.13586e12 0.833468
\(749\) −5.96884e12 −0.692982
\(750\) 0 0
\(751\) −9.19672e12 −1.05500 −0.527501 0.849555i \(-0.676871\pi\)
−0.527501 + 0.849555i \(0.676871\pi\)
\(752\) −1.28604e13 −1.46647
\(753\) 0 0
\(754\) −3.25073e12 −0.366277
\(755\) 9.06449e12 1.01527
\(756\) 0 0
\(757\) 8.81778e12 0.975950 0.487975 0.872858i \(-0.337736\pi\)
0.487975 + 0.872858i \(0.337736\pi\)
\(758\) −2.37101e13 −2.60869
\(759\) 0 0
\(760\) −4.12739e13 −4.48760
\(761\) 2.42043e12 0.261614 0.130807 0.991408i \(-0.458243\pi\)
0.130807 + 0.991408i \(0.458243\pi\)
\(762\) 0 0
\(763\) 9.20676e11 0.0983437
\(764\) 1.32231e13 1.40415
\(765\) 0 0
\(766\) −4.32686e12 −0.454092
\(767\) 7.39488e12 0.771528
\(768\) 0 0
\(769\) 7.67945e12 0.791885 0.395942 0.918275i \(-0.370418\pi\)
0.395942 + 0.918275i \(0.370418\pi\)
\(770\) 3.12959e12 0.320833
\(771\) 0 0
\(772\) 9.46396e12 0.958948
\(773\) −1.04693e13 −1.05466 −0.527328 0.849662i \(-0.676806\pi\)
−0.527328 + 0.849662i \(0.676806\pi\)
\(774\) 0 0
\(775\) −6.76751e12 −0.673862
\(776\) 4.31835e13 4.27504
\(777\) 0 0
\(778\) −2.43956e13 −2.38728
\(779\) 5.61385e12 0.546188
\(780\) 0 0
\(781\) −9.72296e11 −0.0935123
\(782\) −1.71013e13 −1.63530
\(783\) 0 0
\(784\) 3.64076e12 0.344167
\(785\) −2.14465e13 −2.01578
\(786\) 0 0
\(787\) −1.26490e13 −1.17535 −0.587677 0.809095i \(-0.699958\pi\)
−0.587677 + 0.809095i \(0.699958\pi\)
\(788\) 5.26479e12 0.486422
\(789\) 0 0
\(790\) −3.37862e12 −0.308615
\(791\) −5.75236e12 −0.522459
\(792\) 0 0
\(793\) 1.15723e12 0.103918
\(794\) 2.73611e12 0.244310
\(795\) 0 0
\(796\) 3.90747e13 3.44975
\(797\) 6.02337e11 0.0528782 0.0264391 0.999650i \(-0.491583\pi\)
0.0264391 + 0.999650i \(0.491583\pi\)
\(798\) 0 0
\(799\) 6.75920e12 0.586725
\(800\) −1.37311e13 −1.18523
\(801\) 0 0
\(802\) 1.69986e12 0.145087
\(803\) −7.90608e12 −0.671029
\(804\) 0 0
\(805\) −5.30256e12 −0.445045
\(806\) −2.75624e13 −2.30043
\(807\) 0 0
\(808\) 2.69596e13 2.22517
\(809\) 7.72967e12 0.634443 0.317222 0.948351i \(-0.397250\pi\)
0.317222 + 0.948351i \(0.397250\pi\)
\(810\) 0 0
\(811\) −1.20157e13 −0.975335 −0.487668 0.873029i \(-0.662152\pi\)
−0.487668 + 0.873029i \(0.662152\pi\)
\(812\) −1.88236e12 −0.151950
\(813\) 0 0
\(814\) −2.20852e12 −0.176316
\(815\) 2.52585e13 2.00538
\(816\) 0 0
\(817\) −1.57666e13 −1.23805
\(818\) −4.43783e13 −3.46562
