Properties

Label 625.2.d.o.376.1
Level $625$
Weight $2$
Character 625.376
Analytic conductor $4.991$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [625,2,Mod(126,625)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("625.126"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(625, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 625 = 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 625.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-8,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.99065012633\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + x^{14} - 4x^{12} - 49x^{10} + 11x^{8} + 395x^{6} + 900x^{4} + 1125x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 376.1
Root \(-0.0566033 - 1.17421i\) of defining polynomial
Character \(\chi\) \(=\) 625.376
Dual form 625.2.d.o.251.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.68703 - 1.22570i) q^{2} +(0.679371 + 2.09089i) q^{3} +(0.725700 + 2.23347i) q^{4} +(1.41668 - 4.36010i) q^{6} -0.992398 q^{7} +(0.224514 - 0.690983i) q^{8} +(-1.48322 + 1.07763i) q^{9} +(-1.61803 - 1.17557i) q^{11} +(-4.17693 + 3.03472i) q^{12} +(-2.72967 + 1.98322i) q^{13} +(1.67421 + 1.21638i) q^{14} +(2.57411 - 1.87020i) q^{16} +(-0.894453 + 2.75284i) q^{17} +3.82309 q^{18} +(-0.798649 + 2.45799i) q^{19} +(-0.674207 - 2.07500i) q^{21} +(1.28878 + 3.96645i) q^{22} +(-3.68073 - 2.67421i) q^{23} +1.59730 q^{24} +7.03588 q^{26} +(2.07500 + 1.50757i) q^{27} +(-0.720183 - 2.21650i) q^{28} +(-1.66384 - 5.12077i) q^{29} +(0.0421925 - 0.129855i) q^{31} -8.08800 q^{32} +(1.35874 - 4.18178i) q^{33} +(4.88313 - 3.54780i) q^{34} +(-3.48322 - 2.53071i) q^{36} +(-1.73866 + 1.26321i) q^{37} +(4.36010 - 3.16780i) q^{38} +(-6.00116 - 4.36010i) q^{39} +(-6.98439 + 5.07446i) q^{41} +(-1.40591 + 4.32696i) q^{42} -4.64398 q^{43} +(1.45140 - 4.46695i) q^{44} +(2.93173 + 9.02294i) q^{46} +(-3.06739 - 9.44047i) q^{47} +(5.65917 + 4.11163i) q^{48} -6.01515 q^{49} -6.36356 q^{51} +(-6.41040 - 4.65743i) q^{52} +(-2.33778 - 7.19494i) q^{53} +(-1.65275 - 5.08664i) q^{54} +(-0.222807 + 0.685730i) q^{56} -5.68196 q^{57} +(-3.46958 + 10.6783i) q^{58} +(-3.97854 + 2.89058i) q^{59} +(2.24075 + 1.62800i) q^{61} +(-0.230343 + 0.167354i) q^{62} +(1.47195 - 1.06943i) q^{63} +(8.49648 + 6.17306i) q^{64} +(-7.41785 + 5.38938i) q^{66} +(-0.675441 + 2.07879i) q^{67} -6.79751 q^{68} +(3.09089 - 9.51278i) q^{69} +(2.97971 + 9.17060i) q^{71} +(0.411616 + 1.26682i) q^{72} +(0.627740 + 0.456080i) q^{73} +4.48150 q^{74} -6.06943 q^{76} +(1.60573 + 1.16663i) q^{77} +(4.77998 + 14.7113i) q^{78} +(4.89818 + 15.0750i) q^{79} +(-3.44210 + 10.5937i) q^{81} +18.0026 q^{82} +(0.547301 - 1.68442i) q^{83} +(4.14518 - 3.01165i) q^{84} +(7.83453 + 5.69212i) q^{86} +(9.57660 - 6.95781i) q^{87} +(-1.17557 + 0.854102i) q^{88} +(-11.7372 - 8.52760i) q^{89} +(2.70892 - 1.96815i) q^{91} +(3.30167 - 10.1615i) q^{92} +0.300177 q^{93} +(-6.39639 + 19.6861i) q^{94} +(-5.49476 - 16.9111i) q^{96} +(5.26228 + 16.1956i) q^{97} +(10.1477 + 7.37276i) q^{98} +3.66673 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{4} + 12 q^{6} - 2 q^{9} - 8 q^{11} + 14 q^{14} - 4 q^{16} - 20 q^{19} + 2 q^{21} + 40 q^{24} + 12 q^{26} - 30 q^{29} + 2 q^{31} + 24 q^{34} - 34 q^{36} - 24 q^{39} - 18 q^{41} - 16 q^{44} + 32 q^{46}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/625\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.68703 1.22570i −1.19291 0.866701i −0.199342 0.979930i \(-0.563881\pi\)
−0.993569 + 0.113229i \(0.963881\pi\)
\(3\) 0.679371 + 2.09089i 0.392235 + 1.20718i 0.931094 + 0.364780i \(0.118856\pi\)
−0.538859 + 0.842396i \(0.681144\pi\)
\(4\) 0.725700 + 2.23347i 0.362850 + 1.11674i
\(5\) 0 0
\(6\) 1.41668 4.36010i 0.578358 1.78000i
\(7\) −0.992398 −0.375091 −0.187546 0.982256i \(-0.560053\pi\)
−0.187546 + 0.982256i \(0.560053\pi\)
\(8\) 0.224514 0.690983i 0.0793777 0.244299i
\(9\) −1.48322 + 1.07763i −0.494408 + 0.359208i
\(10\) 0 0
\(11\) −1.61803 1.17557i −0.487856 0.354448i 0.316503 0.948591i \(-0.397491\pi\)
−0.804359 + 0.594144i \(0.797491\pi\)
\(12\) −4.17693 + 3.03472i −1.20578 + 0.876047i
\(13\) −2.72967 + 1.98322i −0.757075 + 0.550047i −0.898012 0.439971i \(-0.854989\pi\)
0.140937 + 0.990019i \(0.454989\pi\)
\(14\) 1.67421 + 1.21638i 0.447451 + 0.325092i
\(15\) 0 0
\(16\) 2.57411 1.87020i 0.643528 0.467551i
\(17\) −0.894453 + 2.75284i −0.216937 + 0.667663i 0.782074 + 0.623186i \(0.214162\pi\)
−0.999010 + 0.0444767i \(0.985838\pi\)
\(18\) 3.82309 0.901111
\(19\) −0.798649 + 2.45799i −0.183223 + 0.563901i −0.999913 0.0131746i \(-0.995806\pi\)
0.816691 + 0.577076i \(0.195806\pi\)
\(20\) 0 0
\(21\) −0.674207 2.07500i −0.147124 0.452801i
\(22\) 1.28878 + 3.96645i 0.274768 + 0.845650i
\(23\) −3.68073 2.67421i −0.767485 0.557611i 0.133712 0.991020i \(-0.457310\pi\)
−0.901197 + 0.433410i \(0.857310\pi\)
\(24\) 1.59730 0.326047
\(25\) 0 0
\(26\) 7.03588 1.37985
\(27\) 2.07500 + 1.50757i 0.399333 + 0.290132i
\(28\) −0.720183 2.21650i −0.136102 0.418878i
\(29\) −1.66384 5.12077i −0.308967 0.950903i −0.978167 0.207821i \(-0.933363\pi\)
0.669200 0.743082i \(-0.266637\pi\)
\(30\) 0 0
\(31\) 0.0421925 0.129855i 0.00757799 0.0233227i −0.947196 0.320655i \(-0.896097\pi\)
0.954774 + 0.297332i \(0.0960970\pi\)
\(32\) −8.08800 −1.42977
\(33\) 1.35874 4.18178i 0.236527 0.727954i
\(34\) 4.88313 3.54780i 0.837450 0.608443i
\(35\) 0 0
\(36\) −3.48322 2.53071i −0.580537 0.421785i
\(37\) −1.73866 + 1.26321i −0.285834 + 0.207671i −0.721458 0.692458i \(-0.756528\pi\)
0.435624 + 0.900129i \(0.356528\pi\)
\(38\) 4.36010 3.16780i 0.707302 0.513885i
\(39\) −6.00116 4.36010i −0.960955 0.698175i
\(40\) 0 0
\(41\) −6.98439 + 5.07446i −1.09078 + 0.792497i −0.979530 0.201296i \(-0.935485\pi\)
−0.111248 + 0.993793i \(0.535485\pi\)
\(42\) −1.40591 + 4.32696i −0.216937 + 0.667664i
\(43\) −4.64398 −0.708200 −0.354100 0.935208i \(-0.615213\pi\)
−0.354100 + 0.935208i \(0.615213\pi\)
\(44\) 1.45140 4.46695i 0.218807 0.673418i
\(45\) 0 0
\(46\) 2.93173 + 9.02294i 0.432260 + 1.33036i
\(47\) −3.06739 9.44047i −0.447425 1.37703i −0.879802 0.475341i \(-0.842325\pi\)
0.432376 0.901693i \(-0.357675\pi\)
\(48\) 5.65917 + 4.11163i 0.816831 + 0.593462i
\(49\) −6.01515 −0.859306
\(50\) 0 0
\(51\) −6.36356 −0.891077
\(52\) −6.41040 4.65743i −0.888963 0.645869i
\(53\) −2.33778 7.19494i −0.321119 0.988301i −0.973162 0.230120i \(-0.926088\pi\)
0.652044 0.758181i \(-0.273912\pi\)
\(54\) −1.65275 5.08664i −0.224911 0.692205i
\(55\) 0 0
\(56\) −0.222807 + 0.685730i −0.0297739 + 0.0916346i
\(57\) −5.68196 −0.752594
\(58\) −3.46958 + 10.6783i −0.455578 + 1.40212i
\(59\) −3.97854 + 2.89058i −0.517962 + 0.376322i −0.815836 0.578284i \(-0.803723\pi\)
0.297873 + 0.954605i \(0.403723\pi\)
\(60\) 0 0
\(61\) 2.24075 + 1.62800i 0.286898 + 0.208444i 0.721921 0.691976i \(-0.243260\pi\)
−0.435022 + 0.900420i \(0.643260\pi\)
