Properties

Label 63.10.a
Level $63$
Weight $10$
Character orbit 63.a
Rep. character $\chi_{63}(1,\cdot)$
Character field $\Q$
Dimension $23$
Newform subspaces $8$
Sturm bound $80$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 63.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(80\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(63))\).

Total New Old
Modular forms 76 23 53
Cusp forms 68 23 45
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(4\)
\(+\)\(-\)\(-\)\(6\)
\(-\)\(+\)\(-\)\(7\)
\(-\)\(-\)\(+\)\(6\)
Plus space\(+\)\(10\)
Minus space\(-\)\(13\)

Trace form

\( 23 q - 17 q^{2} + 6913 q^{4} - 3868 q^{5} + 2401 q^{7} - 26061 q^{8} + O(q^{10}) \) \( 23 q - 17 q^{2} + 6913 q^{4} - 3868 q^{5} + 2401 q^{7} - 26061 q^{8} + 8524 q^{10} + 46268 q^{11} - 193804 q^{13} - 88837 q^{14} + 2002885 q^{16} - 173862 q^{17} - 640366 q^{19} + 37228 q^{20} - 2882468 q^{22} - 3389484 q^{23} + 12940933 q^{25} + 11955052 q^{26} + 2028845 q^{28} - 2654674 q^{29} - 11653428 q^{31} + 18792971 q^{32} + 16073970 q^{34} - 2900408 q^{35} + 23499342 q^{37} - 16958594 q^{38} + 29638296 q^{40} + 19572730 q^{41} + 78496000 q^{43} - 36287984 q^{44} - 122760588 q^{46} + 30219588 q^{47} + 132590423 q^{49} - 59006731 q^{50} + 279723028 q^{52} + 205623882 q^{53} - 83464384 q^{55} - 90548913 q^{56} - 110681894 q^{58} - 20252898 q^{59} + 111929792 q^{61} + 300180468 q^{62} + 880496801 q^{64} - 241267048 q^{65} - 398108068 q^{67} - 55490850 q^{68} + 435166844 q^{70} - 654890532 q^{71} - 168514938 q^{73} + 1445227566 q^{74} - 3137968430 q^{76} - 374287088 q^{77} + 1630627936 q^{79} + 1308476548 q^{80} + 2292914570 q^{82} + 823710246 q^{83} + 284293944 q^{85} - 1906052056 q^{86} - 1813059348 q^{88} - 1616470786 q^{89} - 326948972 q^{91} - 3553586664 q^{92} - 2237074068 q^{94} + 69506528 q^{95} - 4558886910 q^{97} - 98001617 q^{98} + O(q^{100}) \)

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(63))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 7
63.10.a.a 63.a 1.a $1$ $32.447$ \(\Q\) None 21.10.a.a \(24\) \(0\) \(144\) \(2401\) $-$ $-$ $\mathrm{SU}(2)$ \(q+24q^{2}+2^{6}q^{4}+12^{2}q^{5}+7^{4}q^{7}+\cdots\)
63.10.a.b 63.a 1.a $2$ $32.447$ \(\Q(\sqrt{345}) \) None 21.10.a.c \(-30\) \(0\) \(-1128\) \(4802\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-15-\beta )q^{2}+(58+30\beta )q^{4}+(-564+\cdots)q^{5}+\cdots\)
63.10.a.c 63.a 1.a $2$ $32.447$ \(\Q(\sqrt{2353}) \) None 21.10.a.b \(-9\) \(0\) \(-1170\) \(-4802\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-4-\beta )q^{2}+(92+9\beta )q^{4}+(-620+\cdots)q^{5}+\cdots\)
63.10.a.d 63.a 1.a $2$ $32.447$ \(\Q(\sqrt{193}) \) None 7.10.a.a \(6\) \(0\) \(2238\) \(-4802\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(3+\beta )q^{2}+(-310+6\beta )q^{4}+(1119+\cdots)q^{5}+\cdots\)
63.10.a.e 63.a 1.a $3$ $32.447$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 7.10.a.b \(-21\) \(0\) \(-1554\) \(7203\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-7+\beta _{2})q^{2}+(519+7\beta _{1}-8\beta _{2})q^{4}+\cdots\)
63.10.a.f 63.a 1.a $3$ $32.447$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 21.10.a.d \(13\) \(0\) \(-2398\) \(-7203\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(4+\beta _{1})q^{2}+(555+7\beta _{1}-5\beta _{2})q^{4}+\cdots\)
63.10.a.g 63.a 1.a $4$ $32.447$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 63.10.a.g \(0\) \(0\) \(0\) \(-9604\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(446+\beta _{3})q^{4}+(-20\beta _{1}+\cdots)q^{5}+\cdots\)
63.10.a.h 63.a 1.a $6$ $32.447$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 63.10.a.h \(0\) \(0\) \(0\) \(14406\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(357+\beta _{3})q^{4}+(24\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(63))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(63)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)