\(819\) 0 0
\(820\) 1.63152e13 1.26017
\(821\) −1.39952e13 −1.07507 −0.537533 0.843243i \(-0.680644\pi\)
−0.537533 + 0.843243i \(0.680644\pi\)
\(822\) 0 0
\(823\) 1.61982e13 1.23074 0.615371 0.788238i \(-0.289006\pi\)
0.615371 + 0.788238i \(0.289006\pi\)
\(824\) 2.15306e13 1.62699
\(825\) 0 0
\(826\) 6.05672e12 0.452718
\(827\) 1.30127e13 0.967374 0.483687 0.875241i \(-0.339297\pi\)
0.483687 + 0.875241i \(0.339297\pi\)
\(828\) 0 0
\(829\) −1.31364e13 −0.966007 −0.483004 0.875618i \(-0.660454\pi\)
−0.483004 + 0.875618i \(0.660454\pi\)
\(830\) −2.50679e13 −1.83344
\(831\) 0 0
\(832\) −1.62994e13 −1.17928
\(833\) −1.91353e12 −0.137699
\(834\) 0 0
\(835\) −6.37963e12 −0.454157
\(836\) −1.63751e13 −1.15946
\(837\) 0 0
\(838\) −4.98842e13 −3.49434
\(839\) 5.22420e12 0.363991 0.181996 0.983299i \(-0.441744\pi\)
0.181996 + 0.983299i \(0.441744\pi\)
\(840\) 0 0
\(841\) −1.41044e13 −0.972240
\(842\) 2.45961e13 1.68641
\(843\) 0 0
\(844\) 2.18124e13 1.47966
\(845\) 7.90552e12 0.533427
\(846\) 0 0
\(847\) −4.93438e12 −0.329425
\(848\) 3.77275e13 2.50540
\(849\) 0 0
\(850\) 1.74517e13 1.14671
\(851\) 3.74196e12 0.244578
\(852\) 0 0
\(853\) −5.65076e12 −0.365457 −0.182728 0.983163i \(-0.558493\pi\)
−0.182728 + 0.983163i \(0.558493\pi\)
\(854\) 9.47818e11 0.0609768
\(855\) 0 0
\(856\) 7.51752e13 4.78567
\(857\) −1.42516e12 −0.0902503 −0.0451251 0.998981i \(-0.514369\pi\)
−0.0451251 + 0.998981i \(0.514369\pi\)
\(858\) 0 0
\(859\) 2.77961e13 1.74186 0.870932 0.491404i \(-0.163516\pi\)
0.870932 + 0.491404i \(0.163516\pi\)
\(860\) −4.58215e13 −2.85645
\(861\) 0 0
\(862\) −5.13878e13 −3.17013
\(863\) 1.14117e13 0.700326 0.350163 0.936689i \(-0.386126\pi\)
0.350163 + 0.936689i \(0.386126\pi\)
\(864\) 0 0
\(865\) −4.73180e12 −0.287378
\(866\) 1.98066e12 0.119668
\(867\) 0 0
\(868\) −1.59602e13 −0.954333
\(869\) −7.84908e11 −0.0466906
\(870\) 0 0
\(871\) 2.68594e13 1.58130
\(872\) −1.15956e13 −0.679153
\(873\) 0 0
\(874\) 3.92434e13 2.27491
\(875\) −2.99177e12 −0.172541
\(876\) 0 0
\(877\) −1.21188e13 −0.691769 −0.345884 0.938277i \(-0.612421\pi\)
−0.345884 + 0.938277i \(0.612421\pi\)
\(878\) −2.56763e13 −1.45816
\(879\) 0 0
\(880\) −1.96927e13 −1.10697
\(881\) 4.60741e12 0.257671 0.128836 0.991666i \(-0.458876\pi\)
0.128836 + 0.991666i \(0.458876\pi\)
\(882\) 0 0
