Properties

Label 6240.2.a.i.1.1
Level $6240$
Weight $2$
Character 6240.1
Self dual yes
Analytic conductor $49.827$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6240 = 2^{5} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6240.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(49.8266508613\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 6240.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +1.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} -1.00000 q^{11} -1.00000 q^{13} -1.00000 q^{15} -5.00000 q^{17} +2.00000 q^{19} +1.00000 q^{21} +7.00000 q^{23} +1.00000 q^{25} -1.00000 q^{27} +4.00000 q^{31} +1.00000 q^{33} -1.00000 q^{35} -7.00000 q^{37} +1.00000 q^{39} -11.0000 q^{41} +6.00000 q^{43} +1.00000 q^{45} -6.00000 q^{49} +5.00000 q^{51} +11.0000 q^{53} -1.00000 q^{55} -2.00000 q^{57} +4.00000 q^{59} -7.00000 q^{61} -1.00000 q^{63} -1.00000 q^{65} +8.00000 q^{67} -7.00000 q^{69} -9.00000 q^{71} +2.00000 q^{73} -1.00000 q^{75} +1.00000 q^{77} +3.00000 q^{79} +1.00000 q^{81} -5.00000 q^{85} +3.00000 q^{89} +1.00000 q^{91} -4.00000 q^{93} +2.00000 q^{95} +7.00000 q^{97} -1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −5.00000 −1.21268 −0.606339 0.795206i \(-0.707363\pi\)
−0.606339 + 0.795206i \(0.707363\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) 7.00000 1.45960 0.729800 0.683660i \(-0.239613\pi\)
0.729800 + 0.683660i \(0.239613\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 1.00000 0.174078
\(34\) 0 0
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) −7.00000 −1.15079 −0.575396 0.817875i \(-0.695152\pi\)
−0.575396 + 0.817875i \(0.695152\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) −11.0000 −1.71791 −0.858956 0.512050i \(-0.828886\pi\)
−0.858956 + 0.512050i \(0.828886\pi\)
\(42\) 0 0
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 5.00000 0.700140
\(52\) 0 0
\(53\) 11.0000 1.51097 0.755483 0.655168i \(-0.227402\pi\)
0.755483 + 0.655168i \(0.227402\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 0 0
\(57\) −2.00000 −0.264906
\(58\) 0 0
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −7.00000 −0.896258 −0.448129 0.893969i \(-0.647910\pi\)
−0.448129 + 0.893969i \(0.647910\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) −1.00000 −0.124035
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) −7.00000 −0.842701
\(70\) 0 0
\(71\) −9.00000 −1.06810 −0.534052 0.845452i \(-0.679331\pi\)
−0.534052 + 0.845452i \(0.679331\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) 3.00000 0.337526 0.168763 0.985657i \(-0.446023\pi\)
0.168763 + 0.985657i \(0.446023\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −5.00000 −0.542326
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) −4.00000 −0.414781
\(94\) 0 0
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) 7.00000 0.710742 0.355371 0.934725i \(-0.384354\pi\)
0.355371 + 0.934725i \(0.384354\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) −12.0000 −1.19404 −0.597022 0.802225i \(-0.703650\pi\)
