Properties

Label 625.2.b.c.624.7
Level 625625
Weight 22
Character 625.624
Analytic conductor 4.9914.991
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [625,2,Mod(624,625)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("625.624"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(625, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 2, names="a")
 
Level: N N == 625=54 625 = 5^{4}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 625.b (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-6,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.990650126334.99065012633
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.58140625.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x83x7+4x67x5+11x4+5x310x225x+25 x^{8} - 3x^{7} + 4x^{6} - 7x^{5} + 11x^{4} + 5x^{3} - 10x^{2} - 25x + 25 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 24 2^{4}
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 624.7
Root 0.9832240.644389i-0.983224 - 0.644389i of defining polynomial
Character χ\chi == 625.624
Dual form 625.2.b.c.624.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+2.08529iq22.19849iq32.34841q4+4.58448q60.992398iq70.726543iq81.83337q9+2.00000q11+5.16297iq123.37406iq13+2.06943q143.18178q162.89451iq173.82309iq18+2.58448q192.18178q21+4.17057iq224.54963iq231.59730q24+7.03588q262.56484iq27+2.33056iq28+5.38430q29+0.136538q318.08800iq324.39698iq33+6.03588q34+4.30550q36+2.14910iq37+5.38938iq387.41785q39+8.63318q414.54963iq42+4.64398iq434.69683q44+9.48728q469.92630iq47+6.99512iq48+6.01515q496.36356q51+7.92369iq52+7.56521iq53+5.34841q540.721020q565.68196iq57+11.2278iq584.91775q592.76972q61+0.284720iq62+1.81943iq63+10.5022q64+9.16896q662.18577iq67+6.79751iq6810.0023q69+9.64254q71+1.33202iq72+0.775929iq734.48150q746.06943q761.98480iq7715.4683iq7815.8508q7911.1389q81+18.0026iq821.77110iq83+5.12372q849.68401q8611.8373iq871.45309iq8814.5080q893.34841q91+10.6844iq920.300177iq93+20.6992q9417.7814q96+17.0291iq97+12.5433iq983.66673q99+O(q100)q+2.08529i q^{2} -2.19849i q^{3} -2.34841 q^{4} +4.58448 q^{6} -0.992398i q^{7} -0.726543i q^{8} -1.83337 q^{9} +2.00000 q^{11} +5.16297i q^{12} -3.37406i q^{13} +2.06943 q^{14} -3.18178 q^{16} -2.89451i q^{17} -3.82309i q^{18} +2.58448 q^{19} -2.18178 q^{21} +4.17057i q^{22} -4.54963i q^{23} -1.59730 q^{24} +7.03588 q^{26} -2.56484i q^{27} +2.33056i q^{28} +5.38430 q^{29} +0.136538 q^{31} -8.08800i q^{32} -4.39698i q^{33} +6.03588 q^{34} +4.30550 q^{36} +2.14910i q^{37} +5.38938i q^{38} -7.41785 q^{39} +8.63318 q^{41} -4.54963i q^{42} +4.64398i q^{43} -4.69683 q^{44} +9.48728 q^{46} -9.92630i q^{47} +6.99512i q^{48} +6.01515 q^{49} -6.36356 q^{51} +7.92369i q^{52} +7.56521i q^{53} +5.34841 q^{54} -0.721020 q^{56} -5.68196i q^{57} +11.2278i q^{58} -4.91775 q^{59} -2.76972 q^{61} +0.284720i q^{62} +1.81943i q^{63} +10.5022 q^{64} +9.16896 q^{66} -2.18577i q^{67} +6.79751i q^{68} -10.0023 q^{69} +9.64254 q^{71} +1.33202i q^{72} +0.775929i q^{73} -4.48150 q^{74} -6.06943 q^{76} -1.98480i q^{77} -15.4683i q^{78} -15.8508 q^{79} -11.1389 q^{81} +18.0026i q^{82} -1.77110i q^{83} +5.12372 q^{84} -9.68401 q^{86} -11.8373i q^{87} -1.45309i q^{88} -14.5080 q^{89} -3.34841 q^{91} +10.6844i q^{92} -0.300177i q^{93} +20.6992 q^{94} -17.7814 q^{96} +17.0291i q^{97} +12.5433i q^{98} -3.66673 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q6q4+6q64q9+16q1112q142q1610q19+6q2120q24+6q2620q29+16q312q3412q3618q39+26q4112q44+6q46+8q99+O(q100) 8 q - 6 q^{4} + 6 q^{6} - 4 q^{9} + 16 q^{11} - 12 q^{14} - 2 q^{16} - 10 q^{19} + 6 q^{21} - 20 q^{24} + 6 q^{26} - 20 q^{29} + 16 q^{31} - 2 q^{34} - 12 q^{36} - 18 q^{39} + 26 q^{41} - 12 q^{44} + 6 q^{46}+ \cdots - 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/625Z)×\left(\mathbb{Z}/625\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.08529i 1.47452i 0.675610 + 0.737260i 0.263881π0.263881\pi
−0.675610 + 0.737260i 0.736119π0.736119\pi
33 − 2.19849i − 1.26930i −0.772800 0.634650i 0.781144π-0.781144\pi
0.772800 0.634650i 0.218856π-0.218856\pi
44 −2.34841 −1.17421
55 0 0
66 4.58448 1.87161
77 − 0.992398i − 0.375091i −0.982256 0.187546i 0.939947π-0.939947\pi
0.982256 0.187546i 0.0600533π-0.0600533\pi
88 − 0.726543i − 0.256872i
99 −1.83337 −0.611122
1010 0 0
1111 2.00000 0.603023 0.301511 0.953463i 0.402509π-0.402509\pi
0.301511 + 0.953463i 0.402509π0.402509\pi
1212 5.16297i 1.49042i
1313 − 3.37406i − 0.935796i −0.883782 0.467898i 0.845011π-0.845011\pi
0.883782 0.467898i 0.154989π-0.154989\pi
1414 2.06943 0.553079
1515 0 0
1616 −3.18178 −0.795445
1717 − 2.89451i − 0.702022i −0.936371 0.351011i 0.885838π-0.885838\pi
0.936371 0.351011i 0.114162π-0.114162\pi
1818 − 3.82309i − 0.901111i
1919 2.58448 0.592921 0.296460 0.955045i 0.404194π-0.404194\pi
0.296460 + 0.955045i 0.404194π0.404194\pi
2020 0 0
2121 −2.18178 −0.476103
2222 4.17057i 0.889169i
2323 − 4.54963i − 0.948664i −0.880346 0.474332i 0.842690π-0.842690\pi
0.880346 0.474332i 0.157310π-0.157310\pi
2424 −1.59730 −0.326047
2525 0 0
2626 7.03588 1.37985
2727 − 2.56484i − 0.493603i
2828 2.33056i 0.440435i
2929 5.38430 0.999839 0.499919 0.866072i 0.333363π-0.333363\pi
0.499919 + 0.866072i 0.333363π0.333363\pi
3030 0 0
3131 0.136538 0.0245229 0.0122614 0.999925i 0.496097π-0.496097\pi
0.0122614 + 0.999925i 0.496097π0.496097\pi
3232 − 8.08800i − 1.42977i
3333 − 4.39698i − 0.765417i
3434 6.03588 1.03515
3535 0 0
3636 4.30550 0.717584
