Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [625,2,Mod(124,625)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(625, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("625.124");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 625 = 5^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 625.e (of order \(10\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.99065012633\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
124.1 | −2.53458 | − | 0.823534i | 0.446178 | − | 0.614111i | 4.12784 | + | 2.99905i | 0 | −1.63661 | + | 1.18907i | 2.04213i | −4.85960 | − | 6.68866i | 0.748993 | + | 2.30516i | 0 | ||||||
124.2 | −1.91511 | − | 0.622258i | −1.77844 | + | 2.44781i | 1.66242 | + | 1.20782i | 0 | 4.92909 | − | 3.58119i | 0.369971i | −0.0649413 | − | 0.0893841i | −1.90189 | − | 5.85342i | 0 | ||||||
124.3 | −1.00562 | − | 0.326747i | −0.404046 | + | 0.556121i | −0.713519 | − | 0.518402i | 0 | 0.588029 | − | 0.427228i | − | 1.01199i | 1.79116 | + | 2.46533i | 0.781033 | + | 2.40377i | 0 | |||||
124.4 | −0.310759 | − | 0.100972i | 1.00827 | − | 1.38777i | −1.53166 | − | 1.11281i | 0 | −0.453455 | + | 0.329455i | 3.42409i | 0.747732 | + | 1.02917i | 0.0177620 | + | 0.0546659i | 0 | ||||||
124.5 | 0.310759 | + | 0.100972i | −1.00827 | + | 1.38777i | −1.53166 | − | 1.11281i | 0 | −0.453455 | + | 0.329455i | − | 3.42409i | −0.747732 | − | 1.02917i | 0.0177620 | + | 0.0546659i | 0 | |||||
124.6 | 1.00562 | + | 0.326747i | 0.404046 | − | 0.556121i | −0.713519 | − | 0.518402i | 0 | 0.588029 | − | 0.427228i | 1.01199i | −1.79116 | − | 2.46533i | 0.781033 | + | 2.40377i | 0 | ||||||
124.7 | 1.91511 | + | 0.622258i | 1.77844 | − | 2.44781i | 1.66242 | + | 1.20782i | 0 | 4.92909 | − | 3.58119i | − | 0.369971i | 0.0649413 | + | 0.0893841i | −1.90189 | − | 5.85342i | 0 | |||||
124.8 | 2.53458 | + | 0.823534i | −0.446178 | + | 0.614111i | 4.12784 | + | 2.99905i | 0 | −1.63661 | + | 1.18907i | − | 2.04213i | 4.85960 | + | 6.68866i | 0.748993 | + | 2.30516i | 0 | |||||
249.1 | −1.45439 | + | 2.00179i | −2.01315 | + | 0.654112i | −1.27390 | − | 3.92066i | 0 | 1.61850 | − | 4.98124i | 0.973070i | 4.99460 | + | 1.62284i | 1.19786 | − | 0.870294i | 0 | ||||||
249.2 | −1.36725 | + | 1.88186i | 2.18963 | − | 0.711454i | −1.05398 | − | 3.24381i | 0 | −1.65491 | + | 5.09330i | − | 3.59425i | 3.12093 | + | 1.01405i | 1.86126 | − | 1.35229i | 0 | |||||
249.3 | −0.989484 | + | 1.36191i | 0.675574 | − | 0.219507i | −0.257680 | − | 0.793058i | 0 | −0.369521 | + | 1.13727i | 4.59110i | −1.86699 | − | 0.606623i | −2.01883 | + | 1.46677i | 0 | ||||||
249.4 | −0.294474 | + | 0.405309i | −2.94186 | + | 0.955869i | 0.540474 | + | 1.66341i | 0 | 0.478880 | − | 1.47384i | − | 0.0237879i | −1.78629 | − | 0.580400i | 5.31382 | − | 3.86071i | 0 | |||||
249.5 | 0.294474 | − | 0.405309i | 2.94186 | − | 0.955869i | 0.540474 | + | 1.66341i | 0 | 0.478880 | − | 1.47384i | 0.0237879i | 1.78629 | + | 0.580400i | 5.31382 | − | 3.86071i | 0 | ||||||
249.6 | 0.989484 | − | 1.36191i | −0.675574 | + | 0.219507i | −0.257680 | − | 0.793058i | 0 | −0.369521 | + | 1.13727i | − | 4.59110i | 1.86699 | + | 0.606623i | −2.01883 | + | 1.46677i | 0 | |||||
249.7 | 1.36725 | − | 1.88186i | −2.18963 | + | 0.711454i | −1.05398 | − | 3.24381i | 0 | −1.65491 | + | 5.09330i | 3.59425i | −3.12093 | − | 1.01405i | 1.86126 | − | 1.35229i | 0 | ||||||