\(62\) −0.230343 + 0.167354i −0.0292536 + 0.0212540i
\(63\) 1.47195 1.06943i 0.185448 0.134736i
\(64\) 8.49648 + 6.17306i 1.06206 + 0.771632i
\(65\) 0 0
\(66\) −7.41785 + 5.38938i −0.913074 + 0.663387i
\(67\) −0.675441 + 2.07879i −0.0825183 + 0.253965i −0.983800 0.179268i \(-0.942627\pi\)
0.901282 + 0.433233i \(0.142627\pi\)
\(68\) −6.79751 −0.824319
\(69\) 3.09089 9.51278i 0.372099 1.14520i
\(70\) 0 0
\(71\) 2.97971 + 9.17060i 0.353626 + 1.08835i 0.956802 + 0.290741i \(0.0939019\pi\)
−0.603175 + 0.797609i \(0.706098\pi\)
\(72\) 0.411616 + 1.26682i 0.0485094 + 0.149297i
\(73\) 0.627740 + 0.456080i 0.0734714 + 0.0533801i 0.623915 0.781492i \(-0.285541\pi\)
−0.550443 + 0.834873i \(0.685541\pi\)
\(74\) 4.48150 0.520963
\(75\) 0 0
\(76\) −6.06943 −0.696212
\(77\) 1.60573 + 1.16663i 0.182990 + 0.132950i
\(78\) 4.77998 + 14.7113i 0.541226 + 1.66572i
\(79\) 4.89818 + 15.0750i 0.551088 + 1.69608i 0.706056 + 0.708156i \(0.250473\pi\)
−0.154968 + 0.987919i \(0.549527\pi\)
\(80\) 0 0
\(81\) −3.44210 + 10.5937i −0.382455 + 1.17708i
\(82\) 18.0026 1.98806
\(83\) 0.547301 1.68442i 0.0600740 0.184889i −0.916516 0.399998i \(-0.869011\pi\)
0.976590 + 0.215109i \(0.0690108\pi\)
\(84\) 4.14518 3.01165i 0.452276 0.328598i
\(85\) 0 0
\(86\) 7.83453 + 5.69212i 0.844819 + 0.613797i
\(87\) 9.57660 6.95781i 1.02672 0.745955i
\(88\) −1.17557 + 0.854102i −0.125316 + 0.0910476i
\(89\) −11.7372 8.52760i −1.24414 0.903924i −0.246277 0.969200i \(-0.579207\pi\)
−0.997867 + 0.0652758i \(0.979207\pi\)
\(90\) 0 0
\(91\) 2.70892 1.96815i 0.283972 0.206318i
\(92\) 3.30167 10.1615i 0.344223 1.05941i
\(93\) 0.300177 0.0311269
\(94\) −6.39639 + 19.6861i −0.659737 + 2.03046i
\(95\) 0 0
\(96\) −5.49476 16.9111i −0.560806 1.72598i
\(97\) 5.26228 + 16.1956i 0.534304 + 1.64442i 0.745148 + 0.666899i \(0.232379\pi\)
−0.210844 + 0.977520i \(0.567621\pi\)
\(98\) 10.1477 + 7.37276i 1.02508 + 0.744761i
\(99\) 3.66673 0.368520
\(100\) 0 0
\(101\) −2.54716 −0.253452 −0.126726 0.991938i \(-0.540447\pi\)
−0.126726 + 0.991938i \(0.540447\pi\)
\(102\) 10.7355 + 7.79981i 1.06298 + 0.772297i
\(103\) −3.14129 9.66790i −0.309520 0.952606i −0.977952 0.208832i \(-0.933034\pi\)
0.668431 0.743774i \(-0.266966\pi\)
\(104\) 0.757524 + 2.33142i 0.0742814 + 0.228615i
\(105\) 0 0
\(106\) −4.87494 + 15.0035i −0.473496 + 1.45727i
\(107\) 4.81720 0.465697 0.232848 0.972513i \(-0.425195\pi\)
0.232848 + 0.972513i \(0.425195\pi\)
\(108\) −1.86130 + 5.72850i −0.179104 + 0.551225i
\(109\) −13.1662 + 9.56578i −1.26109 + 0.916236i −0.998811 0.0487563i \(-0.984474\pi\)
−0.262280 + 0.964992i \(0.584474\pi\)
\(110\) 0 0
\(111\) −3.82243 2.77716i −0.362809 0.263596i
\(112\) −2.55455 + 1.85599i −0.241382 + 0.175374i
\(113\) 5.46656 3.97169i 0.514251 0.373625i −0.300183 0.953882i \(-0.597048\pi\)
0.814434 + 0.580256i \(0.197048\pi\)
\(114\) 9.58565 + 6.96438i 0.897778 + 0.652274i
\(115\) 0 0
\(116\) 10.2297 7.43228i 0.949800 0.690070i
\(117\) 1.91155 5.88313i 0.176722 0.543896i
\(118\) 10.2549 0.944041
\(119\) 0.887654 2.73192i 0.0813711 0.250435i
\(120\) 0 0
\(121\) −2.16312 6.65740i −0.196647 0.605218i
\(122\) −1.78477 5.49297i −0.161586 0.497310i
\(123\) −15.3551 11.1561i −1.38452 1.00592i
\(124\) 0.320647 0.0287950
\(125\) 0 0
\(126\) −3.79403 −0.337999
\(127\) −1.20609 0.876278i −0.107023 0.0777571i 0.532986 0.846124i \(-0.321070\pi\)
−0.640010 + 0.768367i \(0.721070\pi\)
\(128\) −1.76886 5.44398i −0.156346 0.481185i
\(129\) −3.15498 9.71004i −0.277781 0.854921i
\(130\) 0 0
\(131\) 4.36167 13.4239i 0.381081 1.17285i −0.558202 0.829705i \(-0.688509\pi\)
0.939283 0.343143i \(-0.111491\pi\)
\(132\) 10.3259 0.898757
\(133\) 0.792578 2.43930i 0.0687252 0.211514i
\(134\) 3.68747 2.67910i 0.318549 0.231439i
\(135\) 0 0
\(136\) 1.70135 + 1.23610i 0.145890 + 0.105995i
\(137\) −0.557775 + 0.405247i −0.0476539 + 0.0346226i −0.611357 0.791355i \(-0.709376\pi\)
0.563703 + 0.825977i \(0.309376\pi\)
\(138\) −16.8742 + 12.2599i −1.43643 + 1.04363i
\(139\) 13.4069 + 9.74070i 1.13716 + 0.826195i 0.986721 0.162424i \(-0.0519313\pi\)
0.150439 + 0.988619i \(0.451931\pi\)
\(140\) 0 0
\(141\) 17.6551 12.8272i 1.48683 1.08024i
\(142\) 6.21354 19.1233i 0.521429 1.60479i
\(143\) 6.74812 0.564307
\(144\) −1.80261 + 5.54786i −0.150217 + 0.462322i
\(145\) 0 0
\(146\) −0.500000 1.53884i −0.0413803 0.127355i
\(147\) −4.08652 12.5770i −0.337050 1.03733i
\(148\) −4.08310 2.96655i −0.335629 0.243849i
\(149\) 3.21156 0.263101 0.131551 0.991309i \(-0.458004\pi\)
0.131551 + 0.991309i \(0.458004\pi\)
\(150\) 0 0
\(151\) 17.6863 1.43929 0.719647 0.694340i \(-0.244304\pi\)
0.719647 + 0.694340i \(0.244304\pi\)
\(152\) 1.51912 + 1.10371i 0.123217 + 0.0895223i
\(153\) −1.63986 5.04697i −0.132575 0.408023i
\(154\) −1.27898 3.93630i −0.103063 0.317196i
\(155\) 0 0
\(156\) 5.38313 16.5676i 0.430995 1.32647i
\(157\) −1.65512 −0.132093 −0.0660465 0.997817i \(-0.521039\pi\)
−0.0660465 + 0.997817i \(0.521039\pi\)
\(158\) 10.2141 31.4358i 0.812590 2.50090i
\(159\) 13.4556 9.77608i 1.06710 0.775293i
\(160\) 0 0
\(161\) 3.65275 + 2.65388i 0.287877 + 0.209155i
\(162\) 18.7916 13.6529i 1.47641 1.07267i
\(163\) 0.722399 0.524854i 0.0565827 0.0411097i −0.559134 0.829077i \(-0.688866\pi\)
0.615717 + 0.787967i \(0.288866\pi\)
\(164\) −16.4022 11.9169i −1.28080 0.930555i
\(165\) 0 0
\(166\) −2.98790 + 2.17084i −0.231906 + 0.168490i
\(167\) −1.60552 + 4.94129i −0.124239 + 0.382368i −0.993762 0.111525i \(-0.964427\pi\)
0.869523 + 0.493893i \(0.164427\pi\)
\(168\) −1.58516 −0.122297
\(169\) −0.499280 + 1.53663i −0.0384062 + 0.118202i
\(170\) 0 0
\(171\) −1.46422 4.50639i −0.111971 0.344612i
\(172\) −3.37013 10.3722i −0.256970 0.790873i
\(173\) −4.66370 3.38837i −0.354574 0.257613i 0.396211 0.918159i \(-0.370325\pi\)
−0.750785 + 0.660546i \(0.770325\pi\)
\(174\) −24.6842 −1.87130
\(175\) 0 0
\(176\) −6.36356 −0.479671
\(177\) −8.74680 6.35492i −0.657449 0.477665i
\(178\) 9.34880 + 28.7726i 0.700722 + 2.15660i
\(179\) 2.67883 + 8.24458i 0.200225 + 0.616229i 0.999876 + 0.0157637i \(0.00501795\pi\)
−0.799651 + 0.600465i \(0.794982\pi\)
\(180\) 0 0
\(181\) 4.41612 13.5914i 0.328248 1.01024i −0.641706 0.766951i \(-0.721773\pi\)
0.969953 0.243291i \(-0.0782271\pi\)
\(182\) −6.98240 −0.517570
\(183\) −1.88167 + 5.79117i −0.139097 + 0.428096i
\(184\) −2.67421 + 1.94293i −0.197145 + 0.143234i
\(185\) 0 0
\(186\) −0.506408 0.367927i −0.0371316 0.0269777i
\(187\) 4.68342 3.40270i 0.342485 0.248830i
\(188\) 18.8590 13.7019i 1.37544 0.999313i
\(189\) −2.05922 1.49611i −0.149786 0.108826i
\(190\) 0 0
\(191\) 1.02451 0.744347i 0.0741306 0.0538591i −0.550103 0.835097i \(-0.685411\pi\)
0.624233 + 0.781238i \(0.285411\pi\)
\(192\) −7.13492 + 21.9590i −0.514918 + 1.58476i
\(193\) −21.1730 −1.52406 −0.762031 0.647540i \(-0.775798\pi\)
−0.762031 + 0.647540i \(0.775798\pi\)
\(194\) 10.9734 33.7725i 0.787841 2.42473i