3737 2.14910i 0.353311i 0.984273 + 0.176655i 0.0565278π0.0565278\pi
−0.984273 + 0.176655i 0.943472π0.943472\pi
3838 5.38938i 0.874273i
3939 −7.41785 −1.18781
4040 0 0
4141 8.63318 1.34828 0.674138 0.738605i 0.264515π-0.264515\pi
0.674138 + 0.738605i 0.264515π0.264515\pi
4242 − 4.54963i − 0.702024i
4343 4.64398i 0.708200i 0.935208 + 0.354100i 0.115213π0.115213\pi
−0.935208 + 0.354100i 0.884787π0.884787\pi
4444 −4.69683 −0.708073
4545 0 0
4646 9.48728 1.39882
4747 − 9.92630i − 1.44790i −0.689853 0.723950i 0.742325π-0.742325\pi
0.689853 0.723950i 0.257675π-0.257675\pi
4848 6.99512i 1.00966i
4949 6.01515 0.859306
5050 0 0
5151 −6.36356 −0.891077
5252 7.92369i 1.09882i
5353 7.56521i 1.03916i 0.854421 + 0.519581i 0.173912π0.173912\pi
−0.854421 + 0.519581i 0.826088π0.826088\pi
5454 5.34841 0.727827
5555 0 0
5656 −0.721020 −0.0963503
5757 − 5.68196i − 0.752594i
5858 11.2278i 1.47428i
5959 −4.91775 −0.640237 −0.320118 0.947378i 0.603723π-0.603723\pi
−0.320118 + 0.947378i 0.603723π0.603723\pi
6060 0 0
6161 −2.76972 −0.354626 −0.177313 0.984155i 0.556740π-0.556740\pi
−0.177313 + 0.984155i 0.556740π0.556740\pi
6262 0.284720i 0.0361595i
6363 1.81943i 0.229227i
6464 10.5022 1.31278
6565 0 0
6666 9.16896 1.12862
6767 − 2.18577i − 0.267035i −0.991046 0.133517i 0.957373π-0.957373\pi
0.991046 0.133517i 0.0426272π-0.0426272\pi
6868 6.79751i 0.824319i
6969 −10.0023 −1.20414
7070 0 0
7171 9.64254 1.14436 0.572179 0.820128i 0.306098π-0.306098\pi
0.572179 + 0.820128i 0.306098π0.306098\pi
7272 1.33202i 0.156980i
7373 0.775929i 0.0908157i 0.998969 + 0.0454078i 0.0144587π0.0144587\pi
−0.998969 + 0.0454078i 0.985541π0.985541\pi
7474 −4.48150 −0.520963
7575 0 0
7676 −6.06943 −0.696212
7777 − 1.98480i − 0.226189i
7878 − 15.4683i − 1.75144i
7979 −15.8508 −1.78336 −0.891679 0.452667i 0.850473π-0.850473\pi
−0.891679 + 0.452667i 0.850473π0.850473\pi
8080 0 0
8181 −11.1389 −1.23765
8282 18.0026i 1.98806i
8383 − 1.77110i − 0.194404i −0.995265 0.0972019i 0.969011π-0.969011\pi
0.995265 0.0972019i 0.0309892π-0.0309892\pi
8484 5.12372 0.559044
8585 0 0
8686 −9.68401 −1.04425
8787 − 11.8373i − 1.26909i
8888 − 1.45309i − 0.154899i
8989 −14.5080 −1.53785 −0.768923 0.639341i 0.779207π-0.779207\pi
−0.768923 + 0.639341i 0.779207π0.779207\pi
9090 0 0
9191 −3.34841 −0.351009
9292 10.6844i 1.11393i
9393 − 0.300177i − 0.0311269i
9494 20.6992 2.13496
9595 0 0
9696 −17.7814 −1.81481
9797 17.0291i 1.72904i 0.502595 + 0.864522i 0.332379π0.332379\pi
−0.502595 + 0.864522i 0.667621π0.667621\pi
9898 12.5433i 1.26706i
9999 −3.66673 −0.368520
100100 0 0
101101 −2.54716 −0.253452 −0.126726 0.991938i 0.540447π-0.540447\pi
−0.126726 + 0.991938i 0.540447π0.540447\pi
102102 − 13.2698i − 1.31391i
103103 10.1654i 1.00163i 0.865555 + 0.500815i 0.166966π0.166966\pi
−0.865555 + 0.500815i 0.833034π0.833034\pi
104104 −2.45140 −0.240380
105105 0 0
106106 −15.7756 −1.53226
107107 4.81720i 0.465697i 0.972513 + 0.232848i 0.0748046π0.0748046\pi
−0.972513 + 0.232848i 0.925195π0.925195\pi
108108 6.02330i 0.579592i
109109 −16.2743 −1.55879 −0.779397 0.626531i 0.784474π-0.784474\pi
−0.779397 + 0.626531i 0.784474π0.784474\pi
110110 0 0
111111 4.72479 0.448457
112112 3.15759i 0.298365i
113113 6.75704i 0.635649i 0.948150 + 0.317825i 0.102952π0.102952\pi
−0.948150 + 0.317825i 0.897048π0.897048\pi
114114 11.8485 1.10971
115115 0 0
116116 −12.6446 −1.17402
117117 6.18589i 0.571886i
118118 − 10.2549i − 0.944041i
119119 −2.87251 −0.263322
120120 0 0
121121 −7.00000 −0.636364
122122 − 5.77565i − 0.522903i
123123 − 18.9800i − 1.71137i
124124 −0.320647 −0.0287950
125125 0 0
126126 −3.79403 −0.337999
127127 1.49081i 0.132288i 0.997810 + 0.0661441i 0.0210697π0.0210697\pi
−0.997810 + 0.0661441i 0.978930π0.978930\pi
128128 5.72414i 0.505948i
129129 10.2097 0.898918
130130 0 0
131131 14.1147 1.23320 0.616602 0.787275i 0.288509π-0.288509\pi
0.616602 + 0.787275i 0.288509π0.288509\pi
132132 10.3259i 0.898757i
133133 − 2.56484i − 0.222399i
134134 4.55796 0.393748
135135 0 0
136136 −2.10299 −0.180330
137137 0.689447i 0.0589035i 0.999566 + 0.0294517i 0.00937613π0.00937613\pi
−0.999566 + 0.0294517i 0.990624π0.990624\pi
138138 − 20.8577i − 1.77553i
139139 16.5719 1.40561 0.702803 0.711384i 0.251931π-0.251931\pi
0.702803 + 0.711384i 0.251931π0.251931\pi
140140 0 0
141141 −21.8229 −1.83782
142142 20.1074i 1.68738i
143143 − 6.74812i − 0.564307i
144144 5.83337 0.486114
145145 0 0
146146 −1.61803 −0.133909
147147 − 13.2242i − 1.09072i
148148 − 5.04699i − 0.414860i
149149 −3.21156 −0.263101 −0.131551 0.991309i 0.541996π-0.541996\pi
−0.131551 + 0.991309i 0.541996π0.541996\pi
150150 0 0
151151 17.6863 1.43929 0.719647 0.694340i 0.244304π-0.244304\pi
0.719647 + 0.694340i 0.244304π0.244304\pi
152152 − 1.87774i − 0.152305i
153153 5.30670i 0.429021i
154154 4.13887 0.333519
155155 0 0
156156 17.4202 1.39473
157157 − 1.65512i − 0.132093i −0.997817 0.0660465i 0.978961π-0.978961\pi
0.997817 0.0660465i 0.0210386π-0.0210386\pi
158158 − 33.0535i − 2.62960i
159159 16.6321 1.31901
160160 0 0
161161 −4.51505 −0.355836
162162 − 23.2277i − 1.82494i
163163 0.892934i 0.0699400i 0.999388 + 0.0349700i 0.0111336π0.0111336\pi
−0.999388 + 0.0349700i 0.988866π0.988866\pi
164164 −20.2743 −1.58316
165165 0 0
166166 3.69325 0.286652
167167 − 5.19558i − 0.402046i −0.979587 0.201023i 0.935573π-0.935573\pi
0.979587 0.201023i 0.0644265π-0.0644265\pi
168168 1.58516i 0.122297i