\(883\) 1.04709e13 0.579642 0.289821 0.957081i \(-0.406404\pi\)
0.289821 + 0.957081i \(0.406404\pi\)
\(884\) 5.02505e13 2.76761
\(885\) 0 0
\(886\) −3.42441e13 −1.86696
\(887\) 3.68711e12 0.200000 0.0999999 0.994987i \(-0.468116\pi\)
0.0999999 + 0.994987i \(0.468116\pi\)
\(888\) 0 0
\(889\) 4.52015e12 0.242714
\(890\) 4.88291e13 2.60870
\(891\) 0 0
\(892\) −1.29329e13 −0.683998
\(893\) −1.55108e13 −0.816209
\(894\) 0 0
\(895\) −2.27522e12 −0.118528
\(896\) 7.08864e10 0.00367432
\(897\) 0 0
\(898\) 2.01080e13 1.03187
\(899\) 3.41461e12 0.174350
\(900\) 0 0
\(901\) −1.98290e13 −1.00240
\(902\) 5.36114e12 0.269667
\(903\) 0 0
\(904\) 7.24487e13 3.60805
\(905\) −3.89274e13 −1.92902
\(906\) 0 0
\(907\) −6.05209e11 −0.0296943 −0.0148471 0.999890i \(-0.504726\pi\)
−0.0148471 + 0.999890i \(0.504726\pi\)
\(908\) −2.40956e13 −1.17639
\(909\) 0 0
\(910\) 2.20385e13 1.06536
\(911\) 3.27450e12 0.157512 0.0787559 0.996894i \(-0.474905\pi\)
0.0787559 + 0.996894i \(0.474905\pi\)
\(912\) 0 0
\(913\) −5.82368e12 −0.277383
\(914\) −4.82094e13 −2.28494
\(915\) 0 0
\(916\) −7.36467e13 −3.45640
\(917\) 3.58329e12 0.167348
\(918\) 0 0
\(919\) 2.21117e11 0.0102259 0.00511295 0.999987i \(-0.498372\pi\)
0.00511295 + 0.999987i \(0.498372\pi\)
\(920\) 6.67836e13 3.07344
\(921\) 0 0
\(922\) −2.53732e13 −1.15634
\(923\) −6.84688e12 −0.310517
\(924\) 0 0
\(925\) −3.81864e12 −0.171503
\(926\) 3.71100e13 1.65860
\(927\) 0 0
\(928\) 6.92817e12 0.306657
\(929\) 4.00147e12 0.176258 0.0881290 0.996109i \(-0.471911\pi\)
0.0881290 + 0.996109i \(0.471911\pi\)
\(930\) 0 0
\(931\) 4.39109e12 0.191557
\(932\) −1.04097e14 −4.51927
\(933\) 0 0
\(934\) −4.58899e13 −1.97313
\(935\) 1.03502e13 0.442890
\(936\) 0 0
\(937\) −3.76138e10 −0.00159411 −0.000797056 1.00000i \(-0.500254\pi\)
−0.000797056 1.00000i \(0.500254\pi\)
\(938\) 2.19990e13 0.927876
\(939\) 0 0
\(940\) −4.50780e13 −1.88317
\(941\) 2.21494e12 0.0920894 0.0460447 0.998939i \(-0.485338\pi\)
0.0460447 + 0.998939i \(0.485338\pi\)
\(942\) 0 0
\(943\) −9.08353e12 −0.374069
\(944\) −3.81116e13 −1.56201
\(945\) 0 0
\(946\) −1.50568e13 −0.611257
\(947\) −2.36266e13 −0.954610 −0.477305 0.878738i \(-0.658386\pi\)
−0.477305 + 0.878738i \(0.658386\pi\)
\(948\) 0 0
\(949\) −5.56744e13 −2.22822
\(950\) −4.00475e13 −1.59521
\(951\) 0 0
\(952\) 2.41001e13 0.950939
