Newspace parameters
Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 63.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(32.4472576783\) |
Analytic rank: | \(1\) |
Dimension: | \(3\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) |
Defining polynomial: |
\( x^{3} - x^{2} - 426x + 2016 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2\cdot 3 \) |
Twist minimal: | no (minimal twist has level 7) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{3} - x^{2} - 426x + 2016 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -\nu^{2} + 25\nu + 276 ) / 6 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} + 11\nu - 288 ) / 6 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{2} + \beta _1 + 2 ) / 6 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 25\beta_{2} - 11\beta _1 + 1706 ) / 6 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−41.8019 | 0 | 1235.40 | 1791.89 | 0 | 2401.00 | −30239.6 | 0 | −74904.4 | |||||||||||||||||||||||||||
1.2 | −13.3607 | 0 | −333.491 | −1922.19 | 0 | 2401.00 | 11296.4 | 0 | 25681.8 | ||||||||||||||||||||||||||||
1.3 | 34.1627 | 0 | 655.088 | −1423.70 | 0 | 2401.00 | 4888.28 | 0 | −48637.4 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(-1\) |
\(7\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 63.10.a.e | 3 | |
3.b | odd | 2 | 1 | 7.10.a.b | ✓ | 3 | |
12.b | even | 2 | 1 | 112.10.a.h | 3 | ||
15.d | odd | 2 | 1 | 175.10.a.d | 3 | ||
15.e | even | 4 | 2 | 175.10.b.d | 6 | ||
21.c | even | 2 | 1 | 49.10.a.c | 3 | ||
21.g | even | 6 | 2 | 49.10.c.e | 6 | ||
21.h | odd | 6 | 2 | 49.10.c.d | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
7.10.a.b | ✓ | 3 | 3.b | odd | 2 | 1 | |
49.10.a.c | 3 | 21.c | even | 2 | 1 | ||
49.10.c.d | 6 | 21.h | odd | 6 | 2 | ||
49.10.c.e | 6 | 21.g | even | 6 | 2 | ||
63.10.a.e | 3 | 1.a | even | 1 | 1 | trivial | |
112.10.a.h | 3 | 12.b | even | 2 | 1 | ||
175.10.a.d | 3 | 15.d | odd | 2 | 1 | ||
175.10.b.d | 6 | 15.e | even | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{3} + 21T_{2}^{2} - 1326T_{2} - 19080 \)
acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(63))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{3} + 21 T^{2} - 1326 T - 19080 \)
$3$
\( T^{3} \)
$5$
\( T^{3} + 1554 T^{2} + \cdots - 4903718400 \)
$7$
\( (T - 2401)^{3} \)
$11$
\( T^{3} + \cdots - 108859759460352 \)
$13$
\( T^{3} + 19782 T^{2} + \cdots - 41548412541440 \)
$17$
\( T^{3} + 1016694 T^{2} + \cdots + 21\!\cdots\!32 \)
$19$
\( T^{3} - 222852 T^{2} + \cdots - 43\!\cdots\!60 \)
$23$
\( T^{3} + 1885632 T^{2} + \cdots - 97\!\cdots\!36 \)
$29$
\( T^{3} + 4081818 T^{2} + \cdots - 44\!\cdots\!00 \)
$31$
\( T^{3} - 2869440 T^{2} + \cdots - 74\!\cdots\!84 \)
$37$
\( T^{3} - 1395618 T^{2} + \cdots - 34\!\cdots\!28 \)
$41$
\( T^{3} - 14420658 T^{2} + \cdots + 19\!\cdots\!12 \)
$43$
\( T^{3} + 61631172 T^{2} + \cdots + 68\!\cdots\!80 \)
$47$
\( T^{3} - 10368960 T^{2} + \cdots + 43\!\cdots\!16 \)
$53$
\( T^{3} + 67502610 T^{2} + \cdots - 23\!\cdots\!28 \)
$59$
\( T^{3} - 42590100 T^{2} + \cdots - 42\!\cdots\!00 \)
$61$
\( T^{3} - 191746842 T^{2} + \cdots + 51\!\cdots\!08 \)
$67$
\( T^{3} + 255175788 T^{2} + \cdots - 20\!\cdots\!64 \)
$71$
\( T^{3} + 296514504 T^{2} + \cdots - 16\!\cdots\!80 \)
$73$
\( T^{3} - 344213310 T^{2} + \cdots + 19\!\cdots\!48 \)
$79$
\( T^{3} + 960412656 T^{2} + \cdots - 11\!\cdots\!00 \)
$83$
\( T^{3} - 1100517180 T^{2} + \cdots - 18\!\cdots\!48 \)
$89$
\( T^{3} + 506816478 T^{2} + \cdots - 19\!\cdots\!40 \)
$97$
\( T^{3} + 647498250 T^{2} + \cdots - 49\!\cdots\!16 \)
show more
show less