169169 1.61570 0.124285
170170 0 0
171171 −4.73830 −0.362347
172172 − 10.9060i − 0.831573i
173173 − 5.76465i − 0.438278i −0.975694 0.219139i 0.929675π-0.929675\pi
0.975694 0.219139i 0.0703248π-0.0703248\pi
174174 24.6842 1.87130
175175 0 0
176176 −6.36356 −0.479671
177177 10.8116i 0.812652i
178178 − 30.2534i − 2.26758i
179179 −8.66887 −0.647942 −0.323971 0.946067i 0.605018π-0.605018\pi
−0.323971 + 0.946067i 0.605018π0.605018\pi
180180 0 0
181181 14.2909 1.06223 0.531116 0.847299i 0.321773π-0.321773\pi
0.531116 + 0.847299i 0.321773π0.321773\pi
182182 − 6.98240i − 0.517570i
183183 6.08920i 0.450127i
184184 −3.30550 −0.243685
185185 0 0
186186 0.625955 0.0458972
187187 − 5.78902i − 0.423335i
188188 23.3111i 1.70013i
189189 −2.54534 −0.185146
190190 0 0
191191 −1.26636 −0.0916305 −0.0458153 0.998950i 0.514589π-0.514589\pi
−0.0458153 + 0.998950i 0.514589π0.514589\pi
192192 − 23.0891i − 1.66631i
193193 21.1730i 1.52406i 0.647540 + 0.762031i 0.275798π0.275798\pi
−0.647540 + 0.762031i 0.724202π0.724202\pi
194194 −35.5105 −2.54951
195195 0 0
196196 −14.1261 −1.00900
197197 12.2013i 0.869308i 0.900597 + 0.434654i 0.143129π0.143129\pi
−0.900597 + 0.434654i 0.856871π0.856871\pi
198198 − 7.64618i − 0.543390i
199199 −10.4065 −0.737695 −0.368848 0.929490i 0.620248π-0.620248\pi
−0.368848 + 0.929490i 0.620248π0.620248\pi
200200 0 0
201201 −4.80540 −0.338947
202202 − 5.31156i − 0.373720i
203203 − 5.34337i − 0.375031i
204204 14.9443 1.04631
205205 0 0
206206 −21.1978 −1.47692
207207 8.34114i 0.579749i
208208 10.7355i 0.744375i
209209 5.16896 0.357545
210210 0 0
211211 −8.65769 −0.596020 −0.298010 0.954563i 0.596323π-0.596323\pi
−0.298010 + 0.954563i 0.596323π0.596323\pi
212212 − 17.7662i − 1.22019i
213213 − 21.1990i − 1.45253i
214214 −10.0452 −0.686679
215215 0 0
216216 −1.86346 −0.126793
217217 − 0.135500i − 0.00919832i
218218 − 33.9365i − 2.29847i
219219 1.70587 0.115272
220220 0 0
221221 −9.76626 −0.656950
222222 9.85253i 0.661259i
223223 28.3434i 1.89801i 0.315256 + 0.949007i 0.397909π0.397909\pi
−0.315256 + 0.949007i 0.602091π0.602091\pi
224224 −8.02652 −0.536295
225225 0 0
226226 −14.0904 −0.937277
227227 − 22.2415i − 1.47622i −0.674682 0.738109i 0.735719π-0.735719\pi
0.674682 0.738109i 0.264281π-0.264281\pi
228228 13.3436i 0.883701i
229229 −2.47559 −0.163592 −0.0817958 0.996649i 0.526066π-0.526066\pi
−0.0817958 + 0.996649i 0.526066π0.526066\pi
230230 0 0
231231 −4.36356 −0.287101
232232 − 3.91192i − 0.256830i
233233 5.95605i 0.390194i 0.980784 + 0.195097i 0.0625021π0.0625021\pi
−0.980784 + 0.195097i 0.937498π0.937498\pi
234234 −12.8993 −0.843256
235235 0 0
236236 11.5489 0.751770
237237 34.8479i 2.26362i
238238 − 5.99000i − 0.388274i
239239 7.03243 0.454890 0.227445 0.973791i 0.426963π-0.426963\pi
0.227445 + 0.973791i 0.426963π0.426963\pi
240240 0 0
241241 1.17976 0.0759953 0.0379976 0.999278i 0.487902π-0.487902\pi
0.0379976 + 0.999278i 0.487902π0.487902\pi
242242 − 14.5970i − 0.938330i
243243 16.7942i 1.07735i
244244 6.50444 0.416404
245245 0 0
246246 39.5787 2.52344
247247 − 8.72020i − 0.554853i
248248 − 0.0992004i − 0.00629923i
249249 −3.89375 −0.246757
250250 0 0
251251 4.60867 0.290897 0.145448 0.989366i 0.453538π-0.453538\pi
0.145448 + 0.989366i 0.453538π0.453538\pi
252252 − 4.27277i − 0.269159i
253253 − 9.09927i − 0.572066i
254254 −3.10877 −0.195062
255255 0 0
256256 9.06799 0.566750
257257 9.75542i 0.608526i 0.952588 + 0.304263i 0.0984102π0.0984102\pi
−0.952588 + 0.304263i 0.901590π0.901590\pi
258258 21.2902i 1.32547i
259259 2.13277 0.132524
260260 0 0
261261 −9.87138 −0.611023
262262 29.4331i 1.81838i
263263 0.995828i 0.0614054i 0.999529 + 0.0307027i 0.00977450π0.00977450\pi
−0.999529 + 0.0307027i 0.990225π0.990225\pi
264264 −3.19460 −0.196614
265265 0 0
266266 5.34841 0.327932
267267 31.8958i 1.95199i
268268 5.13310i 0.313554i
269269 3.28853 0.200506 0.100253 0.994962i 0.468035π-0.468035\pi
0.100253 + 0.994962i 0.468035π0.468035\pi
270270 0 0
271271 12.1500 0.738063 0.369031 0.929417i 0.379689π-0.379689\pi
0.369031 + 0.929417i 0.379689π0.379689\pi
272272 9.20970i 0.558420i
273273 7.36146i 0.445536i
274274 −1.43769 −0.0868543
275275 0 0
276276 23.4896 1.41391
277277 11.8666i 0.712993i 0.934297 + 0.356496i 0.116029π0.116029\pi
−0.934297 + 0.356496i 0.883971π0.883971\pi
278278 34.5571i 2.07259i
279279 −0.250324 −0.0149865
280280 0 0
281281 −24.6416 −1.47000 −0.734998 0.678070i 0.762817π-0.762817\pi
−0.734998 + 0.678070i 0.762817π0.762817\pi
282282 − 45.5069i − 2.70990i
283283 − 3.36343i − 0.199935i −0.994991 0.0999675i 0.968126π-0.968126\pi
0.994991 0.0999675i 0.0318739π-0.0318739\pi
284284 −22.6447 −1.34371
285285 0 0
286286 14.0718 0.832081
287287 − 8.56755i − 0.505727i
288288 14.8283i 0.873764i
289289 8.62180 0.507165
290290 0 0
291291 37.4383 2.19467
292292 − 1.82220i − 0.106636i
293293 − 8.96340i − 0.523647i −0.965116 0.261824i 0.915676π-0.915676\pi
0.965116 0.261824i 0.0843239π-0.0843239\pi
294294 27.5763 1.60828
295295 0 0
296296 1.56142 0.0907555
297297 − 5.12967i − 0.297654i
298298 − 6.69702i − 0.387948i
299299 −15.3507 −0.887756
300300 0 0
301301 4.60867 0.265640
302302 36.8811i 2.12227i
303303 5.59991i 0.321706i
304304 −8.22325 −0.471636
305305 0 0
306306 −11.0660 −0.632600
307307 − 9.48133i − 0.541128i −0.962702 0.270564i 0.912790π-0.912790\pi
0.962702 0.270564i 0.0872102π-0.0872102\pi
308308 4.66112i 0.265592i
309309 22.3486 1.27137
310310 0 0