\(195\) 0 0
\(196\) −4.36519 13.4347i −0.311799 0.959620i
\(197\) 3.77042 + 11.6042i 0.268631 + 0.826761i 0.990835 + 0.135081i \(0.0431294\pi\)
−0.722203 + 0.691681i \(0.756871\pi\)
\(198\) −6.18589 4.49431i −0.439612 0.319397i
\(199\) 10.4065 0.737695 0.368848 0.929490i \(-0.379752\pi\)
0.368848 + 0.929490i \(0.379752\pi\)
\(200\) 0 0
\(201\) −4.80540 −0.338947
\(202\) 4.29714 + 3.12205i 0.302346 + 0.219667i
\(203\) 1.65119 + 5.08184i 0.115891 + 0.356675i
\(204\) −4.61803 14.2128i −0.323327 0.995098i
\(205\) 0 0
\(206\) −6.55049 + 20.1603i −0.456394 + 1.40464i
\(207\) 8.34114 0.579749
\(208\) −3.31746 + 10.2101i −0.230024 + 0.707942i
\(209\) 4.18178 3.03824i 0.289260 0.210160i
\(210\) 0 0
\(211\) 7.00421 + 5.08886i 0.482190 + 0.350332i 0.802173 0.597092i \(-0.203677\pi\)
−0.319983 + 0.947423i \(0.603677\pi\)
\(212\) 14.3732 10.4427i 0.987155 0.717210i
\(213\) −17.1504 + 12.4605i −1.17513 + 0.853778i
\(214\) −8.12677 5.90445i −0.555535 0.403620i
\(215\) 0 0
\(216\) 1.50757 1.09532i 0.102577 0.0745268i
\(217\) −0.0418717 + 0.128868i −0.00284244 + 0.00874813i
\(218\) 33.9365 2.29847
\(219\) −0.527144 + 1.62238i −0.0356211 + 0.109630i
\(220\) 0 0
\(221\) −3.01794 9.28827i −0.203009 0.624796i
\(222\) 3.04460 + 9.37032i 0.204340 + 0.628894i
\(223\) 22.9303 + 16.6598i 1.53552 + 1.11562i 0.953065 + 0.302764i \(0.0979095\pi\)
0.582459 + 0.812860i \(0.302091\pi\)
\(224\) 8.02652 0.536295
\(225\) 0 0
\(226\) −14.0904 −0.937277
\(227\) 17.9937 + 13.0732i 1.19429 + 0.867699i 0.993711 0.111979i \(-0.0357191\pi\)
0.200575 + 0.979678i \(0.435719\pi\)
\(228\) −4.12340 12.6905i −0.273079 0.840450i
\(229\) 0.765000 + 2.35443i 0.0505526 + 0.155585i 0.973146 0.230189i \(-0.0739345\pi\)
−0.922593 + 0.385774i \(0.873934\pi\)
\(230\) 0 0
\(231\) −1.34841 + 4.14999i −0.0887191 + 0.273049i
\(232\) −3.91192 −0.256830
\(233\) −1.84052 + 5.66454i −0.120576 + 0.371096i −0.993069 0.117531i \(-0.962502\pi\)
0.872493 + 0.488627i \(0.162502\pi\)
\(234\) −10.4358 + 7.58204i −0.682209 + 0.495654i
\(235\) 0 0
\(236\) −9.34327 6.78828i −0.608195 0.441879i
\(237\) −28.1926 + 20.4831i −1.83130 + 1.33052i
\(238\) −4.84601 + 3.52083i −0.314120 + 0.228222i
\(239\) 5.68935 + 4.13356i 0.368014 + 0.267378i 0.756387 0.654125i \(-0.226963\pi\)
−0.388373 + 0.921502i \(0.626963\pi\)
\(240\) 0 0
\(241\) −0.954449 + 0.693448i −0.0614815 + 0.0446689i −0.618102 0.786098i \(-0.712098\pi\)
0.556620 + 0.830767i \(0.312098\pi\)
\(242\) −4.51072 + 13.8826i −0.289960 + 0.892405i
\(243\) −16.7942 −1.07735
\(244\) −2.00998 + 6.18609i −0.128676 + 0.396024i
\(245\) 0 0
\(246\) 12.2305 + 37.6415i 0.779787 + 2.39994i
\(247\) −2.69469 8.29341i −0.171459 0.527697i
\(248\) −0.0802548 0.0583086i −0.00509619 0.00370260i
\(249\) 3.89375 0.246757
\(250\) 0 0
\(251\) 4.60867 0.290897 0.145448 0.989366i \(-0.453538\pi\)
0.145448 + 0.989366i \(0.453538\pi\)
\(252\) 3.45675 + 2.51147i 0.217755 + 0.158208i
\(253\) 2.81183 + 8.65392i 0.176778 + 0.544067i
\(254\) 0.960663 + 2.95662i 0.0602774 + 0.185515i
\(255\) 0 0
\(256\) 2.80216 8.62417i 0.175135 0.539011i
\(257\) 9.75542 0.608526 0.304263 0.952588i \(-0.401590\pi\)
0.304263 + 0.952588i \(0.401590\pi\)
\(258\) −6.57904 + 20.2482i −0.409593 + 1.26060i
\(259\) 1.72545 1.25361i 0.107214 0.0778955i
\(260\) 0 0
\(261\) 7.98612 + 5.80225i 0.494328 + 0.359150i
\(262\) −23.8119 + 17.3004i −1.47110 + 1.06882i
\(263\) 0.805641 0.585333i 0.0496780 0.0360932i −0.562669 0.826682i \(-0.690225\pi\)
0.612347 + 0.790589i \(0.290225\pi\)
\(264\) −2.58448 1.87774i −0.159064 0.115567i
\(265\) 0 0
\(266\) −4.32696 + 3.14372i −0.265303 + 0.192754i
\(267\) 9.85633 30.3347i 0.603198 1.85645i
\(268\) −5.13310 −0.313554
\(269\) −1.01621 + 3.12758i −0.0619596 + 0.190692i −0.977245 0.212114i \(-0.931965\pi\)
0.915285 + 0.402806i \(0.131965\pi\)
\(270\) 0 0
\(271\) 3.75457 + 11.5554i 0.228074 + 0.701940i 0.997965 + 0.0637642i \(0.0203105\pi\)
−0.769891 + 0.638175i \(0.779689\pi\)
\(272\) 2.84595 + 8.75894i 0.172561 + 0.531089i
\(273\) 5.95555 + 4.32696i 0.360446 + 0.261879i
\(274\) 1.43769 0.0868543
\(275\) 0 0
\(276\) 23.4896 1.41391
\(277\) −9.60025 6.97499i −0.576823 0.419087i 0.260754 0.965405i \(-0.416029\pi\)
−0.837577 + 0.546319i \(0.816029\pi\)
\(278\) −10.6787 32.8657i −0.640467 1.97115i
\(279\) 0.0773542 + 0.238072i 0.00463108 + 0.0142530i
\(280\) 0 0
\(281\) −7.61468 + 23.4356i −0.454253 + 1.39805i 0.417756 + 0.908559i \(0.362817\pi\)
−0.872009 + 0.489489i \(0.837183\pi\)
\(282\) −45.5069 −2.70990
\(283\) 1.03936 3.19881i 0.0617833 0.190150i −0.915401 0.402544i \(-0.868126\pi\)
0.977184 + 0.212394i \(0.0681261\pi\)
\(284\) −18.3199 + 13.3102i −1.08709 + 0.789815i
\(285\) 0 0
\(286\) −11.3843 8.27117i −0.673168 0.489085i
\(287\) 6.93130 5.03588i 0.409141 0.297259i
\(288\) 11.9963 8.71584i 0.706890 0.513586i
\(289\) 6.97519 + 5.06777i 0.410305 + 0.298104i
\(290\) 0 0
\(291\) −30.2883 + 22.0057i −1.77553 + 1.29000i
\(292\) −0.563092 + 1.73302i −0.0329525 + 0.101417i
\(293\) 8.96340 0.523647 0.261824 0.965116i \(-0.415676\pi\)
0.261824 + 0.965116i \(0.415676\pi\)
\(294\) −8.52155 + 26.2266i −0.496987 + 1.52957i
\(295\) 0 0
\(296\) 0.482504 + 1.48499i 0.0280450 + 0.0863136i
\(297\) −1.58516 4.87861i −0.0919801 0.283086i
\(298\) −5.41801 3.93641i −0.313857 0.228030i
\(299\) 15.3507 0.887756
\(300\) 0 0
\(301\) 4.60867 0.265640
\(302\) −29.8374 21.6781i −1.71695 1.24744i
\(303\) −1.73047 5.32583i −0.0994128 0.305961i
\(304\) 2.54112 + 7.82078i 0.145743 + 0.448552i
\(305\) 0 0
\(306\) −3.41958 + 10.5244i −0.195484 + 0.601638i
\(307\) −9.48133 −0.541128 −0.270564 0.962702i \(-0.587210\pi\)
−0.270564 + 0.962702i \(0.587210\pi\)
\(308\) −1.44037 + 4.43299i −0.0820725 + 0.252593i
\(309\) 18.0804 13.1362i 1.02856 0.747291i
\(310\) 0 0
\(311\) −23.7301 17.2409i −1.34561 0.977643i −0.999217 0.0395541i \(-0.987406\pi\)
−0.346393 0.938089i \(-0.612594\pi\)
\(312\) −4.36010 + 3.16780i −0.246842 + 0.179341i
\(313\) 15.2824 11.1033i 0.863811 0.627596i −0.0651079 0.997878i \(-0.520739\pi\)
0.928919 + 0.370283i \(0.120739\pi\)
\(314\) 2.79224 + 2.02868i 0.157575 + 0.114485i
\(315\) 0 0
\(316\) −30.1151 + 21.8799i −1.69411 + 1.23084i
\(317\) −7.04229 + 21.6739i −0.395534 + 1.21733i 0.533010 + 0.846109i \(0.321061\pi\)
−0.928545 + 0.371221i \(0.878939\pi\)
\(318\) −34.6826 −1.94490
\(319\) −3.32768 + 10.2415i −0.186314 + 0.573416i
\(320\) 0 0
\(321\) 3.27267 + 10.0722i 0.182663 + 0.562178i
\(322\) −2.90945 8.95435i −0.162137 0.499007i
\(323\) −6.05210 4.39711i −0.336748 0.244662i
\(324\) −26.1587 −1.45326
\(325\) 0 0
\(326\) −1.86202 −0.103128
\(327\) −28.9457 21.0303i −1.60070 1.16298i
\(328\) 1.93827 + 5.96538i 0.107023 + 0.329383i
\(329\) 3.04408 + 9.36871i 0.167825 + 0.516513i
\(330\) 0 0
\(331\) 0.915615 2.81797i 0.0503268 0.154890i −0.922735 0.385436i \(-0.874051\pi\)
0.973061 + 0.230546i \(0.0740512\pi\)
