Defining parameters
Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 63.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(80\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(63))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 76 | 23 | 53 |
Cusp forms | 68 | 23 | 45 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(4\) |
\(+\) | \(-\) | \(-\) | \(6\) |
\(-\) | \(+\) | \(-\) | \(7\) |
\(-\) | \(-\) | \(+\) | \(6\) |
Plus space | \(+\) | \(10\) | |
Minus space | \(-\) | \(13\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(63))\) into newform subspaces
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(63))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(63)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)