311311 29.3320 1.66327 0.831633 0.555325i 0.187406π-0.187406\pi
0.831633 + 0.555325i 0.187406π0.187406\pi
312312 5.38938i 0.305114i
313313 18.8901i 1.06773i 0.845570 + 0.533865i 0.179261π0.179261\pi
−0.845570 + 0.533865i 0.820739π0.820739\pi
314314 3.45140 0.194774
315315 0 0
316316 37.2243 2.09403
317317 − 22.7893i − 1.27998i −0.768385 0.639988i 0.778939π-0.778939\pi
0.768385 0.639988i 0.221061π-0.221061\pi
318318 34.6826i 1.94490i
319319 10.7686 0.602925
320320 0 0
321321 10.5906 0.591109
322322 − 9.41516i − 0.524687i
323323 − 7.48081i − 0.416244i
324324 26.1587 1.45326
325325 0 0
326326 −1.86202 −0.103128
327327 35.7789i 1.97858i
328328 − 6.27237i − 0.346334i
329329 −9.85084 −0.543094
330330 0 0
331331 2.96299 0.162861 0.0814304 0.996679i 0.474051π-0.474051\pi
0.0814304 + 0.996679i 0.474051π0.474051\pi
332332 4.15928i 0.228270i
333333 − 3.94010i − 0.215916i
334334 10.8343 0.592824
335335 0 0
336336 6.94194 0.378714
337337 18.8123i 1.02477i 0.858756 + 0.512385i 0.171238π0.171238\pi
−0.858756 + 0.512385i 0.828762π0.828762\pi
338338 3.36920i 0.183261i
339339 14.8553 0.806829
340340 0 0
341341 0.273075 0.0147879
342342 − 9.88071i − 0.534287i
343343 − 12.9162i − 0.697410i
344344 3.37405 0.181916
345345 0 0
346346 12.0209 0.646249
347347 22.7382i 1.22065i 0.792151 + 0.610325i 0.208961π0.208961\pi
−0.792151 + 0.610325i 0.791039π0.791039\pi
348348 27.7989i 1.49018i
349349 −1.93849 −0.103765 −0.0518824 0.998653i 0.516522π-0.516522\pi
−0.0518824 + 0.998653i 0.516522π0.516522\pi
350350 0 0
351351 −8.65392 −0.461912
352352 − 16.1760i − 0.862184i
353353 5.24945i 0.279400i 0.990194 + 0.139700i 0.0446138π0.0446138\pi
−0.990194 + 0.139700i 0.955386π0.955386\pi
354354 −22.5453 −1.19827
355355 0 0
356356 34.0708 1.80575
357357 6.31519i 0.334235i
358358 − 18.0771i − 0.955402i
359359 −22.5937 −1.19245 −0.596226 0.802817i 0.703334π-0.703334\pi
−0.596226 + 0.802817i 0.703334π0.703334\pi
360360 0 0
361361 −12.3205 −0.648445
362362 29.8005i 1.56628i
363363 15.3894i 0.807736i
364364 7.86346 0.412157
365365 0 0
366366 −12.6977 −0.663720
367367 7.29872i 0.380990i 0.981688 + 0.190495i 0.0610093π0.0610093\pi
−0.981688 + 0.190495i 0.938991π0.938991\pi
368368 14.4759i 0.754610i
369369 −15.8278 −0.823961
370370 0 0
371371 7.50770 0.389781
372372 0.704940i 0.0365494i
373373 − 22.3074i − 1.15503i −0.816380 0.577516i 0.804022π-0.804022\pi
0.816380 0.577516i 0.195978π-0.195978\pi
374374 12.0718 0.624216
375375 0 0
376376 −7.21188 −0.371924
377377 − 18.1669i − 0.935645i
378378 − 5.30776i − 0.273002i
379379 32.9466 1.69235 0.846177 0.532903i 0.178899π-0.178899\pi
0.846177 + 0.532903i 0.178899π0.178899\pi
380380 0 0
381381 3.27754 0.167913
382382 − 2.64072i − 0.135111i
383383 − 20.7002i − 1.05773i −0.848706 0.528865i 0.822618π-0.822618\pi
0.848706 0.528865i 0.177382π-0.177382\pi
384384 12.5845 0.642199
385385 0 0
386386 −44.1516 −2.24726
387387 − 8.51410i − 0.432796i
388388 − 39.9914i − 2.03026i
389389 1.14446 0.0580263 0.0290132 0.999579i 0.490764π-0.490764\pi
0.0290132 + 0.999579i 0.490764π0.490764\pi
390390 0 0
391391 −13.1690 −0.665983
392392 − 4.37026i − 0.220731i
393393 − 31.0310i − 1.56531i
394394 −25.4432 −1.28181
395395 0 0
396396 8.61100 0.432719
397397 4.68513i 0.235140i 0.993065 + 0.117570i 0.0375105π0.0375105\pi
−0.993065 + 0.117570i 0.962490π0.962490\pi
398398 − 21.7005i − 1.08775i
399399 −5.63877 −0.282292
400400 0 0
401401 −24.0851 −1.20275 −0.601376 0.798966i 0.705381π-0.705381\pi
−0.601376 + 0.798966i 0.705381π0.705381\pi
402402 − 10.0206i − 0.499784i
403403 − 0.460687i − 0.0229484i
404404 5.98179 0.297605
405405 0 0
406406 11.1424 0.552990
407407 4.29821i 0.213054i
408408 4.62340i 0.228892i
409409 1.89934 0.0939165 0.0469583 0.998897i 0.485047π-0.485047\pi
0.0469583 + 0.998897i 0.485047π0.485047\pi
410410 0 0
411411 1.51574 0.0747661
412412 − 23.8726i − 1.17612i
413413 4.88037i 0.240147i
414414 −17.3937 −0.854852
415415 0 0
416416 −27.2894 −1.33797
417417 − 36.4331i − 1.78414i
418418 10.7788i 0.527207i
419419 2.32806 0.113733 0.0568666 0.998382i 0.481889π-0.481889\pi
0.0568666 + 0.998382i 0.481889π0.481889\pi
420420 0 0
421421 −23.9501 −1.16725 −0.583627 0.812022i 0.698367π-0.698367\pi
−0.583627 + 0.812022i 0.698367π0.698367\pi
422422 − 18.0537i − 0.878842i
423423 18.1985i 0.884843i
424424 5.49645 0.266931
425425 0 0
426426 44.2060 2.14179
427427 2.74866i 0.133017i
428428 − 11.3128i − 0.546824i
429429 −14.8357 −0.716274
430430 0 0
431431 1.19227 0.0574294 0.0287147 0.999588i 0.490859π-0.490859\pi
0.0287147 + 0.999588i 0.490859π0.490859\pi
432432 8.16074i 0.392634i
433433 25.6138i 1.23092i 0.788167 + 0.615461i 0.211030π0.211030\pi
−0.788167 + 0.615461i 0.788970π0.788970\pi
434434 0.282556 0.0135631
435435 0 0
436436 38.2187 1.83035
437437 − 11.7584i − 0.562483i
438438 3.55723i 0.169971i
439439 −19.3741 −0.924676 −0.462338 0.886704i 0.652989π-0.652989\pi
−0.462338 + 0.886704i 0.652989π0.652989\pi
440440 0 0
441441 −11.0280 −0.525141
442442 − 20.3654i − 0.968685i
443443 − 2.46263i − 0.117003i −0.998287 0.0585016i 0.981368π-0.981368\pi
0.998287 0.0585016i 0.0186323π-0.0186323\pi
444444 −11.0958 −0.526582
445445 0 0
446446 −59.1040 −2.79866
447447 7.06059i 0.333955i
448448 − 10.4224i − 0.492412i
449449 14.3585 0.677618 0.338809 0.940855i 0.389976π-0.389976\pi
0.338809 + 0.940855i 0.389976π0.389976\pi
450450 0 0
451451 17.2664 0.813041
452452 − 15.8683i − 0.746384i
453453 − 38.8833i − 1.82690i