\(332\) 4.15928 0.228270
\(333\) 1.21756 3.74725i 0.0667217 0.205348i
\(334\) 8.76510 6.36822i 0.479605 0.348453i
\(335\) 0 0
\(336\) −5.61615 4.08037i −0.306386 0.222603i
\(337\) −15.2195 + 11.0576i −0.829057 + 0.602345i −0.919292 0.393575i \(-0.871238\pi\)
0.0902353 + 0.995920i \(0.471238\pi\)
\(338\) 2.72574 1.98037i 0.148261 0.107718i
\(339\) 12.0182 + 8.73173i 0.652739 + 0.474242i
\(340\) 0 0
\(341\) −0.220923 + 0.160510i −0.0119636 + 0.00869209i
\(342\) −3.05331 + 9.39711i −0.165104 + 0.508138i
\(343\) 12.9162 0.697410
\(344\) −1.04264 + 3.20891i −0.0562152 + 0.173013i
\(345\) 0 0
\(346\) 3.71467 + 11.4326i 0.199702 + 0.614620i
\(347\) 7.02649 + 21.6253i 0.377201 + 1.16091i 0.941981 + 0.335665i \(0.108961\pi\)
−0.564780 + 0.825242i \(0.691039\pi\)
\(348\) 22.4898 + 16.3398i 1.20558 + 0.875906i
\(349\) 1.93849 0.103765 0.0518824 0.998653i \(-0.483478\pi\)
0.0518824 + 0.998653i \(0.483478\pi\)
\(350\) 0 0
\(351\) −8.65392 −0.461912
\(352\) 13.0867 + 9.50802i 0.697522 + 0.506779i
\(353\) −1.62217 4.99252i −0.0863394 0.265725i 0.898561 0.438849i \(-0.144614\pi\)
−0.984900 + 0.173124i \(0.944614\pi\)
\(354\) 6.96689 + 21.4419i 0.370286 + 1.13962i
\(355\) 0 0
\(356\) 10.5285 32.4033i 0.558008 1.71737i
\(357\) 6.31519 0.334235
\(358\) 5.58612 17.1923i 0.295236 0.908642i
\(359\) −18.2787 + 13.2803i −0.964713 + 0.700905i −0.954241 0.299040i \(-0.903334\pi\)
−0.0104726 + 0.999945i \(0.503334\pi\)
\(360\) 0 0
\(361\) 9.96746 + 7.24178i 0.524603 + 0.381146i
\(362\) −24.1091 + 17.5163i −1.26715 + 0.920637i
\(363\) 12.4503 9.04569i 0.653472 0.474775i
\(364\) 6.36167 + 4.62203i 0.333442 + 0.242260i
\(365\) 0 0
\(366\) 10.2727 7.46353i 0.536961 0.390125i
\(367\) 2.25543 6.94150i 0.117732 0.362343i −0.874775 0.484530i \(-0.838991\pi\)
0.992507 + 0.122187i \(0.0389907\pi\)
\(368\) −14.4759 −0.754610
\(369\) 4.89105 15.0531i 0.254618 0.783634i
\(370\) 0 0
\(371\) 2.32001 + 7.14025i 0.120449 + 0.370703i
\(372\) 0.217838 + 0.670438i 0.0112944 + 0.0347606i
\(373\) −18.0470 13.1119i −0.934440 0.678911i 0.0126358 0.999920i \(-0.495978\pi\)
−0.947076 + 0.321010i \(0.895978\pi\)
\(374\) −12.0718 −0.624216
\(375\) 0 0
\(376\) −7.21188 −0.371924
\(377\) 14.6974 + 10.6783i 0.756953 + 0.549959i
\(378\) 1.64019 + 5.04798i 0.0843621 + 0.259640i
\(379\) −10.1811 31.3341i −0.522966 1.60952i −0.768303 0.640086i \(-0.778899\pi\)
0.245337 0.969438i \(-0.421101\pi\)
\(380\) 0 0
\(381\) 1.01282 3.11713i 0.0518881 0.159695i
\(382\) −2.64072 −0.135111
\(383\) 6.39671 19.6871i 0.326857 1.00596i −0.643739 0.765245i \(-0.722618\pi\)
0.970595 0.240716i \(-0.0773824\pi\)
\(384\) 10.1811 7.39697i 0.519550 0.377475i
\(385\) 0 0
\(386\) 35.7194 + 25.9517i 1.81807 + 1.32091i
\(387\) 6.88806 5.00447i 0.350140 0.254391i
\(388\) −32.3537 + 23.5063i −1.64251 + 1.19335i
\(389\) 0.925886 + 0.672696i 0.0469443 + 0.0341070i 0.611010 0.791623i \(-0.290764\pi\)
−0.564066 + 0.825730i \(0.690764\pi\)
\(390\) 0 0
\(391\) 10.6539 7.74052i 0.538792 0.391455i
\(392\) −1.35048 + 4.15636i −0.0682098 + 0.209928i
\(393\) 31.0310 1.56531
\(394\) 7.86239 24.1980i 0.396102 1.21908i
\(395\) 0 0
\(396\) 2.66095 + 8.18955i 0.133718 + 0.411540i
\(397\) 1.44779 + 4.45583i 0.0726623 + 0.223631i 0.980792 0.195058i \(-0.0624895\pi\)
−0.908129 + 0.418690i \(0.862490\pi\)
\(398\) −17.5560 12.7552i −0.880005 0.639361i
\(399\) 5.63877 0.282292
\(400\) 0 0
\(401\) −24.0851 −1.20275 −0.601376 0.798966i \(-0.705381\pi\)
−0.601376 + 0.798966i \(0.705381\pi\)
\(402\) 8.10687 + 5.88998i 0.404334 + 0.293766i
\(403\) 0.142360 + 0.438139i 0.00709146 + 0.0218253i
\(404\) −1.84847 5.68902i −0.0919650 0.283039i
\(405\) 0 0
\(406\) 3.44320 10.5971i 0.170883 0.525925i
\(407\) 4.29821 0.213054
\(408\) −1.42871 + 4.39711i −0.0707316 + 0.217689i
\(409\) 1.53660 1.11641i 0.0759801 0.0552027i −0.549147 0.835726i \(-0.685047\pi\)
0.625127 + 0.780523i \(0.285047\pi\)
\(410\) 0 0
\(411\) −1.22626 0.890932i −0.0604871 0.0439464i
\(412\) 19.3134 14.0320i 0.951501 0.691306i
\(413\) 3.94830 2.86861i 0.194283 0.141155i
\(414\) −14.0718 10.2237i −0.691589 0.502469i
\(415\) 0 0
\(416\) 22.0776 16.0403i 1.08244 0.786441i
\(417\) −11.2584 + 34.6499i −0.551328 + 1.69681i
\(418\) −10.7788 −0.527207
\(419\) −0.719410 + 2.21412i −0.0351455 + 0.108167i −0.967090 0.254434i \(-0.918111\pi\)
0.931945 + 0.362600i \(0.118111\pi\)
\(420\) 0 0
\(421\) −7.40097 22.7779i −0.360701 1.11012i −0.952629 0.304134i \(-0.901633\pi\)
0.591928 0.805991i \(-0.298367\pi\)
\(422\) −5.57891 17.1701i −0.271577 0.835829i
\(423\) 14.7229 + 10.6968i 0.715853 + 0.520098i
\(424\) −5.49645 −0.266931
\(425\) 0 0
\(426\) 44.2060 2.14179
\(427\) −2.22371 1.61562i −0.107613 0.0781855i
\(428\) 3.49584 + 10.7591i 0.168978 + 0.520061i
\(429\) 4.58448 + 14.1096i 0.221341 + 0.681217i
\(430\) 0 0
\(431\) 0.368430 1.13391i 0.0177467 0.0546186i −0.941791 0.336199i \(-0.890859\pi\)
0.959538 + 0.281580i \(0.0908586\pi\)
\(432\) 8.16074 0.392634
\(433\) −7.91511 + 24.3602i −0.380376 + 1.17068i 0.559404 + 0.828895i \(0.311030\pi\)
−0.939780 + 0.341781i \(0.888970\pi\)
\(434\) 0.228592 0.166082i 0.0109728 0.00797219i
\(435\) 0 0
\(436\) −30.9196 22.4644i −1.48078 1.07585i
\(437\) 9.51278 6.91144i 0.455058 0.330619i
\(438\) 2.87786 2.09089i 0.137510 0.0999066i
\(439\) −15.6740 11.3878i −0.748079 0.543511i 0.147152 0.989114i \(-0.452989\pi\)
−0.895231 + 0.445603i \(0.852989\pi\)
\(440\) 0 0
\(441\) 8.92181 6.48207i 0.424848 0.308670i
\(442\) −6.29327 + 19.3687i −0.299340 + 0.921274i
\(443\) 2.46263 0.117003 0.0585016 0.998287i \(-0.481368\pi\)
0.0585016 + 0.998287i \(0.481368\pi\)
\(444\) 3.42878 10.5527i 0.162723 0.500809i
\(445\) 0 0
\(446\) −18.2641 56.2113i −0.864833 2.66168i
\(447\) 2.18184 + 6.71502i 0.103198 + 0.317610i
\(448\) −8.43190 6.12613i −0.398370 0.289433i
\(449\) −14.3585 −0.677618 −0.338809 0.940855i \(-0.610024\pi\)
−0.338809 + 0.940855i \(0.610024\pi\)
\(450\) 0 0
\(451\) 17.2664 0.813041
\(452\) 12.8378 + 9.32717i 0.603837 + 0.438713i
\(453\) 12.0156 + 36.9802i 0.564542 + 1.73748i
\(454\) −14.3321 44.1098i −0.672641 2.07018i
\(455\) 0 0
\(456\) −1.27568 + 3.92614i −0.0597392 + 0.183858i
\(457\) −25.1964 −1.17864 −0.589319 0.807901i \(-0.700604\pi\)
−0.589319 + 0.807901i \(0.700604\pi\)
\(458\) 1.59524 4.90965i 0.0745408 0.229413i
\(459\) −6.00610 + 4.36369i −0.280341 + 0.203679i
\(460\) 0 0
\(461\) −23.3203 16.9432i −1.08614 0.789124i −0.107394 0.994217i \(-0.534251\pi\)
−0.978743 + 0.205092i \(0.934251\pi\)
\(462\) 7.36146 5.34841i 0.342486 0.248831i
\(463\) −25.7911 + 18.7384i −1.19862 + 0.870846i −0.994148 0.108028i \(-0.965547\pi\)
−0.204468 + 0.978873i \(0.565547\pi\)
\(464\) −13.8598 10.0697i −0.643425 0.467475i
\(465\) 0 0
\(466\) 10.0480 7.30033i 0.465466 0.338181i
\(467\) 13.3185 40.9902i 0.616307 1.89680i 0.237106 0.971484i \(-0.423801\pi\)
0.379201 0.925314i \(-0.376199\pi\)
\(468\) 14.5270 0.671512