−0.597022 + 0.802225i \(0.703650\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 1.00000 0.0975900
\(106\) 0 0
\(107\) −13.0000 −1.25676 −0.628379 0.777908i \(-0.716281\pi\)
−0.628379 + 0.777908i \(0.716281\pi\)
\(108\) 0 0
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 7.00000 0.664411
\(112\) 0 0
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 7.00000 0.652753
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) 5.00000 0.458349
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) 11.0000 0.991837
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) −2.00000 −0.173422
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 14.0000 1.19610 0.598050 0.801459i \(-0.295942\pi\)
0.598050 + 0.801459i \(0.295942\pi\)
\(138\) 0 0
\(139\) −15.0000 −1.27228 −0.636142 0.771572i \(-0.719471\pi\)
−0.636142 + 0.771572i \(0.719471\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.00000 0.0836242
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 6.00000 0.494872
\(148\) 0 0
\(149\) −21.0000 −1.72039 −0.860194 0.509968i \(-0.829657\pi\)
−0.860194 + 0.509968i \(0.829657\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) −5.00000 −0.404226
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) 6.00000 0.478852 0.239426 0.970915i \(-0.423041\pi\)
0.239426 + 0.970915i \(0.423041\pi\)
\(158\) 0 0
\(159\) −11.0000 −0.872357
\(160\) 0 0
\(161\) −7.00000 −0.551677
\(162\) 0 0
\(163\) −9.00000 −0.704934 −0.352467 0.935824i \(-0.614657\pi\)
−0.352467 + 0.935824i \(0.614657\pi\)
\(164\) 0 0
\(165\) 1.00000 0.0778499
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 2.00000 0.152944
\(172\) 0 0
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) 0 0
\(177\) −4.00000 −0.300658
\(178\) 0 0
\(179\) −2.00000 −0.149487 −0.0747435 0.997203i \(-0.523814\pi\)
−0.0747435 + 0.997203i \(0.523814\pi\)
\(180\) 0 0
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) 0 0
\(183\) 7.00000 0.517455
\(184\) 0 0
\(185\) −7.00000 −0.514650
\(186\) 0 0
\(187\) 5.00000 0.365636
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) −11.0000 −0.791797 −0.395899 0.918294i \(-0.629567\pi\)
−0.395899 + 0.918294i \(0.629567\pi\)
\(194\) 0 0
\(195\) 1.00000 0.0716115
\(196\) 0 0
\(197\) 14.0000 0.997459 0.498729 0.866758i \(-0.333800\pi\)
0.498729 + 0.866758i \(0.333800\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −11.0000 −0.768273
\(206\) 0 0
\(207\) 7.00000 0.486534
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) 24.0000 1.65223 0.826114 0.563503i \(-0.190547\pi\)
0.826114 + 0.563503i \(0.190547\pi\)
\(212\) 0 0
\(213\) 9.00000 0.616670
\(214\) 0 0
\(215\) 6.00000 0.409197
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 0 0
\(219\) −2.00000 −0.135147
\(220\) 0 0
\(221\) 5.00000 0.336336
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 14.0000 0.929213 0.464606 0.885517i \(-0.346196\pi\)
0.464606 + 0.885517i \(0.346196\pi\)
\(228\) 0 0
\(229\) 20.0000 1.32164 0.660819 0.750546i \(-0.270209\pi\)
0.660819 + 0.750546i \(0.270209\pi\)
\(230\) 0 0
\(231\) −1.00000 −0.0657952
\(232\) 0 0