454454 46.3798 2.17671
455455 0 0
456456 −4.12819 −0.193320
457457 − 25.1964i − 1.17864i −0.807901 0.589319i 0.799396π-0.799396\pi
0.807901 0.589319i 0.200604π-0.200604\pi
458458 − 5.16231i − 0.241219i
459459 −7.42395 −0.346520
460460 0 0
461461 28.8255 1.34254 0.671269 0.741214i 0.265749π-0.265749\pi
0.671269 + 0.741214i 0.265749π0.265749\pi
462462 − 9.09927i − 0.423336i
463463 − 31.8796i − 1.48157i −0.671742 0.740786i 0.734453π-0.734453\pi
0.671742 0.740786i 0.265547π-0.265547\pi
464464 −17.1316 −0.795317
465465 0 0
466466 −12.4201 −0.575348
467467 43.0996i 1.99441i 0.0747039 + 0.997206i 0.476199π0.476199\pi
−0.0747039 + 0.997206i 0.523801π0.523801\pi
468468 − 14.5270i − 0.671512i
469469 −2.16916 −0.100162
470470 0 0
471471 −3.63877 −0.167666
472472 3.57295i 0.164459i
473473 9.28795i 0.427060i
474474 −72.6679 −3.33775
475475 0 0
476476 6.74584 0.309195
477477 − 13.8698i − 0.635054i
478478 14.6646i 0.670744i
479479 −21.0263 −0.960717 −0.480359 0.877072i 0.659494π-0.659494\pi
−0.480359 + 0.877072i 0.659494π0.659494\pi
480480 0 0
481481 7.25121 0.330627
482482 2.46014i 0.112057i
483483 9.92630i 0.451662i
484484 16.4389 0.747223
485485 0 0
486486 −35.0207 −1.58857
487487 − 27.9190i − 1.26513i −0.774507 0.632565i 0.782002π-0.782002\pi
0.774507 0.632565i 0.217998π-0.217998\pi
488488 2.01232i 0.0910933i
489489 1.96311 0.0887748
490490 0 0
491491 14.9611 0.675183 0.337591 0.941293i 0.390388π-0.390388\pi
0.337591 + 0.941293i 0.390388π0.390388\pi
492492 44.5728i 2.00950i
493493 − 15.5849i − 0.701909i
494494 18.1841 0.818142
495495 0 0
496496 −0.434433 −0.0195066
497497 − 9.56924i − 0.429239i
498498 − 8.11959i − 0.363847i
499499 44.3253 1.98427 0.992137 0.125160i 0.0399443π-0.0399443\pi
0.992137 + 0.125160i 0.0399443π0.0399443\pi
500500 0 0
501501 −11.4224 −0.510316
502502 9.61040i 0.428933i
503503 − 23.6212i − 1.05322i −0.850108 0.526609i 0.823463π-0.823463\pi
0.850108 0.526609i 0.176537π-0.176537\pi
504504 1.32189 0.0588818
505505 0 0
506506 18.9746 0.843522
507507 − 3.55211i − 0.157755i
508508 − 3.50105i − 0.155334i
509509 26.7154 1.18414 0.592070 0.805886i 0.298311π-0.298311\pi
0.592070 + 0.805886i 0.298311π0.298311\pi
510510 0 0
511511 0.770031 0.0340642
512512 30.3576i 1.34163i
513513 − 6.62877i − 0.292667i
514514 −20.3428 −0.897283
515515 0 0
516516 −23.9767 −1.05552
517517 − 19.8526i − 0.873116i
518518 4.44743i 0.195409i
519519 −12.6735 −0.556306
520520 0 0
521521 32.7073 1.43293 0.716466 0.697622i 0.245759π-0.245759\pi
0.716466 + 0.697622i 0.245759π0.245759\pi
522522 − 20.5846i − 0.900966i
523523 0.235966i 0.0103181i 0.999987 + 0.00515904i 0.00164218π0.00164218\pi
−0.999987 + 0.00515904i 0.998358π0.998358\pi
524524 −33.1471 −1.44804
525525 0 0
526526 −2.07658 −0.0905434
527527 − 0.395210i − 0.0172156i
528528 13.9902i 0.608847i
529529 2.30084 0.100037
530530 0 0
531531 9.01604 0.391263
532532 6.02330i 0.261143i
533533 − 29.1289i − 1.26171i
534534 −66.5117 −2.87824
535535 0 0
536536 −1.58806 −0.0685936
537537 19.0584i 0.822432i
538538 6.85753i 0.295649i
539539 12.0303 0.518181
540540 0 0
541541 −33.5572 −1.44274 −0.721369 0.692551i 0.756487π-0.756487\pi
−0.721369 + 0.692551i 0.756487π0.756487\pi
542542 25.3363i 1.08829i
543543 − 31.4183i − 1.34829i
544544 −23.4108 −1.00373
545545 0 0
546546 −15.3507 −0.656951
547547 − 38.5125i − 1.64668i −0.567552 0.823338i 0.692109π-0.692109\pi
0.567552 0.823338i 0.307891π-0.307891\pi
548548 − 1.61911i − 0.0691648i
549549 5.07790 0.216720
550550 0 0
551551 13.9156 0.592825
552552 7.26712i 0.309309i
553553 15.7303i 0.668922i
554554 −24.7452 −1.05132
555555 0 0
556556 −38.9176 −1.65047
557557 − 4.33445i − 0.183657i −0.995775 0.0918283i 0.970729π-0.970729\pi
0.995775 0.0918283i 0.0292711π-0.0292711\pi
558558 − 0.521996i − 0.0220978i
559559 15.6691 0.662731
560560 0 0
561561 −12.7271 −0.537339
562562 − 51.3848i − 2.16754i
563563 − 34.9018i − 1.47094i −0.677559 0.735468i 0.736962π-0.736962\pi
0.677559 0.735468i 0.263038π-0.263038\pi
564564 51.2492 2.15798
565565 0 0
566566 7.01371 0.294808
567567 11.0542i 0.464233i
568568 − 7.00572i − 0.293953i
569569 41.9646 1.75925 0.879623 0.475671i 0.157795π-0.157795\pi
0.879623 + 0.475671i 0.157795π0.157795\pi
570570 0 0
571571 −13.8332 −0.578900 −0.289450 0.957193i 0.593472π-0.593472\pi
−0.289450 + 0.957193i 0.593472π0.593472\pi
572572 15.8474i 0.662613i
573573 2.78408i 0.116307i
574574 17.8658 0.745704
575575 0 0
576576 −19.2544 −0.802268
577577 − 12.7793i − 0.532008i −0.963972 0.266004i 0.914296π-0.914296\pi
0.963972 0.266004i 0.0857035π-0.0857035\pi
578578 17.9789i 0.747824i
579579 46.5486 1.93449
580580 0 0
581581 −1.75764 −0.0729191
582582 78.0696i 3.23609i
583583 15.1304i 0.626638i
584584 0.563746 0.0233280
585585 0 0
586586 18.6912 0.772128
587587 − 12.1870i − 0.503009i −0.967856 0.251505i 0.919075π-0.919075\pi
0.967856 0.251505i 0.0809254π-0.0809254\pi
588588 31.0560i 1.28073i
589589 0.352879 0.0145401
590590 0 0
591591 26.8245 1.10341
592592 − 6.83798i − 0.281039i
593593 31.2580i 1.28361i 0.766866 + 0.641807i 0.221815π0.221815\pi
−0.766866 + 0.641807i 0.778185π0.778185\pi
594594 10.6968 0.438896
595595 0 0
596596 7.54208 0.308936
597597 22.8785i 0.936356i
598598 − 32.0107i − 1.30901i
599599 33.3707 1.36349 0.681746 0.731589i 0.261221π-0.261221\pi
0.681746 + 0.731589i 0.261221π0.261221\pi
600600 0 0
601601 −46.8052 −1.90922 −0.954611 0.297854i 0.903729π-0.903729\pi
