Defining parameters
| Level: | \( N \) | \(=\) | \( 627 = 3 \cdot 11 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 627.r (of order \(9\) and degree \(6\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
| Character field: | \(\Q(\zeta_{9})\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(160\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(627, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 504 | 204 | 300 |
| Cusp forms | 456 | 204 | 252 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(627, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 627.2.r.a | $42$ | $5.007$ | None | \(3\) | \(0\) | \(0\) | \(18\) | ||
| 627.2.r.b | $48$ | $5.007$ | None | \(-3\) | \(0\) | \(0\) | \(18\) | ||
| 627.2.r.c | $54$ | $5.007$ | None | \(3\) | \(0\) | \(0\) | \(-18\) | ||
| 627.2.r.d | $60$ | $5.007$ | None | \(-3\) | \(0\) | \(0\) | \(-18\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(627, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(627, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(209, [\chi])\)\(^{\oplus 2}\)