\(233\) −3.00000 −0.196537 −0.0982683 0.995160i \(-0.531330\pi\)
−0.0982683 + 0.995160i \(0.531330\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −3.00000 −0.194871
\(238\) 0 0
\(239\) −17.0000 −1.09964 −0.549819 0.835284i \(-0.685303\pi\)
−0.549819 + 0.835284i \(0.685303\pi\)
\(240\) 0 0
\(241\) 4.00000 0.257663 0.128831 0.991667i \(-0.458877\pi\)
0.128831 + 0.991667i \(0.458877\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −6.00000 −0.383326
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.0000 1.51487 0.757433 0.652913i \(-0.226453\pi\)
0.757433 + 0.652913i \(0.226453\pi\)
\(252\) 0 0
\(253\) −7.00000 −0.440086
\(254\) 0 0
\(255\) 5.00000 0.313112
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 7.00000 0.434959
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) 11.0000 0.675725
\(266\) 0 0
\(267\) −3.00000 −0.183597
\(268\) 0 0
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) 14.0000 0.850439 0.425220 0.905090i \(-0.360197\pi\)
0.425220 + 0.905090i \(0.360197\pi\)
\(272\) 0 0
\(273\) −1.00000 −0.0605228
\(274\) 0 0
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) −8.00000 −0.480673 −0.240337 0.970690i \(-0.577258\pi\)
−0.240337 + 0.970690i \(0.577258\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −30.0000 −1.78965 −0.894825 0.446417i \(-0.852700\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) −2.00000 −0.118470
\(286\) 0 0
\(287\) 11.0000 0.649309
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) −7.00000 −0.410347
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) 0 0
\(297\) 1.00000 0.0580259
\(298\) 0 0
\(299\) −7.00000 −0.404820
\(300\) 0 0
\(301\) −6.00000 −0.345834
\(302\) 0 0
\(303\) 12.0000 0.689382
\(304\) 0 0
\(305\) −7.00000 −0.400819
\(306\) 0 0
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) 0 0
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 0 0
\(313\) −14.0000 −0.791327 −0.395663 0.918396i \(-0.629485\pi\)
−0.395663 + 0.918396i \(0.629485\pi\)
\(314\) 0 0
\(315\) −1.00000 −0.0563436
\(316\) 0 0
\(317\) −26.0000 −1.46031 −0.730153 0.683284i \(-0.760551\pi\)
−0.730153 + 0.683284i \(0.760551\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 13.0000 0.725589
\(322\) 0 0
\(323\) −10.0000 −0.556415
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) 0 0
\(327\) 4.00000 0.221201
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −6.00000 −0.329790 −0.164895 0.986311i \(-0.552728\pi\)
−0.164895 + 0.986311i \(0.552728\pi\)
\(332\) 0 0
\(333\) −7.00000 −0.383598
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) −26.0000 −1.41631 −0.708155 0.706057i \(-0.750472\pi\)
−0.708155 + 0.706057i \(0.750472\pi\)
\(338\) 0 0
\(339\) 14.0000 0.760376
\(340\) 0 0
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) −7.00000 −0.376867
\(346\) 0 0
\(347\) −25.0000 −1.34207 −0.671035 0.741426i \(-0.734150\pi\)
−0.671035 + 0.741426i \(0.734150\pi\)
\(348\) 0 0
\(349\) −26.0000 −1.39175 −0.695874 0.718164i \(-0.744983\pi\)
−0.695874 + 0.718164i \(0.744983\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 0 0