\(469\) 0.670307 2.06299i 0.0309519 0.0952601i
\(470\) 0 0
\(471\) −1.12444 3.46068i −0.0518115 0.159460i
\(472\) 1.10410 + 3.39808i 0.0508205 + 0.156409i
\(473\) 7.51411 + 5.45932i 0.345499 + 0.251020i
\(474\) 72.6679 3.33775
\(475\) 0 0
\(476\) 6.74584 0.309195
\(477\) 11.2209 + 8.15246i 0.513770 + 0.373276i
\(478\) −4.53161 13.9469i −0.207271 0.637915i
\(479\) 6.49749 + 19.9972i 0.296878 + 0.913697i 0.982584 + 0.185818i \(0.0594935\pi\)
−0.685706 + 0.727878i \(0.740506\pi\)
\(480\) 0 0
\(481\) 2.24075 6.89631i 0.102169 0.314445i
\(482\) 2.46014 0.112057
\(483\) −3.06739 + 9.44047i −0.139571 + 0.429556i
\(484\) 13.2993 9.66254i 0.604516 0.439206i
\(485\) 0 0
\(486\) 28.3323 + 20.5846i 1.28518 + 0.933739i
\(487\) 22.5869 16.4104i 1.02351 0.743625i 0.0565121 0.998402i \(-0.482002\pi\)
0.967000 + 0.254777i \(0.0820021\pi\)
\(488\) 1.62800 1.18281i 0.0736960 0.0535433i
\(489\) 1.58819 + 1.15389i 0.0718204 + 0.0521805i
\(490\) 0 0
\(491\) −12.1037 + 8.79389i −0.546234 + 0.396862i −0.826395 0.563091i \(-0.809612\pi\)
0.280161 + 0.959953i \(0.409612\pi\)
\(492\) 13.7738 42.3913i 0.620969 1.91115i
\(493\) 15.5849 0.701909
\(494\) −5.61920 + 17.2941i −0.252820 + 0.778099i
\(495\) 0 0
\(496\) −0.134247 0.413170i −0.00602787 0.0185519i
\(497\) −2.95706 9.10089i −0.132642 0.408231i
\(498\) −6.56888 4.77257i −0.294359 0.213864i
\(499\) −44.3253 −1.98427 −0.992137 0.125160i \(-0.960056\pi\)
−0.992137 + 0.125160i \(0.960056\pi\)
\(500\) 0 0
\(501\) −11.4224 −0.510316
\(502\) −7.77498 5.64885i −0.347014 0.252121i
\(503\) 7.29936 + 22.4651i 0.325462 + 1.00167i 0.971232 + 0.238137i \(0.0765367\pi\)
−0.645769 + 0.763532i \(0.723463\pi\)
\(504\) −0.408487 1.25719i −0.0181955 0.0559999i
\(505\) 0 0
\(506\) 5.86346 18.0459i 0.260663 0.802237i
\(507\) −3.55211 −0.157755
\(508\) 1.08188 3.32969i 0.0480008 0.147731i
\(509\) 21.6132 15.7029i 0.957990 0.696020i 0.00530682 0.999986i \(-0.498311\pi\)
0.952683 + 0.303966i \(0.0983108\pi\)
\(510\) 0 0
\(511\) −0.622968 0.452613i −0.0275585 0.0200224i
\(512\) −24.5598 + 17.8438i −1.08540 + 0.788591i
\(513\) −5.36279 + 3.89629i −0.236773 + 0.172026i
\(514\) −16.4577 11.9572i −0.725918 0.527410i
\(515\) 0 0
\(516\) 19.3976 14.0931i 0.853930 0.620416i
\(517\) −6.13479 + 18.8809i −0.269808 + 0.830383i
\(518\) −4.44743 −0.195409
\(519\) 3.91633 12.0532i 0.171908 0.529078i
\(520\) 0 0
\(521\) 10.1071 + 31.1065i 0.442800 + 1.36280i 0.884878 + 0.465822i \(0.154241\pi\)
−0.442078 + 0.896977i \(0.645759\pi\)
\(522\) −6.36101 19.5772i −0.278414 0.856869i
\(523\) 0.190901 + 0.138697i 0.00834750 + 0.00606481i 0.591951 0.805974i \(-0.298358\pi\)
−0.583604 + 0.812039i \(0.698358\pi\)
\(524\) 33.1471 1.44804
\(525\) 0 0
\(526\) −2.07658 −0.0905434
\(527\) 0.319732 + 0.232299i 0.0139277 + 0.0101191i
\(528\) −4.32322 13.3055i −0.188144 0.579048i
\(529\) −0.710999 2.18823i −0.0309130 0.0951405i
\(530\) 0 0
\(531\) 2.78611 8.57476i 0.120907 0.372113i
\(532\) 6.02330 0.261143
\(533\) 9.00132 27.7032i 0.389890 1.19996i
\(534\) −53.8091 + 39.0946i −2.32855 + 1.69179i
\(535\) 0 0
\(536\) 1.28477 + 0.933437i 0.0554934 + 0.0403183i
\(537\) −15.4186 + 11.2023i −0.665361 + 0.483413i
\(538\) 5.54786 4.03076i 0.239185 0.173778i
\(539\) 9.73271 + 7.07123i 0.419217 + 0.304579i
\(540\) 0 0
\(541\) 27.1484 19.7244i 1.16720 0.848020i 0.176528 0.984296i \(-0.443513\pi\)
0.990671 + 0.136276i \(0.0435133\pi\)
\(542\) 7.82935 24.0963i 0.336299 1.03502i
\(543\) 31.4183 1.34829
\(544\) 7.23434 22.2650i 0.310170 0.954604i
\(545\) 0 0
\(546\) −4.74364 14.5994i −0.203009 0.624798i
\(547\) −11.9010 36.6276i −0.508851 1.56608i −0.794199 0.607658i \(-0.792109\pi\)
0.285348 0.958424i \(-0.407891\pi\)
\(548\) −1.30989 0.951688i −0.0559555 0.0406541i
\(549\) −5.07790 −0.216720
\(550\) 0 0
\(551\) 13.9156 0.592825
\(552\) −5.87922 4.27150i −0.250236 0.181807i
\(553\) −4.86095 14.9605i −0.206708 0.636183i
\(554\) 7.64668 + 23.5341i 0.324876 + 0.999866i
\(555\) 0 0
\(556\) −12.0262 + 37.0128i −0.510024 + 1.56969i
\(557\) −4.33445 −0.183657 −0.0918283 0.995775i \(-0.529271\pi\)
−0.0918283 + 0.995775i \(0.529271\pi\)
\(558\) 0.161306 0.496448i 0.00682861 0.0210163i
\(559\) 12.6765 9.21004i 0.536160 0.389543i
\(560\) 0 0
\(561\) 10.2965 + 7.48081i 0.434717 + 0.315840i
\(562\) 41.5712 30.2032i 1.75357 1.27405i
\(563\) −28.2362 + 20.5148i −1.19001 + 0.864595i −0.993266 0.115860i \(-0.963038\pi\)
−0.196747 + 0.980454i \(0.563038\pi\)
\(564\) 41.4614 + 30.1235i 1.74584 + 1.26843i
\(565\) 0 0
\(566\) −5.67421 + 4.12255i −0.238505 + 0.173284i
\(567\) 3.41593 10.5132i 0.143456 0.441511i
\(568\) 7.00572 0.293953
\(569\) −12.9678 + 39.9107i −0.543637 + 1.67314i 0.180571 + 0.983562i \(0.442205\pi\)
−0.724208 + 0.689581i \(0.757795\pi\)
\(570\) 0 0
\(571\) −4.27469 13.1561i −0.178890 0.550567i 0.820900 0.571072i \(-0.193472\pi\)
−0.999790 + 0.0205055i \(0.993472\pi\)
\(572\) 4.89711 + 15.0718i 0.204759 + 0.630182i
\(573\) 2.25237 + 1.63644i 0.0940940 + 0.0683633i
\(574\) −17.8658 −0.745704
\(575\) 0 0
\(576\) −19.2544 −0.802268
\(577\) 10.3387 + 7.51147i 0.430404 + 0.312707i 0.781810 0.623516i \(-0.214296\pi\)
−0.351407 + 0.936223i \(0.614296\pi\)
\(578\) −5.55579 17.0990i −0.231090 0.711223i
\(579\) −14.3843 44.2703i −0.597791 1.83981i
\(580\) 0 0
\(581\) −0.543140 + 1.67161i −0.0225333 + 0.0693502i
\(582\) 78.0696 3.23609
\(583\) −4.67556 + 14.3899i −0.193642 + 0.595968i
\(584\) 0.456080 0.331361i 0.0188727 0.0137118i
\(585\) 0 0
\(586\) −15.1215 10.9864i −0.624665 0.453845i
\(587\) 9.85945 7.16331i 0.406943 0.295661i −0.365420 0.930843i \(-0.619075\pi\)
0.772363 + 0.635181i \(0.219075\pi\)
\(588\) 25.1248 18.2543i 1.03613 0.752793i
\(589\) 0.285485 + 0.207417i 0.0117632 + 0.00854648i
\(590\) 0 0
\(591\) −21.7015 + 15.7671i −0.892680 + 0.648570i
\(592\) −2.11305 + 6.50330i −0.0868459 + 0.267284i
\(593\) −31.2580 −1.28361 −0.641807 0.766866i \(-0.721815\pi\)
−0.641807 + 0.766866i \(0.721815\pi\)
\(594\) −3.30550 + 10.1733i −0.135626 + 0.417415i
\(595\) 0 0
\(596\) 2.33063 + 7.17294i 0.0954663 + 0.293815i
\(597\) 7.06986 + 21.7588i 0.289350 + 0.890528i
\(598\) −25.8972 18.8154i −1.05901 0.769419i
\(599\) −33.3707 −1.36349 −0.681746 0.731589i \(-0.738779\pi\)
−0.681746 + 0.731589i \(0.738779\pi\)
\(600\) 0 0
\(601\) −46.8052 −1.90922 −0.954611 0.297854i \(-0.903729\pi\)
−0.954611 + 0.297854i \(0.903729\pi\)
\(602\) −7.77498 5.64885i −0.316884 0.230230i
\(603\) −1.23833 3.81119i −0.0504287 0.155204i
\(604\) 12.8350 + 39.5020i 0.522248 + 1.60731i
\(605\) 0 0
\(606\) −3.60852 + 11.1059i −0.146586 + 0.451145i
\(607\) 30.7401 1.24770 0.623851 0.781543i \(-0.285567\pi\)
0.623851 + 0.781543i \(0.285567\pi\)
\(608\) 6.45947 19.8802i 0.261966 0.806249i
\(609\) −9.50380 + 6.90492i −0.385114 + 0.279801i
\(610\) 0 0
\(611\) 27.0955 + 19.6861i 1.09617 + 0.796413i
\(612\) 10.0822 7.32517i 0.407550 0.296102i