−0.954611 + 0.297854i 0.903729π0.903729\pi
602602 9.61040i 0.391691i
603603 4.00732i 0.163191i
604604 −41.5349 −1.69003
605605 0 0
606606 −11.6774 −0.474362
607607 30.7401i 1.24770i 0.781543 + 0.623851i 0.214433π0.214433\pi
−0.781543 + 0.623851i 0.785567π0.785567\pi
608608 − 20.9033i − 0.847741i
609609 −11.7473 −0.476027
610610 0 0
611611 −33.4919 −1.35494
612612 − 12.4623i − 0.503760i
613613 38.2895i 1.54650i 0.634103 + 0.773248i 0.281369π0.281369\pi
−0.634103 + 0.773248i 0.718631π0.718631\pi
614614 19.7713 0.797904
615615 0 0
616616 −1.44204 −0.0581014
617617 0.425306i 0.0171222i 0.999963 + 0.00856109i 0.00272511π0.00272511\pi
−0.999963 + 0.00856109i 0.997275π0.997275\pi
618618 46.6032i 1.87466i
619619 −7.51147 −0.301912 −0.150956 0.988541i 0.548235π-0.548235\pi
−0.150956 + 0.988541i 0.548235π0.548235\pi
620620 0 0
621621 −11.6691 −0.468263
622622 61.1656i 2.45252i
623623 14.3977i 0.576833i
624624 23.6020 0.944834
625625 0 0
626626 −39.3912 −1.57439
627627 − 11.3639i − 0.453831i
628628 3.88691i 0.155105i
629629 6.22061 0.248032
630630 0 0
631631 −11.2716 −0.448714 −0.224357 0.974507i 0.572028π-0.572028\pi
−0.224357 + 0.974507i 0.572028π0.572028\pi
632632 11.5163i 0.458094i
633633 19.0338i 0.756528i
634634 47.5222 1.88735
635635 0 0
636636 −39.0589 −1.54879
637637 − 20.2955i − 0.804136i
638638 22.4556i 0.889025i
639639 −17.6783 −0.699343
640640 0 0
641641 26.0825 1.03020 0.515099 0.857131i 0.327755π-0.327755\pi
0.515099 + 0.857131i 0.327755π0.327755\pi
642642 22.0844i 0.871601i
643643 31.9492i 1.25995i 0.776614 + 0.629977i 0.216936π0.216936\pi
−0.776614 + 0.629977i 0.783064π0.783064\pi
644644 10.6032 0.417825
645645 0 0
646646 15.5996 0.613759
647647 − 7.39433i − 0.290701i −0.989380 0.145351i 0.953569π-0.953569\pi
0.989380 0.145351i 0.0464310π-0.0464310\pi
648648 8.09286i 0.317918i
649649 −9.83550 −0.386077
650650 0 0
651651 −0.297895 −0.0116754
652652 − 2.09698i − 0.0821240i
653653 − 18.6853i − 0.731212i −0.930770 0.365606i 0.880862π-0.880862\pi
0.930770 0.365606i 0.119138π-0.119138\pi
654654 −74.6091 −2.91745
655655 0 0
656656 −27.4689 −1.07248
657657 − 1.42256i − 0.0554994i
658658 − 20.5418i − 0.800803i
659659 −9.80157 −0.381815 −0.190907 0.981608i 0.561143π-0.561143\pi
−0.190907 + 0.981608i 0.561143π0.561143\pi
660660 0 0
661661 −28.1585 −1.09524 −0.547619 0.836728i 0.684466π-0.684466\pi
−0.547619 + 0.836728i 0.684466π0.684466\pi
662662 6.17868i 0.240141i
663663 21.4710i 0.833866i
664664 −1.28678 −0.0499368
665665 0 0
666666 8.21622 0.318372
667667 − 24.4966i − 0.948511i
668668 12.2014i 0.472085i
669669 62.3127 2.40915
670670 0 0
671671 −5.53943 −0.213847
672672 17.6462i 0.680718i
673673 39.0253i 1.50432i 0.658983 + 0.752158i 0.270987π0.270987\pi
−0.658983 + 0.752158i 0.729013π0.729013\pi
674674 −39.2290 −1.51104
675675 0 0
676676 −3.79434 −0.145936
677677 5.03533i 0.193523i 0.995308 + 0.0967617i 0.0308485π0.0308485\pi
−0.995308 + 0.0967617i 0.969152π0.969152\pi
678678 30.9775i 1.18969i
679679 16.8997 0.648549
680680 0 0
681681 −48.8977 −1.87376
682682 0.569440i 0.0218050i
683683 30.3312i 1.16059i 0.814406 + 0.580295i 0.197063π0.197063\pi
−0.814406 + 0.580295i 0.802937π0.802937\pi
684684 11.1275 0.425470
685685 0 0
686686 26.9340 1.02834
687687 5.44257i 0.207647i
688688 − 14.7761i − 0.563334i
689689 25.5255 0.972444
690690 0 0
691691 −21.2329 −0.807739 −0.403869 0.914817i 0.632335π-0.632335\pi
−0.403869 + 0.914817i 0.632335π0.632335\pi
692692 13.5378i 0.514629i
693693 3.63886i 0.138229i
694694 −47.4156 −1.79987
695695 0 0
696696 −8.60032 −0.325994
697697 − 24.9888i − 0.946520i
698698 − 4.04230i − 0.153003i
699699 13.0943 0.495273
700700 0 0
701701 32.7698 1.23770 0.618849 0.785510i 0.287599π-0.287599\pi
0.618849 + 0.785510i 0.287599π0.287599\pi
702702 − 18.0459i − 0.681098i
703703 5.55432i 0.209485i
704704 21.0045 0.791636
705705 0 0
706706 −10.9466 −0.411981
707707 2.52780i 0.0950676i
708708 − 25.3902i − 0.954222i
709709 −19.8459 −0.745330 −0.372665 0.927966i 0.621556π-0.621556\pi
−0.372665 + 0.927966i 0.621556π0.621556\pi
710710 0 0
711711 29.0604 1.08985
712712 10.5407i 0.395029i
713713 − 0.621196i − 0.0232640i
714714 −13.1690 −0.492836
715715 0 0
716716 20.3581 0.760817
717717 − 15.4607i − 0.577392i
718718 − 47.1144i − 1.75829i
719719 −24.2201 −0.903258 −0.451629 0.892206i 0.649157π-0.649157\pi
−0.451629 + 0.892206i 0.649157π0.649157\pi
720720 0 0
721721 10.0882 0.375703
722722 − 25.6917i − 0.956144i
723723 − 2.59370i − 0.0964608i
724724 −33.5609 −1.24728
725725 0 0
726726 −32.0914 −1.19102
727727 − 5.86510i − 0.217524i −0.994068 0.108762i 0.965311π-0.965311\pi
0.994068 0.108762i 0.0346887π-0.0346887\pi
728728 2.43277i 0.0901643i
729729 3.50531 0.129826
730730 0 0
731731 13.4420 0.497172
732732 − 14.3000i − 0.528542i
733733 34.5015i 1.27434i 0.770723 + 0.637171i 0.219895π0.219895\pi
−0.770723 + 0.637171i 0.780105π0.780105\pi
734734 −15.2199 −0.561777
735735 0 0
736736 −36.7974 −1.35637
737737 − 4.37155i − 0.161028i
738738 − 33.0054i − 1.21495i
739739 −39.5712 −1.45565 −0.727826 0.685762i 0.759469π-0.759469\pi
−0.727826 + 0.685762i 0.759469π0.759469\pi
740740 0 0
741741 −19.1713 −0.704275
742742 15.6557i 0.574739i
743743 − 29.7058i − 1.08980i −0.838501 0.544900i 0.816567π-0.816567\pi
0.838501 0.544900i 0.183433π-0.183433\pi
744744 −0.218091 −0.00799562
745745 0 0
746746 46.5172 1.70312
747747 3.24708i 0.118804i
748748 13.5950i 0.497083i