\(353\) −20.0000 −1.06449 −0.532246 0.846590i \(-0.678652\pi\)
−0.532246 + 0.846590i \(0.678652\pi\)
\(354\) 0 0
\(355\) −9.00000 −0.477670
\(356\) 0 0
\(357\) −5.00000 −0.264628
\(358\) 0 0
\(359\) −16.0000 −0.844448 −0.422224 0.906492i \(-0.638750\pi\)
−0.422224 + 0.906492i \(0.638750\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 10.0000 0.524864
\(364\) 0 0
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) 22.0000 1.14839 0.574195 0.818718i \(-0.305315\pi\)
0.574195 + 0.818718i \(0.305315\pi\)
\(368\) 0 0
\(369\) −11.0000 −0.572637
\(370\) 0 0
\(371\) −11.0000 −0.571092
\(372\) 0 0
\(373\) −26.0000 −1.34623 −0.673114 0.739538i \(-0.735044\pi\)
−0.673114 + 0.739538i \(0.735044\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) −34.0000 −1.73732 −0.868659 0.495410i \(-0.835018\pi\)
−0.868659 + 0.495410i \(0.835018\pi\)
\(384\) 0 0
\(385\) 1.00000 0.0509647
\(386\) 0 0
\(387\) 6.00000 0.304997
\(388\) 0 0
\(389\) −4.00000 −0.202808 −0.101404 0.994845i \(-0.532333\pi\)
−0.101404 + 0.994845i \(0.532333\pi\)
\(390\) 0 0
\(391\) −35.0000 −1.77003
\(392\) 0 0
\(393\) 4.00000 0.201773
\(394\) 0 0
\(395\) 3.00000 0.150946
\(396\) 0 0
\(397\) 9.00000 0.451697 0.225849 0.974162i \(-0.427485\pi\)
0.225849 + 0.974162i \(0.427485\pi\)
\(398\) 0 0
\(399\) 2.00000 0.100125
\(400\) 0 0
\(401\) 2.00000 0.0998752 0.0499376 0.998752i \(-0.484098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 0 0
\(403\) −4.00000 −0.199254
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 7.00000 0.346977
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) −14.0000 −0.690569
\(412\) 0 0
\(413\) −4.00000 −0.196827
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 15.0000 0.734553
\(418\) 0 0
\(419\) 10.0000 0.488532 0.244266 0.969708i \(-0.421453\pi\)
0.244266 + 0.969708i \(0.421453\pi\)
\(420\) 0 0
\(421\) −20.0000 −0.974740 −0.487370 0.873195i \(-0.662044\pi\)
−0.487370 + 0.873195i \(0.662044\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.00000 −0.242536
\(426\) 0 0
\(427\) 7.00000 0.338754
\(428\) 0 0
\(429\) −1.00000 −0.0482805
\(430\) 0 0
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 0 0
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 14.0000 0.669711
\(438\) 0 0
\(439\) −19.0000 −0.906821 −0.453410 0.891302i \(-0.649793\pi\)
−0.453410 + 0.891302i \(0.649793\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) 23.0000 1.09276 0.546381 0.837536i \(-0.316005\pi\)
0.546381 + 0.837536i \(0.316005\pi\)
\(444\) 0 0
\(445\) 3.00000 0.142214
\(446\) 0 0
\(447\) 21.0000 0.993266
\(448\) 0 0
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) 0 0
\(451\) 11.0000 0.517970
\(452\) 0 0
\(453\) 8.00000 0.375873
\(454\) 0 0
\(455\) 1.00000 0.0468807
\(456\) 0 0
\(457\) −5.00000 −0.233890 −0.116945 0.993138i \(-0.537310\pi\)
−0.116945 + 0.993138i \(0.537310\pi\)
\(458\) 0 0
\(459\) 5.00000 0.233380
\(460\) 0 0
\(461\) 1.00000 0.0465746 0.0232873 0.999729i \(-0.492587\pi\)
0.0232873 + 0.999729i \(0.492587\pi\)
\(462\) 0 0
\(463\) 15.0000 0.697109 0.348555 0.937288i \(-0.386673\pi\)
