Properties

Label 63.10
Level 63
Weight 10
Dimension 961
Nonzero newspaces 10
Newform subspaces 22
Sturm bound 2880
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 22 \)
Sturm bound: \(2880\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(63))\).

Total New Old
Modular forms 1344 1005 339
Cusp forms 1248 961 287
Eisenstein series 96 44 52

Trace form

\( 961 q - 75 q^{2} - 6 q^{3} + 3409 q^{4} - 5751 q^{5} - 4890 q^{6} + 9634 q^{7} + 35103 q^{8} + 31326 q^{9} - 91770 q^{10} - 79005 q^{11} + 485484 q^{12} - 37756 q^{13} - 808485 q^{14} - 652710 q^{15} + 1295245 q^{16}+ \cdots - 10536467562 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(63))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
63.10.a \(\chi_{63}(1, \cdot)\) 63.10.a.a 1 1
63.10.a.b 2
63.10.a.c 2
63.10.a.d 2
63.10.a.e 3
63.10.a.f 3
63.10.a.g 4
63.10.a.h 6
63.10.c \(\chi_{63}(62, \cdot)\) 63.10.c.a 4 1
63.10.c.b 20
63.10.e \(\chi_{63}(37, \cdot)\) 63.10.e.a 10 2
63.10.e.b 10
63.10.e.c 14
63.10.e.d 24
63.10.f \(\chi_{63}(22, \cdot)\) 63.10.f.a 54 2
63.10.f.b 54
63.10.g \(\chi_{63}(4, \cdot)\) 63.10.g.a 140 2
63.10.h \(\chi_{63}(25, \cdot)\) 63.10.h.a 140 2
63.10.i \(\chi_{63}(5, \cdot)\) 63.10.i.a 140 2
63.10.o \(\chi_{63}(20, \cdot)\) 63.10.o.a 140 2
63.10.p \(\chi_{63}(17, \cdot)\) 63.10.p.a 48 2
63.10.s \(\chi_{63}(47, \cdot)\) 63.10.s.a 140 2

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(63))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(63)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)