749749 4.78058 0.174679
750750 0 0
751751 26.8870 0.981122 0.490561 0.871407i 0.336792π-0.336792\pi
0.490561 + 0.871407i 0.336792π0.336792\pi
752752 31.5833i 1.15172i
753753 − 10.1321i − 0.369235i
754754 37.8833 1.37963
755755 0 0
756756 5.97751 0.217400
757757 − 44.6792i − 1.62389i −0.583731 0.811947i 0.698408π-0.698408\pi
0.583731 0.811947i 0.301592π-0.301592\pi
758758 68.7031i 2.49541i
759759 −20.0047 −0.726123
760760 0 0
761761 20.3080 0.736163 0.368081 0.929794i 0.380015π-0.380015\pi
0.368081 + 0.929794i 0.380015π0.380015\pi
762762 6.83461i 0.247592i
763763 16.1506i 0.584690i
764764 2.97393 0.107593
765765 0 0
766766 43.1658 1.55964
767767 16.5928i 0.599131i
768768 − 19.9359i − 0.719375i
769769 −26.0577 −0.939665 −0.469832 0.882756i 0.655686π-0.655686\pi
−0.469832 + 0.882756i 0.655686π0.655686\pi
770770 0 0
771771 21.4472 0.772402
772772 − 49.7229i − 1.78956i
773773 13.7305i 0.493851i 0.969034 + 0.246926i 0.0794203π0.0794203\pi
−0.969034 + 0.246926i 0.920580π0.920580\pi
774774 17.7543 0.638166
775775 0 0
776776 12.3724 0.444142
777777 − 4.68887i − 0.168212i
778778 2.38652i 0.0855609i
779779 22.3123 0.799421
780780 0 0
781781 19.2851 0.690074
782782 − 27.4610i − 0.982005i
783783 − 13.8098i − 0.493523i
784784 −19.1389 −0.683531
785785 0 0
786786 64.7085 2.30807
787787 19.6660i 0.701018i 0.936559 + 0.350509i 0.113991π0.113991\pi
−0.936559 + 0.350509i 0.886009π0.886009\pi
788788 − 28.6538i − 1.02075i
789789 2.18932 0.0779418
790790 0 0
791791 6.70568 0.238427
792792 2.66404i 0.0946624i
793793 9.34520i 0.331858i
794794 −9.76984 −0.346719
795795 0 0
796796 24.4387 0.866207
797797 − 10.9441i − 0.387660i −0.981035 0.193830i 0.937909π-0.937909\pi
0.981035 0.193830i 0.0620910π-0.0620910\pi
798798 − 11.7584i − 0.416244i
799799 −28.7318 −1.01646
800800 0 0
801801 26.5985 0.939812
802802 − 50.2243i − 1.77348i
803803 1.55186i 0.0547639i
804804 11.2851 0.397994
805805 0 0
806806 0.960663 0.0338379
807807 − 7.22982i − 0.254502i
808808 1.85062i 0.0651046i
809809 −16.4427 −0.578096 −0.289048 0.957315i 0.593339π-0.593339\pi
−0.289048 + 0.957315i 0.593339π0.593339\pi
810810 0 0
811811 22.6473 0.795253 0.397627 0.917547i 0.369834π-0.369834\pi
0.397627 + 0.917547i 0.369834π0.369834\pi
812812 12.5484i 0.440364i
813813 − 26.7118i − 0.936823i
814814 −8.96299 −0.314153
815815 0 0
816816 20.2474 0.708802
817817 12.0023i 0.419906i
818818 3.96067i 0.138482i
819819 6.13887 0.214509
820820 0 0
821821 −39.7792 −1.38830 −0.694151 0.719829i 0.744220π-0.744220\pi
−0.694151 + 0.719829i 0.744220π0.744220\pi
822822 3.16076i 0.110244i
823823 16.5602i 0.577252i 0.957442 + 0.288626i 0.0931984π0.0931984\pi
−0.957442 + 0.288626i 0.906802π0.906802\pi
824824 7.38562 0.257290
825825 0 0
826826 −10.1770 −0.354102
827827 26.0361i 0.905365i 0.891672 + 0.452683i 0.149533π0.149533\pi
−0.891672 + 0.452683i 0.850467π0.850467\pi
828828 − 19.5885i − 0.680746i
829829 −5.14357 −0.178644 −0.0893218 0.996003i 0.528470π-0.528470\pi
−0.0893218 + 0.996003i 0.528470π0.528470\pi
830830 0 0
831831 26.0885 0.905002
832832 − 35.4352i − 1.22849i
833833 − 17.4109i − 0.603252i
834834 75.9734 2.63074
835835 0 0
836836 −12.1389 −0.419832
837837 − 0.350197i − 0.0121046i
838838 4.85467i 0.167702i
839839 −38.5664 −1.33146 −0.665730 0.746193i 0.731880π-0.731880\pi
−0.665730 + 0.746193i 0.731880π0.731880\pi
840840 0 0
841841 −0.00936035 −0.000322771 0
842842 − 49.9427i − 1.72114i
843843 54.1744i 1.86586i
844844 20.3318 0.699850
845845 0 0
846846 −37.9491 −1.30472
847847 6.94679i 0.238694i
848848 − 24.0708i − 0.826596i
849849 −7.39447 −0.253777
850850 0 0
851851 9.77764 0.335173
852852 49.7841i 1.70558i
853853 9.14763i 0.313209i 0.987661 + 0.156604i 0.0500548π0.0500548\pi
−0.987661 + 0.156604i 0.949945π0.949945\pi
854854 −5.73175 −0.196136
855855 0 0
856856 3.49990 0.119624
857857 13.6712i 0.466998i 0.972357 + 0.233499i 0.0750176π0.0750176\pi
−0.972357 + 0.233499i 0.924982π0.924982\pi
858858 − 30.9367i − 1.05616i
859859 35.6556 1.21655 0.608277 0.793725i 0.291861π-0.291861\pi
0.608277 + 0.793725i 0.291861π0.291861\pi
860860 0 0
861861 −18.8357 −0.641919
862862 2.48621i 0.0846808i
863863 33.9333i 1.15510i 0.816354 + 0.577552i 0.195992π0.195992\pi
−0.816354 + 0.577552i 0.804008π0.804008\pi
864864 −20.7444 −0.705739
865865 0 0
866866 −53.4121 −1.81502
867867 − 18.9550i − 0.643744i
868868 0.318210i 0.0108007i
869869 −31.7017 −1.07541
870870 0 0
871871 −7.37494 −0.249890
872872 11.8240i 0.400410i
873873 − 31.2206i − 1.05666i
874874 24.5197 0.829391
875875 0 0
876876 −4.00610 −0.135354
877877 − 28.6991i − 0.969099i −0.874764 0.484550i 0.838983π-0.838983\pi
0.874764 0.484550i 0.161017π-0.161017\pi
878878 − 40.4006i − 1.36345i
879879 −19.7060 −0.664665
880880 0 0
881881 8.33039 0.280658 0.140329 0.990105i 0.455184π-0.455184\pi
0.140329 + 0.990105i 0.455184π0.455184\pi
882882 − 22.9964i − 0.774331i
883883 − 50.3165i − 1.69329i −0.532161 0.846643i 0.678620π-0.678620\pi
0.532161 0.846643i 0.321380π-0.321380\pi
884884 22.9352 0.771395
885885 0 0
886886 5.13529 0.172524
887887 − 12.1186i − 0.406903i −0.979085 0.203452i 0.934784π-0.934784\pi
0.979085 0.203452i 0.0652160π-0.0652160\pi
888888 − 3.43276i − 0.115196i
889889 1.47948 0.0496202
890890 0 0
891891 −22.2777 −0.746332
892892 − 66.5620i − 2.22866i
893893 − 25.6543i − 0.858490i
894894 −14.7233 −0.492422
895895 0 0
896896 5.68063 0.189777
897897 33.7485i 1.12683i
898898 29.9415i 0.999161i