0.348555 + 0.937288i \(0.386673\pi\)
\(464\) 0 0
\(465\) −4.00000 −0.185496
\(466\) 0 0
\(467\) −33.0000 −1.52706 −0.763529 0.645774i \(-0.776535\pi\)
−0.763529 + 0.645774i \(0.776535\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) 0 0
\(471\) −6.00000 −0.276465
\(472\) 0 0
\(473\) −6.00000 −0.275880
\(474\) 0 0
\(475\) 2.00000 0.0917663
\(476\) 0 0
\(477\) 11.0000 0.503655
\(478\) 0 0
\(479\) −3.00000 −0.137073 −0.0685367 0.997649i \(-0.521833\pi\)
−0.0685367 + 0.997649i \(0.521833\pi\)
\(480\) 0 0
\(481\) 7.00000 0.319173
\(482\) 0 0
\(483\) 7.00000 0.318511
\(484\) 0 0
\(485\) 7.00000 0.317854
\(486\) 0 0
\(487\) −11.0000 −0.498458 −0.249229 0.968445i \(-0.580177\pi\)
−0.249229 + 0.968445i \(0.580177\pi\)
\(488\) 0 0
\(489\) 9.00000 0.406994
\(490\) 0 0
\(491\) 2.00000 0.0902587 0.0451294 0.998981i \(-0.485630\pi\)
0.0451294 + 0.998981i \(0.485630\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −1.00000 −0.0449467
\(496\) 0 0
\(497\) 9.00000 0.403705
\(498\) 0 0
\(499\) 14.0000 0.626726 0.313363 0.949633i \(-0.398544\pi\)
0.313363 + 0.949633i \(0.398544\pi\)
\(500\) 0 0
\(501\) −8.00000 −0.357414
\(502\) 0 0
\(503\) −16.0000 −0.713405 −0.356702 0.934218i \(-0.616099\pi\)
−0.356702 + 0.934218i \(0.616099\pi\)
\(504\) 0 0
\(505\) −12.0000 −0.533993
\(506\) 0 0
\(507\) −1.00000 −0.0444116
\(508\) 0 0
\(509\) −29.0000 −1.28540 −0.642701 0.766117i \(-0.722186\pi\)
−0.642701 + 0.766117i \(0.722186\pi\)
\(510\) 0 0
\(511\) −2.00000 −0.0884748
\(512\) 0 0
\(513\) −2.00000 −0.0883022
\(514\) 0 0
\(515\) −4.00000 −0.176261
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −14.0000 −0.614532
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) 6.00000 0.262362 0.131181 0.991358i \(-0.458123\pi\)
0.131181 + 0.991358i \(0.458123\pi\)
\(524\) 0 0
\(525\) 1.00000 0.0436436
\(526\) 0 0
\(527\) −20.0000 −0.871214
\(528\) 0 0
\(529\) 26.0000 1.13043
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) 11.0000 0.476463
\(534\) 0 0
\(535\) −13.0000 −0.562039
\(536\) 0 0
\(537\) 2.00000 0.0863064
\(538\) 0 0
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) −5.00000 −0.214571
\(544\) 0 0
\(545\) −4.00000 −0.171341
\(546\) 0 0
\(547\) 24.0000 1.02617 0.513083 0.858339i \(-0.328503\pi\)
0.513083 + 0.858339i \(0.328503\pi\)
\(548\) 0 0
\(549\) −7.00000 −0.298753
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −3.00000 −0.127573
\(554\) 0 0
\(555\) 7.00000 0.297133
\(556\) 0 0
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0 0
\(559\) −6.00000 −0.253773
\(560\) 0 0
\(561\) −5.00000 −0.211100
\(562\) 0 0
\(563\) −45.0000 −1.89652 −0.948262 0.317489i \(-0.897160\pi\)
−0.948262 + 0.317489i \(0.897160\pi\)
\(564\) 0 0
\(565\) −14.0000 −0.588984
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 39.0000 1.63210 0.816050 0.577982i \(-0.196160\pi\)
0.816050 + 0.577982i \(0.196160\pi\)
\(572\) 0 0
\(573\) 18.0000 0.751961
\(574\) 0 0
\(575\) 7.00000 0.291920
\(576\) 0 0
\(577\) 15.0000 0.624458 0.312229 0.950007i \(-0.398924\pi\)
0.312229 + 0.950007i \(0.398924\pi\)
\(578\) 0 0