249.8 | 1.45439 | − | 2.00179i | 2.01315 | − | 0.654112i | −1.27390 | − | 3.92066i | 0 | 1.61850 | − | 4.98124i | − | 0.973070i | −4.99460 | − | 1.62284i | 1.19786 | − | 0.870294i | 0 | |||||
374.1 | −1.45439 | − | 2.00179i | −2.01315 | − | 0.654112i | −1.27390 | + | 3.92066i | 0 | 1.61850 | + | 4.98124i | − | 0.973070i | 4.99460 | − | 1.62284i | 1.19786 | + | 0.870294i | 0 | |||||
374.2 | −1.36725 | − | 1.88186i | 2.18963 | + | 0.711454i | −1.05398 | + | 3.24381i | 0 | −1.65491 | − | 5.09330i | 3.59425i | 3.12093 | − | 1.01405i | 1.86126 | + | 1.35229i | 0 | ||||||
374.3 | −0.989484 | − | 1.36191i | 0.675574 | + | 0.219507i | −0.257680 | + | 0.793058i | 0 | −0.369521 | − | 1.13727i | − | 4.59110i | −1.86699 | + | 0.606623i | −2.01883 | − | 1.46677i | 0 | |||||
374.4 | −0.294474 | − | 0.405309i | −2.94186 | − | 0.955869i | 0.540474 | − | 1.66341i | 0 | 0.478880 | + | 1.47384i | 0.0237879i | −1.78629 | + | 0.580400i | 5.31382 | + | 3.86071i | 0 | ||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
25.d | even | 5 | 1 | inner |
25.e | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 625.2.e.j | 32 | |
5.b | even | 2 | 1 | inner | 625.2.e.j | 32 | |
5.c | odd | 4 | 1 | 625.2.d.m | 16 | ||
5.c | odd | 4 | 1 | 625.2.d.q | 16 | ||
25.d | even | 5 | 1 | 625.2.b.d | 16 | ||
25.d | even | 5 | 1 | inner | 625.2.e.j | 32 | |
25.d | even | 5 | 2 | 625.2.e.k | 32 | ||
25.e | even | 10 | 1 | 625.2.b.d | 16 | ||
25.e | even | 10 | 1 | inner | 625.2.e.j | 32 | |
25.e | even | 10 | 2 | 625.2.e.k | 32 | ||
25.f | odd | 20 | 1 | 625.2.a.e | ✓ | 8 | |
25.f | odd | 20 | 1 | 625.2.a.g | yes | 8 | |
25.f | odd | 20 | 1 | 625.2.d.m | 16 | ||
25.f | odd | 20 | 2 | 625.2.d.n | 16 | ||
25.f | odd | 20 | 2 | 625.2.d.p | 16 | ||
25.f | odd | 20 | 1 | 625.2.d.q | 16 | ||
75.l | even | 20 | 1 | 5625.2.a.s | 8 | ||
75.l | even | 20 | 1 | 5625.2.a.be | 8 | ||
100.l | even | 20 | 1 | 10000.2.a.be | 8 | ||
100.l | even | 20 | 1 | 10000.2.a.bn | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
625.2.a.e | ✓ | 8 | 25.f | odd | 20 | 1 | |
625.2.a.g | yes | 8 | 25.f | odd | 20 | 1 | |
625.2.b.d | 16 | 25.d | even | 5 | 1 | ||
625.2.b.d | 16 | 25.e | even | 10 | 1 | ||
625.2.d.m | 16 | 5.c | odd | 4 | 1 | ||
625.2.d.m | 16 | 25.f | odd | 20 | 1 | ||
625.2.d.n | 16 | 25.f | odd | 20 | 2 | ||
625.2.d.p | 16 | 25.f | odd | 20 | 2 | ||
625.2.d.q | 16 | 5.c | odd | 4 | 1 | ||
625.2.d.q | 16 | 25.f | odd | 20 | 1 | ||
625.2.e.j | 32 | 1.a | even | 1 | 1 | trivial | |
625.2.e.j | 32 | 5.b | even | 2 | 1 | inner | |
625.2.e.j | 32 | 25.d | even | 5 | 1 | inner | |
625.2.e.j | 32 | 25.e | even | 10 | 1 | inner | |
625.2.e.k | 32 | 25.d | even | 5 | 2 | ||
625.2.e.k | 32 | 25.e | even | 10 | 2 | ||
5625.2.a.s | 8 | 75.l | even | 20 | 1 | ||
5625.2.a.be | 8 | 75.l | even | 20 | 1 | ||
10000.2.a.be | 8 | 100.l | even | 20 | 1 | ||
10000.2.a.bn | 8 | 100.l | even | 20 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(625, [\chi])\):
\( T_{2}^{32} - 11 T_{2}^{30} + 100 T_{2}^{28} - 790 T_{2}^{26} + 6030 T_{2}^{24} - 27593 T_{2}^{22} + \cdots + 6561 \)
|
\( T_{3}^{32} - 24 T_{3}^{30} + 320 T_{3}^{28} - 3270 T_{3}^{26} + 31080 T_{3}^{24} - 222072 T_{3}^{22} + \cdots + 707281 \)
|