Defining parameters
Level: | \( N \) | = | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | = | \( 10 \) |
Nonzero newspaces: | \( 10 \) | ||
Newform subspaces: | \( 22 \) | ||
Sturm bound: | \(2880\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(63))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1344 | 1005 | 339 |
Cusp forms | 1248 | 961 | 287 |
Eisenstein series | 96 | 44 | 52 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(63))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(63))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_1(63)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 1}\)