\(579\) 11.0000 0.457144
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −11.0000 −0.455573
\(584\) 0 0
\(585\) −1.00000 −0.0413449
\(586\) 0 0
\(587\) 42.0000 1.73353 0.866763 0.498721i \(-0.166197\pi\)
0.866763 + 0.498721i \(0.166197\pi\)
\(588\) 0 0
\(589\) 8.00000 0.329634
\(590\) 0 0
\(591\) −14.0000 −0.575883
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 5.00000 0.204980
\(596\) 0 0
\(597\) 8.00000 0.327418
\(598\) 0 0
\(599\) −48.0000 −1.96123 −0.980613 0.195952i \(-0.937220\pi\)
−0.980613 + 0.195952i \(0.937220\pi\)
\(600\) 0 0
\(601\) −37.0000 −1.50926 −0.754631 0.656150i \(-0.772184\pi\)
−0.754631 + 0.656150i \(0.772184\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) 0 0
\(605\) −10.0000 −0.406558
\(606\) 0 0
\(607\) 26.0000 1.05531 0.527654 0.849460i \(-0.323072\pi\)
0.527654 + 0.849460i \(0.323072\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −45.0000 −1.81753 −0.908766 0.417305i \(-0.862975\pi\)
−0.908766 + 0.417305i \(0.862975\pi\)
\(614\) 0 0
\(615\) 11.0000 0.443563
\(616\) 0 0
\(617\) 2.00000 0.0805170 0.0402585 0.999189i \(-0.487182\pi\)
0.0402585 + 0.999189i \(0.487182\pi\)
\(618\) 0 0
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) −7.00000 −0.280900
\(622\) 0 0
\(623\) −3.00000 −0.120192
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 2.00000 0.0798723
\(628\) 0 0
\(629\) 35.0000 1.39554
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) 0 0
\(633\) −24.0000 −0.953914
\(634\) 0 0
\(635\) −8.00000 −0.317470
\(636\) 0 0
\(637\) 6.00000 0.237729
\(638\) 0 0
\(639\) −9.00000 −0.356034
\(640\) 0 0
\(641\) −34.0000 −1.34292 −0.671460 0.741041i \(-0.734332\pi\)
−0.671460 + 0.741041i \(0.734332\pi\)
\(642\) 0 0
\(643\) 19.0000 0.749287 0.374643 0.927169i \(-0.377765\pi\)
0.374643 + 0.927169i \(0.377765\pi\)
\(644\) 0 0
\(645\) −6.00000 −0.236250
\(646\) 0 0
\(647\) −47.0000 −1.84776 −0.923880 0.382682i \(-0.875001\pi\)
−0.923880 + 0.382682i \(0.875001\pi\)
\(648\) 0 0
\(649\) −4.00000 −0.157014
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 0 0
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 0 0
\(655\) −4.00000 −0.156293
\(656\) 0 0
\(657\) 2.00000 0.0780274
\(658\) 0 0
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 0 0
\(663\) −5.00000 −0.194184
\(664\) 0 0
\(665\) −2.00000 −0.0775567
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 16.0000 0.618596
\(670\) 0 0
\(671\) 7.00000 0.270232
\(672\) 0 0
\(673\) 36.0000 1.38770 0.693849 0.720121i \(-0.255914\pi\)
0.693849 + 0.720121i \(0.255914\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) 7.00000 0.269032 0.134516 0.990911i \(-0.457052\pi\)
0.134516 + 0.990911i \(0.457052\pi\)
\(678\) 0 0
\(679\) −7.00000 −0.268635
\(680\) 0 0
\(681\) −14.0000 −0.536481
\(682\) 0 0
\(683\) 26.0000 0.994862 0.497431 0.867503i \(-0.334277\pi\)
0.497431 + 0.867503i \(0.334277\pi\)
\(684\) 0 0
\(685\) 14.0000 0.534913
\(686\) 0 0
\(687\) −20.0000 −0.763048
\(688\) 0 0
\(689\) −11.0000 −0.419067
\(690\) 0 0
\(691\) −22.0000 −0.836919 −0.418460 0.908235i \(-0.637430\pi\)