899899 0.735159 0.0245189
900900 0 0
901901 21.8976 0.729514
902902 36.0053i 1.19884i
903903 − 10.1321i − 0.337176i
904904 4.90928 0.163280
905905 0 0
906906 81.0827 2.69379
907907 31.9105i 1.05957i 0.848132 + 0.529786i 0.177728π0.177728\pi
−0.848132 + 0.529786i 0.822272π0.822272\pi
908908 52.2322i 1.73339i
909909 4.66988 0.154890
910910 0 0
911911 −24.6880 −0.817949 −0.408975 0.912546i 0.634114π-0.634114\pi
−0.408975 + 0.912546i 0.634114π0.634114\pi
912912 18.0788i 0.598647i
913913 − 3.54220i − 0.117230i
914914 52.5416 1.73792
915915 0 0
916916 5.81371 0.192090
917917 − 14.0074i − 0.462565i
918918 − 15.4810i − 0.510951i
919919 19.4850 0.642752 0.321376 0.946952i 0.395855π-0.395855\pi
0.321376 + 0.946952i 0.395855π0.395855\pi
920920 0 0
921921 −20.8446 −0.686854
922922 60.1094i 1.97960i
923923 − 32.5345i − 1.07089i
924924 10.2474 0.337116
925925 0 0
926926 66.4781 2.18461
927927 − 18.6369i − 0.612118i
928928 − 43.5482i − 1.42954i
929929 −11.7642 −0.385972 −0.192986 0.981201i 0.561817π-0.561817\pi
−0.192986 + 0.981201i 0.561817π0.561817\pi
930930 0 0
931931 15.5460 0.509501
932932 − 13.9873i − 0.458168i
933933 − 64.4862i − 2.11118i
934934 −89.8749 −2.94080
935935 0 0
936936 4.49431 0.146901
937937 21.0683i 0.688271i 0.938920 + 0.344136i 0.111828π0.111828\pi
−0.938920 + 0.344136i 0.888172π0.888172\pi
938938 − 4.52331i − 0.147691i
939939 41.5296 1.35527
940940 0 0
941941 −2.24706 −0.0732521 −0.0366261 0.999329i 0.511661π-0.511661\pi
−0.0366261 + 0.999329i 0.511661π0.511661\pi
942942 − 7.58787i − 0.247226i
943943 − 39.2778i − 1.27906i
944944 15.6472 0.509273
945945 0 0
946946 −19.3680 −0.629709
947947 6.75625i 0.219549i 0.993957 + 0.109774i 0.0350128π0.0350128\pi
−0.993957 + 0.109774i 0.964987π0.964987\pi
948948 − 81.8374i − 2.65795i
949949 2.61803 0.0849850
950950 0 0
951951 −50.1021 −1.62467
952952 2.08700i 0.0676400i
953953 59.9534i 1.94208i 0.238918 + 0.971040i 0.423207π0.423207\pi
−0.238918 + 0.971040i 0.576793π0.576793\pi
954954 28.9225 0.936400
955955 0 0
956956 −16.5150 −0.534135
957957 − 23.6747i − 0.765293i
958958 − 43.8459i − 1.41660i
959959 0.684206 0.0220942
960960 0 0
961961 −30.9814 −0.999399
962962 15.1208i 0.487516i
963963 − 8.83169i − 0.284597i
964964 −2.77057 −0.0892342
965965 0 0
966966 −20.6992 −0.665984
967967 9.05599i 0.291221i 0.989342 + 0.145610i 0.0465146π0.0465146\pi
−0.989342 + 0.145610i 0.953485π0.953485\pi
968968 5.08580i 0.163464i
969969 −16.4465 −0.528338
970970 0 0
971971 47.3508 1.51956 0.759780 0.650180i 0.225307π-0.225307\pi
0.759780 + 0.650180i 0.225307π0.225307\pi
972972 − 39.4397i − 1.26503i
973973 − 16.4459i − 0.527231i
974974 58.2191 1.86546
975975 0 0
976976 8.81263 0.282085
977977 4.74467i 0.151795i 0.997116 + 0.0758977i 0.0241822π0.0241822\pi
−0.997116 + 0.0758977i 0.975818π0.975818\pi
978978 4.09364i 0.130900i
979979 −29.0160 −0.927357
980980 0 0
981981 29.8367 0.952613
982982 31.1981i 0.995570i
983983 18.5656i 0.592150i 0.955165 + 0.296075i 0.0956778π0.0956778\pi
−0.955165 + 0.296075i 0.904322π0.904322\pi
984984 −13.7898 −0.439601
985985 0 0
986986 32.4990 1.03498
987987 21.6570i 0.689350i
988988 20.4786i 0.651513i
989989 21.1284 0.671843
990990 0 0
991991 −39.7199 −1.26174 −0.630871 0.775887i 0.717302π-0.717302\pi
−0.630871 + 0.775887i 0.717302π0.717302\pi
992992 − 1.10432i − 0.0350621i
993993 − 6.51411i − 0.206719i
994994 19.9546 0.632921
995995 0 0
996996 9.14414 0.289743
997997 − 30.2914i − 0.959338i −0.877449 0.479669i 0.840757π-0.840757\pi
0.877449 0.479669i 0.159243π-0.159243\pi
998998 92.4309i 2.92585i
999999 5.51210 0.174395
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 625.2.b.c.624.7 8
5.2 odd 4 625.2.a.f.1.2 8
5.3 odd 4 625.2.a.f.1.7 8
5.4 even 2 inner 625.2.b.c.624.2 8
15.2 even 4 5625.2.a.x.1.7 8
15.8 even 4 5625.2.a.x.1.2 8
20.3 even 4 10000.2.a.bj.1.2 8
20.7 even 4 10000.2.a.bj.1.7 8
25.2 odd 20 125.2.d.b.101.1 16
25.3 odd 20 625.2.d.o.376.1 16
25.4 even 10 625.2.e.a.249.1 8
25.6 even 5 625.2.e.a.374.1 8
25.8 odd 20 625.2.d.o.251.1 16
25.9 even 10 125.2.e.b.99.2 8
25.11 even 5 125.2.e.b.24.2 8
25.12 odd 20 125.2.d.b.26.1 16
25.13 odd 20 125.2.d.b.26.4 16
25.14 even 10 25.2.e.a.4.1 8
25.16 even 5 25.2.e.a.19.1 yes 8
25.17 odd 20 625.2.d.o.251.4 16
25.19 even 10 625.2.e.i.374.2 8
25.21 even 5 625.2.e.i.249.2 8
25.22 odd 20 625.2.d.o.376.4 16
25.23 odd 20 125.2.d.b.101.4 16
75.14 odd 10 225.2.m.a.154.2 8
75.41 odd 10 225.2.m.a.19.2 8
100.39 odd 10 400.2.y.c.129.1 8
100.91 odd 10 400.2.y.c.369.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.2.e.a.4.1 8 25.14 even 10
25.2.e.a.19.1 yes 8 25.16 even 5
125.2.d.b.26.1 16 25.12 odd 20
125.2.d.b.26.4 16 25.13 odd 20
125.2.d.b.101.1 16 25.2 odd 20
125.2.d.b.101.4 16 25.23 odd 20
125.2.e.b.24.2 8 25.11 even 5
125.2.e.b.99.2 8 25.9 even 10
225.2.m.a.19.2 8 75.41 odd 10
225.2.m.a.154.2 8 75.14 odd 10
400.2.y.c.129.1 8 100.39 odd 10
400.2.y.c.369.1 8 100.91 odd 10
625.2.a.f.1.2 8 5.2 odd 4
625.2.a.f.1.7 8 5.3 odd 4
625.2.b.c.624.2 8 5.4 even 2 inner
625.2.b.c.624.7 8 1.1 even 1 trivial
625.2.d.o.251.1 16 25.8 odd 20
625.2.d.o.251.4 16 25.17 odd 20
625.2.d.o.376.1 16 25.3 odd 20
625.2.d.o.376.4 16 25.22 odd 20
625.2.e.a.249.1 8 25.4 even 10
625.2.e.a.374.1 8 25.6 even 5
625.2.e.i.249.2 8 25.21 even 5
625.2.e.i.374.2 8 25.19 even 10
5625.2.a.x.1.2 8 15.8 even 4
5625.2.a.x.1.7 8 15.2 even 4
10000.2.a.bj.1.2 8 20.3 even 4
10000.2.a.bj.1.7 8 20.7 even 4