Properties

Label 627.2.r
Level $627$
Weight $2$
Character orbit 627.r
Rep. character $\chi_{627}(100,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $204$
Newform subspaces $4$
Sturm bound $160$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 627 = 3 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 627.r (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 4 \)
Sturm bound: \(160\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(627, [\chi])\).

Total New Old
Modular forms 504 204 300
Cusp forms 456 204 252
Eisenstein series 48 0 48

Trace form

\( 204 q + 12 q^{4} + 12 q^{6} + 48 q^{10} + 12 q^{12} + 18 q^{13} + 36 q^{14} - 36 q^{16} - 24 q^{17} - 18 q^{19} - 6 q^{21} - 48 q^{24} + 24 q^{25} + 6 q^{27} - 60 q^{28} + 24 q^{29} + 60 q^{31} - 48 q^{32}+ \cdots + 192 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(627, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
627.2.r.a 627.r 19.e $42$ $5.007$ None 627.2.r.a \(3\) \(0\) \(0\) \(18\) $\mathrm{SU}(2)[C_{9}]$
627.2.r.b 627.r 19.e $48$ $5.007$ None 627.2.r.b \(-3\) \(0\) \(0\) \(18\) $\mathrm{SU}(2)[C_{9}]$
627.2.r.c 627.r 19.e $54$ $5.007$ None 627.2.r.c \(3\) \(0\) \(0\) \(-18\) $\mathrm{SU}(2)[C_{9}]$
627.2.r.d 627.r 19.e $60$ $5.007$ None 627.2.r.d \(-3\) \(0\) \(0\) \(-18\) $\mathrm{SU}(2)[C_{9}]$

Decomposition of \(S_{2}^{\mathrm{old}}(627, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(627, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(209, [\chi])\)\(^{\oplus 2}\)