Properties

Label 6240.2.a.s
Level $6240$
Weight $2$
Character orbit 6240.a
Self dual yes
Analytic conductor $49.827$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6240 = 2^{5} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6240.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(49.8266508613\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{3} - q^{5} - q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} - q^{5} - q^{7} + q^{9} + q^{11} - q^{13} - q^{15} - 3 q^{17} + 6 q^{19} - q^{21} + 5 q^{23} + q^{25} + q^{27} + 4 q^{31} + q^{33} + q^{35} + 5 q^{37} - q^{39} + 7 q^{41} - 6 q^{43} - q^{45} - 8 q^{47} - 6 q^{49} - 3 q^{51} - 3 q^{53} - q^{55} + 6 q^{57} - 12 q^{59} - 15 q^{61} - q^{63} + q^{65} + 8 q^{67} + 5 q^{69} - 15 q^{71} + 10 q^{73} + q^{75} - q^{77} - q^{79} + q^{81} + 16 q^{83} + 3 q^{85} + 9 q^{89} + q^{91} + 4 q^{93} - 6 q^{95} + 11 q^{97} + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 −1.00000 0 −1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6240.2.a.s yes 1
4.b odd 2 1 6240.2.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6240.2.a.f 1 4.b odd 2 1
6240.2.a.s yes 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6240))\):

\( T_{7} + 1 \) Copy content Toggle raw display
\( T_{11} - 1 \) Copy content Toggle raw display
\( T_{17} + 3 \) Copy content Toggle raw display
\( T_{19} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 3 \) Copy content Toggle raw display
$19$ \( T - 6 \) Copy content Toggle raw display
$23$ \( T - 5 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T - 5 \) Copy content Toggle raw display
$41$ \( T - 7 \) Copy content Toggle raw display
$43$ \( T + 6 \) Copy content Toggle raw display
$47$ \( T + 8 \) Copy content Toggle raw display
$53$ \( T + 3 \) Copy content Toggle raw display
$59$ \( T + 12 \) Copy content Toggle raw display
$61$ \( T + 15 \) Copy content Toggle raw display
$67$ \( T - 8 \) Copy content Toggle raw display
$71$ \( T + 15 \) Copy content Toggle raw display
$73$ \( T - 10 \) Copy content Toggle raw display
$79$ \( T + 1 \) Copy content Toggle raw display
$83$ \( T - 16 \) Copy content Toggle raw display
$89$ \( T - 9 \) Copy content Toggle raw display
$97$ \( T - 11 \) Copy content Toggle raw display
show more
show less