−0.418460 + 0.908235i \(0.637430\pi\)
\(692\) 0 0
\(693\) 1.00000 0.0379869
\(694\) 0 0
\(695\) −15.0000 −0.568982
\(696\) 0 0
\(697\) 55.0000 2.08327
\(698\) 0 0
\(699\) 3.00000 0.113470
\(700\) 0 0
\(701\) −40.0000 −1.51078 −0.755390 0.655276i \(-0.772552\pi\)
−0.755390 + 0.655276i \(0.772552\pi\)
\(702\) 0 0
\(703\) −14.0000 −0.528020
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.0000 0.451306
\(708\) 0 0
\(709\) 20.0000 0.751116 0.375558 0.926799i \(-0.377451\pi\)
0.375558 + 0.926799i \(0.377451\pi\)
\(710\) 0 0
\(711\) 3.00000 0.112509
\(712\) 0 0
\(713\) 28.0000 1.04861
\(714\) 0 0
\(715\) 1.00000 0.0373979
\(716\) 0 0
\(717\) 17.0000 0.634877
\(718\) 0 0
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 0 0
\(721\) 4.00000 0.148968
\(722\) 0 0
\(723\) −4.00000 −0.148762
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 6.00000 0.222528 0.111264 0.993791i \(-0.464510\pi\)
0.111264 + 0.993791i \(0.464510\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −30.0000 −1.10959
\(732\) 0 0
\(733\) 41.0000 1.51437 0.757185 0.653201i \(-0.226574\pi\)
0.757185 + 0.653201i \(0.226574\pi\)
\(734\) 0 0
\(735\) 6.00000 0.221313
\(736\) 0 0
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) −30.0000 −1.10357 −0.551784 0.833987i \(-0.686053\pi\)
−0.551784 + 0.833987i \(0.686053\pi\)
\(740\) 0 0
\(741\) 2.00000 0.0734718
\(742\) 0 0
\(743\) −30.0000 −1.10059 −0.550297 0.834969i \(-0.685485\pi\)
−0.550297 + 0.834969i \(0.685485\pi\)
\(744\) 0 0
\(745\) −21.0000 −0.769380
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 13.0000 0.475010
\(750\) 0 0
\(751\) 53.0000 1.93400 0.966999 0.254781i \(-0.0820034\pi\)
0.966999 + 0.254781i \(0.0820034\pi\)
\(752\) 0 0
\(753\) −24.0000 −0.874609
\(754\) 0 0
\(755\) −8.00000 −0.291150
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 7.00000 0.254084
\(760\) 0 0
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 0 0
\(763\) 4.00000 0.144810
\(764\) 0 0
\(765\) −5.00000 −0.180775
\(766\) 0 0
\(767\) −4.00000 −0.144432
\(768\) 0 0
\(769\) 34.0000 1.22607 0.613036 0.790055i \(-0.289948\pi\)
0.613036 + 0.790055i \(0.289948\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) 0 0
\(773\) −24.0000 −0.863220 −0.431610 0.902060i \(-0.642054\pi\)
−0.431610 + 0.902060i \(0.642054\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) −7.00000 −0.251124
\(778\) 0 0
\(779\) −22.0000 −0.788232
\(780\) 0 0
\(781\) 9.00000 0.322045
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.00000 0.214149
\(786\) 0 0
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) 0 0
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) 14.0000 0.497783
\(792\) 0 0
\(793\) 7.00000 0.248577
\(794\) 0 0
\(795\) −11.0000 −0.390130
\(796\) 0 0
\(797\) −15.0000 −0.531327 −0.265664 0.964066i \(-0.585591\pi\)
−0.265664 + 0.964066i \(0.585591\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 3.00000 0.106000
\(802\) 0 0
\(803\) −2.00000 −0.0705785
\(804\) 0 0
\(805\) −7.00000 −0.246718
\(806\) 0 0
\(807\) −12.0000 −0.422420
\(808\) 0 0