\(613\) 30.9768 22.5060i 1.25114 0.909008i 0.252854 0.967504i \(-0.418631\pi\)
0.998288 + 0.0584964i \(0.0186306\pi\)
\(614\) 15.9953 + 11.6213i 0.645518 + 0.468996i
\(615\) 0 0
\(616\) 1.16663 0.847609i 0.0470050 0.0341512i
\(617\) 0.131427 0.404490i 0.00529104 0.0162842i −0.948376 0.317148i \(-0.897275\pi\)
0.953667 + 0.300864i \(0.0972749\pi\)
\(618\) −46.6032 −1.87466
\(619\) 2.32117 7.14384i 0.0932958 0.287135i −0.893510 0.449043i \(-0.851765\pi\)
0.986806 + 0.161908i \(0.0517649\pi\)
\(620\) 0 0
\(621\) −3.60594 11.0979i −0.144701 0.445345i
\(622\) 18.9012 + 58.1720i 0.757870 + 2.33248i
\(623\) 11.6480 + 8.46278i 0.466668 + 0.339054i
\(624\) −23.6020 −0.944834
\(625\) 0 0
\(626\) −39.3912 −1.57439
\(627\) 9.19361 + 6.67955i 0.367157 + 0.266755i
\(628\) −1.20112 3.69667i −0.0479300 0.147513i
\(629\) −1.92227 5.91615i −0.0766461 0.235892i
\(630\) 0 0
\(631\) −3.48311 + 10.7199i −0.138660 + 0.426752i −0.996141 0.0877630i \(-0.972028\pi\)
0.857481 + 0.514515i \(0.172028\pi\)
\(632\) 11.5163 0.458094
\(633\) −5.88178 + 18.1023i −0.233780 + 0.719500i
\(634\) 38.4463 27.9329i 1.52690 1.10936i
\(635\) 0 0
\(636\) 31.5994 + 22.9583i 1.25300 + 0.910355i
\(637\) 16.4194 11.9294i 0.650560 0.472659i
\(638\) 18.1669 13.1991i 0.719236 0.522556i
\(639\) −14.3020 10.3910i −0.565780 0.411063i
\(640\) 0 0
\(641\) −21.1012 + 15.3309i −0.833447 + 0.605535i −0.920533 0.390666i \(-0.872245\pi\)
0.0870851 + 0.996201i \(0.472245\pi\)
\(642\) 6.82445 21.0035i 0.269340 0.828942i
\(643\) −31.9492 −1.25995 −0.629977 0.776614i \(-0.716936\pi\)
−0.629977 + 0.776614i \(0.716936\pi\)
\(644\) −3.27657 + 10.0842i −0.129115 + 0.397375i
\(645\) 0 0
\(646\) 4.82055 + 14.8361i 0.189662 + 0.583720i
\(647\) −2.28497 7.03243i −0.0898316 0.276473i 0.896041 0.443972i \(-0.146431\pi\)
−0.985872 + 0.167499i \(0.946431\pi\)
\(648\) 6.54726 + 4.75686i 0.257201 + 0.186867i
\(649\) 9.83550 0.386077
\(650\) 0 0
\(651\) −0.297895 −0.0116754
\(652\) 1.69649 + 1.23257i 0.0664398 + 0.0482713i
\(653\) 5.77407 + 17.7708i 0.225957 + 0.695424i 0.998193 + 0.0600882i \(0.0191382\pi\)
−0.772236 + 0.635336i \(0.780862\pi\)
\(654\) 23.0555 + 70.9575i 0.901541 + 2.77466i
\(655\) 0 0
\(656\) −8.48835 + 26.1245i −0.331414 + 1.01999i
\(657\) −1.42256 −0.0554994
\(658\) 6.34777 19.5364i 0.247462 0.761609i
\(659\) −7.92963 + 5.76122i −0.308895 + 0.224425i −0.731422 0.681925i \(-0.761143\pi\)
0.422527 + 0.906350i \(0.361143\pi\)
\(660\) 0 0
\(661\) 22.7807 + 16.5511i 0.886066 + 0.643765i 0.934849 0.355045i \(-0.115534\pi\)
−0.0487833 + 0.998809i \(0.515534\pi\)
\(662\) −4.99866 + 3.63174i −0.194278 + 0.141152i
\(663\) 17.3704 12.6204i 0.674612 0.490134i
\(664\) −1.04103 0.756351i −0.0403997 0.0293521i
\(665\) 0 0
\(666\) −6.64706 + 4.82937i −0.257568 + 0.187134i
\(667\) −7.56986 + 23.2976i −0.293106 + 0.902087i
\(668\) −12.2014 −0.472085
\(669\) −19.2557 + 59.2629i −0.744468 + 2.29124i
\(670\) 0 0
\(671\) −1.71178 5.26831i −0.0660825 0.203381i
\(672\) 5.45299 + 16.7826i 0.210354 + 0.647402i
\(673\) 31.5721 + 22.9385i 1.21702 + 0.884214i 0.995849 0.0910215i \(-0.0290132\pi\)
0.221168 + 0.975236i \(0.429013\pi\)
\(674\) 39.2290 1.51104
\(675\) 0 0
\(676\) −3.79434 −0.145936
\(677\) −4.07367 2.95969i −0.156564 0.113750i 0.506745 0.862096i \(-0.330848\pi\)
−0.663309 + 0.748346i \(0.730848\pi\)
\(678\) −9.57259 29.4614i −0.367633 1.13146i
\(679\) −5.22228 16.0725i −0.200413 0.616807i
\(680\) 0 0
\(681\) −15.1102 + 46.5044i −0.579025 + 1.78205i
\(682\) 0.569440 0.0218050
\(683\) −9.37285 + 28.8467i −0.358642 + 1.10379i 0.595225 + 0.803559i \(0.297063\pi\)
−0.953867 + 0.300228i \(0.902937\pi\)
\(684\) 9.00233 6.54058i 0.344213 0.250085i
\(685\) 0 0
\(686\) −21.7900 15.8314i −0.831948 0.604446i
\(687\) −4.40313 + 3.19906i −0.167990 + 0.122052i
\(688\) −11.9541 + 8.68518i −0.455747 + 0.331119i
\(689\) 20.6506 + 15.0035i 0.786724 + 0.571588i
\(690\) 0 0
\(691\) 17.1778 12.4804i 0.653474 0.474777i −0.210979 0.977491i \(-0.567665\pi\)
0.864453 + 0.502714i \(0.167665\pi\)
\(692\) 4.18340 12.8752i 0.159029 0.489441i
\(693\) −3.63886 −0.138229
\(694\) 14.6522 45.0949i 0.556191 1.71178i
\(695\) 0 0
\(696\) −2.65765 8.17939i −0.100738 0.310039i
\(697\) −7.72198 23.7658i −0.292491 0.900194i
\(698\) −3.27029 2.37600i −0.123782 0.0899330i
\(699\) −13.0943 −0.495273
\(700\) 0 0
\(701\) 32.7698 1.23770 0.618849 0.785510i \(-0.287599\pi\)
0.618849 + 0.785510i \(0.287599\pi\)
\(702\) 14.5994 + 10.6071i 0.551020 + 0.400339i
\(703\) −1.71638 5.28247i −0.0647345 0.199232i
\(704\) −6.49074 19.9764i −0.244629 0.752890i
\(705\) 0 0
\(706\) −3.38269 + 10.4108i −0.127309 + 0.391817i
\(707\) 2.52780 0.0950676
\(708\) 7.84600 24.1475i 0.294871 0.907519i
\(709\) −16.0557 + 11.6652i −0.602985 + 0.438094i −0.846937 0.531693i \(-0.821556\pi\)
0.243952 + 0.969787i \(0.421556\pi\)
\(710\) 0 0
\(711\) −23.5103 17.0813i −0.881707 0.640598i
\(712\) −8.52760 + 6.19566i −0.319585 + 0.232192i
\(713\) −0.502558 + 0.365130i −0.0188210 + 0.0136742i
\(714\) −10.6539 7.74052i −0.398713 0.289682i
\(715\) 0 0
\(716\) −16.4700 + 11.9662i −0.615514 + 0.447197i
\(717\) −4.77763 + 14.7040i −0.178424 + 0.549132i
\(718\) 47.1144 1.75829
\(719\) 7.48443 23.0347i 0.279122 0.859049i −0.708977 0.705231i \(-0.750843\pi\)
0.988099 0.153818i \(-0.0491569\pi\)
\(720\) 0 0
\(721\) 3.11741 + 9.59440i 0.116098 + 0.357314i
\(722\) −7.93916 24.4342i −0.295465 0.909347i
\(723\) −2.09835 1.52454i −0.0780384 0.0566982i
\(724\) 33.5609 1.24728
\(725\) 0 0
\(726\) −32.0914 −1.19102
\(727\) 4.74496 + 3.44742i 0.175981 + 0.127858i 0.672289 0.740289i \(-0.265311\pi\)
−0.496308 + 0.868147i \(0.665311\pi\)
\(728\) −0.751766 2.31370i −0.0278623 0.0857513i
\(729\) −1.08320 3.33374i −0.0401185 0.123472i
\(730\) 0 0
\(731\) 4.15382 12.7841i 0.153635 0.472838i
\(732\) −14.3000 −0.528542
\(733\) −10.6615 + 32.8129i −0.393793 + 1.21197i 0.536104 + 0.844152i \(0.319895\pi\)
−0.929897 + 0.367819i \(0.880105\pi\)
\(734\) −12.3132 + 8.94604i −0.454487 + 0.330204i
\(735\) 0 0
\(736\) 29.7698 + 21.6290i 1.09733 + 0.797255i
\(737\) 3.53666 2.56953i 0.130274 0.0946499i
\(738\) −26.7019 + 19.4001i −0.982912 + 0.714128i
\(739\) −32.0138 23.2594i −1.17765 0.855611i −0.185743 0.982598i \(-0.559469\pi\)
−0.991904 + 0.126988i \(0.959469\pi\)
\(740\) 0 0
\(741\) 15.5099 11.2686i 0.569770 0.413962i
\(742\) 4.83788 14.8895i 0.177604 0.546609i
\(743\) 29.7058 1.08980 0.544900 0.838501i \(-0.316567\pi\)
0.544900 + 0.838501i \(0.316567\pi\)
\(744\) 0.0673939 0.207417i 0.00247078 0.00760428i
\(745\) 0 0
\(746\) 14.3746 + 44.2405i 0.526292 + 1.61976i
\(747\) 1.00340 + 3.08815i 0.0367126 + 0.112990i
\(748\) 10.9986 + 7.99095i 0.402149 + 0.292178i
\(749\) −4.78058 −0.174679
\(750\) 0 0
\(751\) 26.8870 0.981122 0.490561 0.871407i \(-0.336792\pi\)
0.490561 + 0.871407i \(0.336792\pi\)
\(752\) −25.5514 18.5642i −0.931764 0.676966i