\(953\) 1.15037e13 0.451771 0.225885 0.974154i \(-0.427473\pi\)
0.225885 + 0.974154i \(0.427473\pi\)
\(954\) 0 0
\(955\) 1.91795e13 0.746142
\(956\) 8.99810e13 3.48410
\(957\) 0 0
\(958\) −1.30518e13 −0.500639
\(959\) 7.71003e12 0.294356
\(960\) 0 0
\(961\) 2.51218e12 0.0950156
\(962\) −1.55524e13 −0.585475
\(963\) 0 0
\(964\) 5.50440e13 2.05288
\(965\) 1.37270e13 0.509568
\(966\) 0 0
\(967\) −1.36863e13 −0.503346 −0.251673 0.967812i \(-0.580981\pi\)
−0.251673 + 0.967812i \(0.580981\pi\)
\(968\) 6.21465e13 2.27498
\(969\) 0 0
\(970\) 1.06967e14 3.87950
\(971\) −9.95259e12 −0.359294 −0.179647 0.983731i \(-0.557496\pi\)
−0.179647 + 0.983731i \(0.557496\pi\)
\(972\) 0 0
\(973\) −7.29745e12 −0.261014
\(974\) −4.53038e13 −1.61295
\(975\) 0 0
\(976\) −5.96409e12 −0.210387
\(977\) −1.51387e13 −0.531575 −0.265787 0.964032i \(-0.585632\pi\)
−0.265787 + 0.964032i \(0.585632\pi\)
\(978\) 0 0
\(979\) 1.13438e13 0.394673
\(980\) 1.27616e13 0.441964
\(981\) 0 0
\(982\) 8.97498e13 3.07987
\(983\) −5.47141e13 −1.86899 −0.934497 0.355970i \(-0.884151\pi\)
−0.934497 + 0.355970i \(0.884151\pi\)
\(984\) 0 0
\(985\) 7.63631e12 0.258476
\(986\) −8.80540e12 −0.296690
\(987\) 0 0
\(988\) −1.15313e14 −3.85010
\(989\) 2.55112e13 0.847907
\(990\) 0 0
\(991\) 4.86384e13 1.60195 0.800974 0.598699i \(-0.204316\pi\)
0.800974 + 0.598699i \(0.204316\pi\)
\(992\) 5.87427e13 1.92598
\(993\) 0 0
\(994\) −5.60789e12 −0.182205
\(995\) 5.66759e13 1.83314
\(996\) 0 0
\(997\) 2.77758e13 0.890304 0.445152 0.895455i \(-0.353150\pi\)
0.445152 + 0.895455i \(0.353150\pi\)
\(998\) 7.76283e13 2.47704
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.10.a.e.1.1 3
3.2 odd 2 7.10.a.b.1.3 3
12.11 even 2 112.10.a.h.1.2 3
15.2 even 4 175.10.b.d.99.6 6
15.8 even 4 175.10.b.d.99.1 6
15.14 odd 2 175.10.a.d.1.1 3
21.2 odd 6 49.10.c.d.18.1 6
21.5 even 6 49.10.c.e.18.1 6
21.11 odd 6 49.10.c.d.30.1 6
21.17 even 6 49.10.c.e.30.1 6
21.20 even 2 49.10.a.c.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.10.a.b.1.3 3 3.2 odd 2
49.10.a.c.1.3 3 21.20 even 2
49.10.c.d.18.1 6 21.2 odd 6
49.10.c.d.30.1 6 21.11 odd 6
49.10.c.e.18.1 6 21.5 even 6
49.10.c.e.30.1 6 21.17 even 6
63.10.a.e.1.1 3 1.1 even 1 trivial
112.10.a.h.1.2 3 12.11 even 2
175.10.a.d.1.1 3 15.14 odd 2
175.10.b.d.99.1 6 15.8 even 4
175.10.b.d.99.6 6 15.2 even 4