\(753\) 3.13100 + 9.63623i 0.114100 + 0.351164i
\(754\) −11.7066 36.0291i −0.426328 1.31210i
\(755\) 0 0
\(756\) 1.84715 5.68495i 0.0671803 0.206760i
\(757\) −44.6792 −1.62389 −0.811947 0.583731i \(-0.801592\pi\)
−0.811947 + 0.583731i \(0.801592\pi\)
\(758\) −21.2304 + 65.3405i −0.771123 + 2.37327i
\(759\) −16.1841 + 11.7584i −0.587446 + 0.426804i
\(760\) 0 0
\(761\) −16.4295 11.9367i −0.595568 0.432706i 0.248735 0.968572i \(-0.419985\pi\)
−0.844303 + 0.535866i \(0.819985\pi\)
\(762\) −5.52931 + 4.01728i −0.200306 + 0.145531i
\(763\) 13.0661 9.49307i 0.473024 0.343672i
\(764\) 2.40596 + 1.74803i 0.0870447 + 0.0632417i
\(765\) 0 0
\(766\) −34.9219 + 25.3722i −1.26178 + 0.916736i
\(767\) 5.12746 15.7807i 0.185142 0.569808i
\(768\) 19.9359 0.719375
\(769\) 8.05227 24.7823i 0.290372 0.893674i −0.694364 0.719624i \(-0.744314\pi\)
0.984737 0.174051i \(-0.0556856\pi\)
\(770\) 0 0
\(771\) 6.62755 + 20.3975i 0.238685 + 0.734598i
\(772\) −15.3652 47.2892i −0.553006 1.70198i
\(773\) 11.1082 + 8.07058i 0.399534 + 0.290278i 0.769351 0.638826i \(-0.220580\pi\)
−0.369817 + 0.929105i \(0.620580\pi\)
\(774\) −17.7543 −0.638166
\(775\) 0 0
\(776\) 12.3724 0.444142
\(777\) 3.79338 + 2.75605i 0.136087 + 0.0988728i
\(778\) −0.737476 2.26972i −0.0264398 0.0813733i
\(779\) −6.89488 21.2203i −0.247035 0.760295i
\(780\) 0 0
\(781\) 5.95942 18.3412i 0.213245 0.656300i
\(782\) −27.4610 −0.982005
\(783\) 4.26747 13.1339i 0.152507 0.469368i
\(784\) −15.4837 + 11.2495i −0.552988 + 0.401769i
\(785\) 0 0
\(786\) −52.3503 38.0347i −1.86727 1.35665i
\(787\) −15.9101 + 11.5594i −0.567136 + 0.412048i −0.834064 0.551668i \(-0.813991\pi\)
0.266928 + 0.963716i \(0.413991\pi\)
\(788\) −23.1814 + 16.8423i −0.825803 + 0.599981i
\(789\) 1.77120 + 1.28685i 0.0630562 + 0.0458130i
\(790\) 0 0
\(791\) −5.42501 + 3.94150i −0.192891 + 0.140144i
\(792\) 0.823232 2.53365i 0.0292523 0.0900293i
\(793\) −9.34520 −0.331858
\(794\) 3.01905 9.29167i 0.107142 0.329749i
\(795\) 0 0
\(796\) 7.55197 + 23.2426i 0.267673 + 0.823812i
\(797\) −3.38191 10.4085i −0.119793 0.368686i 0.873123 0.487500i \(-0.162091\pi\)
−0.992917 + 0.118813i \(0.962091\pi\)
\(798\) −9.51278 6.91144i −0.336749 0.244662i
\(799\) 28.7318 1.01646
\(800\) 0 0
\(801\) 26.5985 0.939812
\(802\) 40.6323 + 29.5211i 1.43478 + 1.04243i
\(803\) −0.479551 1.47591i −0.0169230 0.0520836i
\(804\) −3.48728 10.7327i −0.122987 0.378515i
\(805\) 0 0
\(806\) 0.296861 0.913645i 0.0104565 0.0321818i
\(807\) −7.22982 −0.254502
\(808\) −0.571873 + 1.76004i −0.0201184 + 0.0619182i
\(809\) −13.3025 + 9.66480i −0.467689 + 0.339796i −0.796540 0.604586i \(-0.793339\pi\)
0.328851 + 0.944382i \(0.393339\pi\)
\(810\) 0 0
\(811\) −18.3220 13.3117i −0.643373 0.467438i 0.217634 0.976030i \(-0.430166\pi\)
−0.861007 + 0.508592i \(0.830166\pi\)
\(812\) −10.1519 + 7.37579i −0.356262 + 0.258839i
\(813\) −21.6103 + 15.7008i −0.757906 + 0.550651i
\(814\) −7.25121 5.26831i −0.254155 0.184654i
\(815\) 0 0
\(816\) −16.3805 + 11.9011i −0.573433 + 0.416624i
\(817\) 3.70891 11.4148i 0.129758 0.399355i
\(818\) −3.96067 −0.138482
\(819\) −1.89701 + 5.83841i −0.0662870 + 0.204011i
\(820\) 0 0
\(821\) −12.2924 37.8322i −0.429009 1.32035i −0.899103 0.437737i \(-0.855780\pi\)
0.470094 0.882616i \(-0.344220\pi\)
\(822\) 0.976728 + 3.00606i 0.0340673 + 0.104848i
\(823\) 13.3975 + 9.73384i 0.467007 + 0.339300i 0.796274 0.604937i \(-0.206802\pi\)
−0.329267 + 0.944237i \(0.606802\pi\)
\(824\) −7.38562 −0.257290
\(825\) 0 0
\(826\) −10.1770 −0.354102
\(827\) −21.0637 15.3037i −0.732456 0.532160i 0.157884 0.987458i \(-0.449533\pi\)
−0.890339 + 0.455297i \(0.849533\pi\)
\(828\) 6.05316 + 18.6297i 0.210362 + 0.647428i
\(829\) 1.58945 + 4.89182i 0.0552039 + 0.169900i 0.974857 0.222832i \(-0.0715301\pi\)
−0.919653 + 0.392732i \(0.871530\pi\)
\(830\) 0 0
\(831\) 8.06180 24.8117i 0.279661 0.860708i
\(832\) −35.4352 −1.22849
\(833\) 5.38027 16.5588i 0.186415 0.573727i
\(834\) 61.4638 44.6560i 2.12832 1.54631i
\(835\) 0 0
\(836\) 9.82055 + 7.13505i 0.339651 + 0.246771i
\(837\) 0.283315 0.205840i 0.00979280 0.00711489i
\(838\) 3.92751 2.85350i 0.135674 0.0985726i
\(839\) −31.2009 22.6688i −1.07717 0.782612i −0.0999856 0.994989i \(-0.531880\pi\)
−0.977188 + 0.212377i \(0.931880\pi\)
\(840\) 0 0
\(841\) 0.00757268 0.00550188i 0.000261127 0.000189720i
\(842\) −15.4331 + 47.4983i −0.531861 + 1.63690i
\(843\) −54.1744 −1.86586
\(844\) −6.28288 + 19.3367i −0.216266 + 0.665597i
\(845\) 0 0
\(846\) −11.7269 36.0918i −0.403180 1.24086i
\(847\) 2.14668 + 6.60679i 0.0737607 + 0.227012i
\(848\) −19.4737 14.1485i −0.668730 0.485861i
\(849\) 7.39447 0.253777
\(850\) 0 0
\(851\) 9.77764 0.335173
\(852\) −40.2762 29.2624i −1.37984 1.00251i
\(853\) −2.82677 8.69991i −0.0967868 0.297879i 0.890928 0.454144i \(-0.150055\pi\)
−0.987715 + 0.156265i \(0.950055\pi\)
\(854\) 1.77121 + 5.45121i 0.0606094 + 0.186537i
\(855\) 0 0
\(856\) 1.08153 3.32861i 0.0369659 0.113769i
\(857\) 13.6712 0.466998 0.233499 0.972357i \(-0.424982\pi\)
0.233499 + 0.972357i \(0.424982\pi\)
\(858\) 9.55995 29.4225i 0.326371 1.00447i
\(859\) 28.8460 20.9579i 0.984213 0.715073i 0.0255669 0.999673i \(-0.491861\pi\)
0.958646 + 0.284600i \(0.0918609\pi\)
\(860\) 0 0
\(861\) 15.2384 + 11.0713i 0.519323 + 0.377310i
\(862\) −2.01139 + 1.46136i −0.0685082 + 0.0497741i
\(863\) 27.4526 19.9455i 0.934498 0.678953i −0.0125918 0.999921i \(-0.504008\pi\)
0.947090 + 0.320968i \(0.104008\pi\)
\(864\) −16.7826 12.1933i −0.570955 0.414823i
\(865\) 0 0
\(866\) 43.2113 31.3949i 1.46838 1.06684i
\(867\) −5.85741 + 18.0272i −0.198928 + 0.612237i
\(868\) −0.318210 −0.0108007
\(869\) 9.79636 30.1501i 0.332319 1.02277i
\(870\) 0 0
\(871\) −2.27898 7.01398i −0.0772203 0.237660i
\(872\) 3.65380 + 11.2453i 0.123733 + 0.380812i
\(873\) −25.2580 18.3510i −0.854853 0.621087i
\(874\) −24.5197 −0.829391
\(875\) 0 0
\(876\) −4.00610 −0.135354
\(877\) 23.2181 + 16.8689i 0.784018 + 0.569622i 0.906182 0.422888i \(-0.138983\pi\)
−0.122164 + 0.992510i \(0.538983\pi\)
\(878\) 12.4845 + 38.4232i 0.421330 + 1.29672i
\(879\) 6.08947 + 18.7415i 0.205393 + 0.632134i
\(880\) 0 0
\(881\) 2.57423 7.92267i 0.0867281 0.266922i −0.898282 0.439420i \(-0.855184\pi\)
0.985010 + 0.172498i \(0.0551840\pi\)
\(882\) −22.9964 −0.774331
\(883\) 15.5487 47.8539i 0.523254 1.61041i −0.244488 0.969652i \(-0.578620\pi\)
0.767742 0.640759i \(-0.221380\pi\)
\(884\) 18.5550 13.4810i 0.624072 0.453415i
\(885\) 0 0
\(886\) −4.15454 3.01845i −0.139574 0.101407i
\(887\) 9.80417 7.12315i 0.329192 0.239172i −0.410896 0.911682i \(-0.634784\pi\)
0.740088 + 0.672510i \(0.234784\pi\)
\(888\) −2.77716 + 2.01773i −0.0931954 + 0.0677104i
\(889\) 1.19693 + 0.869617i 0.0401436 + 0.0291660i
\(890\) 0 0
\(891\) 18.0231 13.0945i 0.603795 0.438683i
\(892\) −20.5688 + 63.3042i −0.688694 + 2.11958i
\(893\) 25.6543 0.858490
\(894\) 4.54977 14.0027i 0.152167 0.468322i
\(895\) 0 0
\(896\) 1.75541 + 5.40260i 0.0586442 + 0.180488i
\(897\) 10.4289 + 32.0967i 0.348209 + 1.07168i
\(898\) 24.2232 + 17.5992i 0.808338 + 0.587292i
\(899\) −0.735159 −0.0245189
\(900\) 0 0
\(901\) 21.8976 0.729514
\(902\) −29.1289 21.1634i −0.969886 0.704663i
\(903\) 3.13100 + 9.63623i 0.104193 + 0.320674i
\(904\) −1.51705 4.66900i −0.0504564 0.155289i
\(905\) 0 0
\(906\) 25.0559 77.1142i 0.832428 2.56195i
\(907\) 31.9105 1.05957 0.529786 0.848132i \(-0.322272\pi\)
0.529786 + 0.848132i \(0.322272\pi\)
\(908\) −16.1406 + 49.6757i −0.535645 + 1.64855i
\(909\) 3.77801 2.74488i 0.125309 0.0910421i
\(910\) 0 0
\(911\) 19.9730 + 14.5112i 0.661735 + 0.480778i 0.867248 0.497876i \(-0.165886\pi\)
−0.205514 + 0.978654i \(0.565886\pi\)
\(912\) −14.6260 + 10.6264i −0.484316 + 0.351876i
\(913\) −2.86570 + 2.08206i −0.0948409 + 0.0689060i
\(914\) 42.5071 + 30.8832i 1.40601 + 1.02153i
\(915\) 0 0
\(916\) −4.70339 + 3.41721i −0.155404 + 0.112908i
\(917\) −4.32852 + 13.3218i −0.142940 + 0.439925i
\(918\) 15.4810 0.510951
\(919\) −6.02121 + 18.5314i −0.198621 + 0.611293i 0.801294 + 0.598271i \(0.204145\pi\)
−0.999915 + 0.0130225i \(0.995855\pi\)
\(920\) 0 0
\(921\) −6.44134 19.8244i −0.212249 0.653237i
\(922\) 18.5748 + 57.1675i 0.611730 + 1.88271i
\(923\) −26.3210 19.1233i −0.866366 0.629452i
\(924\) −10.2474 −0.337116
\(925\) 0 0
\(926\) 66.4781 2.18461
\(927\) 15.0776 + 10.9545i 0.495214 + 0.359794i
\(928\) 13.4571 + 41.4168i 0.441752 + 1.35957i
\(929\) 3.63535 + 11.1885i 0.119272 + 0.367082i 0.992814 0.119667i \(-0.0381827\pi\)
−0.873542 + 0.486749i \(0.838183\pi\)
\(930\) 0 0
\(931\) 4.80399 14.7852i 0.157444 0.484564i
\(932\) −13.9873 −0.458168
\(933\) 19.9273 61.3300i 0.652392 2.00786i
\(934\) −72.7104 + 52.8272i −2.37916 + 1.72856i
\(935\) 0 0
\(936\) −3.63597 2.64169i −0.118846 0.0863463i
\(937\) −17.0446 + 12.3836i −0.556823 + 0.404556i −0.830295 0.557324i \(-0.811828\pi\)
0.273472 + 0.961880i \(0.411828\pi\)
\(938\) −3.65944 + 2.65874i −0.119485 + 0.0868108i
\(939\) 33.5982 + 24.4105i 1.09644 + 0.796607i
\(940\) 0 0
\(941\) 1.81791 1.32079i 0.0592622 0.0430565i −0.557760 0.830002i \(-0.688339\pi\)
0.617022 + 0.786946i \(0.288339\pi\)
\(942\) −2.34478 + 7.21650i −0.0763971 + 0.235126i
\(943\) 39.2778 1.27906
\(944\) −4.83525 + 14.8814i −0.157374 + 0.484347i
\(945\) 0 0
\(946\) −5.98505 18.4201i −0.194591 0.598889i
\(947\) 2.08780 + 6.42557i 0.0678442 + 0.208803i 0.979231 0.202748i \(-0.0649872\pi\)
−0.911387 + 0.411551i \(0.864987\pi\)
\(948\) −66.2078 48.1028i −2.15033 1.56231i
\(949\) −2.61803 −0.0849850
\(950\) 0 0
\(951\) −50.1021 −1.62467
\(952\) −1.68842 1.22671i −0.0547219 0.0397578i
\(953\) −18.5266 57.0190i −0.600136 1.84703i −0.527292 0.849684i \(-0.676793\pi\)
−0.0728437 0.997343i \(-0.523207\pi\)
\(954\) −8.93754 27.5069i −0.289364 0.890569i
\(955\) 0 0
\(956\) −5.10343 + 15.7067i −0.165057 + 0.507992i
\(957\) −23.6747 −0.765293
\(958\) 13.5491 41.6999i 0.437752 1.34726i
\(959\) 0.553535 0.402166i 0.0178746 0.0129866i
\(960\) 0 0
\(961\) 25.0644 + 18.2104i 0.808530 + 0.587432i
\(962\) −12.2330 + 8.88781i −0.394408 + 0.286555i
\(963\) −7.14499 + 5.19114i −0.230244 + 0.167282i
\(964\) −2.24144 1.62850i −0.0721920 0.0524505i
\(965\) 0 0
\(966\) 16.7460 12.1667i 0.538793 0.391456i
\(967\) 2.79845 8.61276i 0.0899922 0.276968i −0.895924 0.444207i \(-0.853485\pi\)
0.985916 + 0.167240i \(0.0534854\pi\)
\(968\) −5.08580 −0.163464
\(969\) 5.08225 15.6416i 0.163265 0.502479i
\(970\) 0 0
\(971\) 14.6322 + 45.0333i 0.469570 + 1.44519i 0.853143 + 0.521677i \(0.174693\pi\)
−0.383573 + 0.923511i \(0.625307\pi\)
\(972\) −12.1875 37.5094i −0.390916 1.20312i
\(973\) −13.3050 9.66665i −0.426539 0.309899i
\(974\) −58.2191 −1.86546
\(975\) 0 0
\(976\) 8.81263 0.282085
\(977\) −3.83852 2.78885i −0.122805 0.0892231i 0.524687 0.851295i \(-0.324182\pi\)
−0.647492 + 0.762072i \(0.724182\pi\)
\(978\) −1.26500 3.89328i −0.0404504 0.124493i
\(979\) 8.96645 + 27.5959i 0.286569 + 0.881968i
\(980\) 0 0
\(981\) 9.22005 28.3764i 0.294374 0.905988i
\(982\) 31.1981 0.995570
\(983\) −5.73708 + 17.6569i −0.182984 + 0.563168i −0.999908 0.0135783i \(-0.995678\pi\)
0.816924 + 0.576746i \(0.195678\pi\)
\(984\) −11.1561 + 8.10542i −0.355645 + 0.258391i
\(985\) 0 0
\(986\) −26.2922 19.1024i −0.837315 0.608345i
\(987\) −17.5209 + 12.7297i −0.557696 + 0.405190i
\(988\) 16.5676 12.0370i 0.527085 0.382949i
\(989\) 17.0932 + 12.4190i 0.543533 + 0.394900i
\(990\) 0 0
\(991\) 32.1340 23.3467i 1.02077 0.741634i 0.0543304 0.998523i \(-0.482698\pi\)
0.966441 + 0.256889i \(0.0826976\pi\)
\(992\) −0.341253 + 1.05027i −0.0108348 + 0.0333460i
\(993\) 6.51411 0.206719
\(994\) −6.16631 + 18.9779i −0.195583 + 0.601944i
\(995\) 0 0
\(996\) 2.82570 + 8.69660i 0.0895356 + 0.275562i
\(997\) −9.36056 28.8088i −0.296452 0.912385i −0.982730 0.185046i \(-0.940757\pi\)
0.686278 0.727339i \(-0.259243\pi\)
\(998\) 74.7782 + 54.3295i 2.36706 + 1.71977i
\(999\) −5.51210 −0.174395
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 625.2.d.o.376.1 16
5.2 odd 4 625.2.e.i.249.2 8
5.3 odd 4 625.2.e.a.249.1 8
5.4 even 2 inner 625.2.d.o.376.4 16
25.2 odd 20 625.2.e.a.374.1 8
25.3 odd 20 125.2.e.b.99.2 8
25.4 even 10 125.2.d.b.26.1 16
25.6 even 5 625.2.a.f.1.7 8
25.8 odd 20 625.2.b.c.624.2 8
25.9 even 10 125.2.d.b.101.1 16
25.11 even 5 inner 625.2.d.o.251.1 16
25.12 odd 20 125.2.e.b.24.2 8
25.13 odd 20 25.2.e.a.4.1 8
25.14 even 10 inner 625.2.d.o.251.4 16
25.16 even 5 125.2.d.b.101.4 16
25.17 odd 20 625.2.b.c.624.7 8
25.19 even 10 625.2.a.f.1.2 8
25.21 even 5 125.2.d.b.26.4 16
25.22 odd 20 25.2.e.a.19.1 yes 8
25.23 odd 20 625.2.e.i.374.2 8
75.38 even 20 225.2.m.a.154.2 8
75.44 odd 10 5625.2.a.x.1.7 8
75.47 even 20 225.2.m.a.19.2 8
75.56 odd 10 5625.2.a.x.1.2 8
100.19 odd 10 10000.2.a.bj.1.7 8
100.31 odd 10 10000.2.a.bj.1.2 8
100.47 even 20 400.2.y.c.369.1 8
100.63 even 20 400.2.y.c.129.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.2.e.a.4.1 8 25.13 odd 20
25.2.e.a.19.1 yes 8 25.22 odd 20
125.2.d.b.26.1 16 25.4 even 10
125.2.d.b.26.4 16 25.21 even 5
125.2.d.b.101.1 16 25.9 even 10
125.2.d.b.101.4 16 25.16 even 5
125.2.e.b.24.2 8 25.12 odd 20
125.2.e.b.99.2 8 25.3 odd 20
225.2.m.a.19.2 8 75.47 even 20
225.2.m.a.154.2 8 75.38 even 20
400.2.y.c.129.1 8 100.63 even 20
400.2.y.c.369.1 8 100.47 even 20
625.2.a.f.1.2 8 25.19 even 10
625.2.a.f.1.7 8 25.6 even 5
625.2.b.c.624.2 8 25.8 odd 20
625.2.b.c.624.7 8 25.17 odd 20
625.2.d.o.251.1 16 25.11 even 5 inner
625.2.d.o.251.4 16 25.14 even 10 inner
625.2.d.o.376.1 16 1.1 even 1 trivial
625.2.d.o.376.4 16 5.4 even 2 inner
625.2.e.a.249.1 8 5.3 odd 4
625.2.e.a.374.1 8 25.2 odd 20
625.2.e.i.249.2 8 5.2 odd 4
625.2.e.i.374.2 8 25.23 odd 20
5625.2.a.x.1.2 8 75.56 odd 10
5625.2.a.x.1.7 8 75.44 odd 10
10000.2.a.bj.1.2 8 100.31 odd 10
10000.2.a.bj.1.7 8 100.19 odd 10