\(809\) −26.0000 −0.914111 −0.457056 0.889438i \(-0.651096\pi\)
−0.457056 + 0.889438i \(0.651096\pi\)
\(810\) 0 0
\(811\) 30.0000 1.05344 0.526721 0.850038i \(-0.323421\pi\)
0.526721 + 0.850038i \(0.323421\pi\)
\(812\) 0 0
\(813\) −14.0000 −0.491001
\(814\) 0 0
\(815\) −9.00000 −0.315256
\(816\) 0 0
\(817\) 12.0000 0.419827
\(818\) 0 0
\(819\) 1.00000 0.0349428
\(820\) 0 0
\(821\) −11.0000 −0.383903 −0.191951 0.981404i \(-0.561482\pi\)
−0.191951 + 0.981404i \(0.561482\pi\)
\(822\) 0 0
\(823\) 16.0000 0.557725 0.278862 0.960331i \(-0.410043\pi\)
0.278862 + 0.960331i \(0.410043\pi\)
\(824\) 0 0
\(825\) 1.00000 0.0348155
\(826\) 0 0
\(827\) 24.0000 0.834562 0.417281 0.908778i \(-0.362983\pi\)
0.417281 + 0.908778i \(0.362983\pi\)
\(828\) 0 0
\(829\) −6.00000 −0.208389 −0.104194 0.994557i \(-0.533226\pi\)
−0.104194 + 0.994557i \(0.533226\pi\)
\(830\) 0 0
\(831\) 8.00000 0.277517
\(832\) 0 0
\(833\) 30.0000 1.03944
\(834\) 0 0
\(835\) 8.00000 0.276851
\(836\) 0 0
\(837\) −4.00000 −0.138260
\(838\) 0 0
\(839\) −45.0000 −1.55357 −0.776786 0.629764i \(-0.783151\pi\)
−0.776786 + 0.629764i \(0.783151\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 30.0000 1.03325
\(844\) 0 0
\(845\) 1.00000 0.0344010
\(846\) 0 0
\(847\) 10.0000 0.343604
\(848\) 0 0
\(849\) −4.00000 −0.137280
\(850\) 0 0
\(851\) −49.0000 −1.67970
\(852\) 0 0
\(853\) −9.00000 −0.308154 −0.154077 0.988059i \(-0.549240\pi\)
−0.154077 + 0.988059i \(0.549240\pi\)
\(854\) 0 0
\(855\) 2.00000 0.0683986
\(856\) 0 0
\(857\) −15.0000 −0.512390 −0.256195 0.966625i \(-0.582469\pi\)
−0.256195 + 0.966625i \(0.582469\pi\)
\(858\) 0 0
\(859\) 53.0000 1.80834 0.904168 0.427176i \(-0.140492\pi\)
0.904168 + 0.427176i \(0.140492\pi\)
\(860\) 0 0
\(861\) −11.0000 −0.374879
\(862\) 0 0
\(863\) 34.0000 1.15737 0.578687 0.815550i \(-0.303565\pi\)
0.578687 + 0.815550i \(0.303565\pi\)
\(864\) 0 0
\(865\) 14.0000 0.476014
\(866\) 0 0
\(867\) −8.00000 −0.271694
\(868\) 0 0
\(869\) −3.00000 −0.101768
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 7.00000 0.236914
\(874\) 0 0
\(875\) −1.00000 −0.0338062
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 16.0000 0.539054 0.269527 0.962993i \(-0.413133\pi\)
0.269527 + 0.962993i \(0.413133\pi\)
\(882\) 0 0
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) 0 0
\(885\) −4.00000 −0.134459
\(886\) 0 0
\(887\) 21.0000 0.705111 0.352555 0.935791i \(-0.385313\pi\)
0.352555 + 0.935791i \(0.385313\pi\)
\(888\) 0 0
\(889\) 8.00000 0.268311
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −2.00000 −0.0668526
\(896\) 0 0
\(897\) 7.00000 0.233723
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −55.0000 −1.83232
\(902\) 0 0
\(903\) 6.00000 0.199667
\(904\) 0 0
\(905\) 5.00000 0.166206
\(906\) 0 0
\(907\) 50.0000 1.66022 0.830111 0.557598i \(-0.188277\pi\)
0.830111 + 0.557598i \(0.188277\pi\)
\(908\) 0 0
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) −50.0000 −1.65657 −0.828287 0.560304i \(-0.810684\pi\)
−0.828287 + 0.560304i \(0.810684\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 7.00000 0.231413
\(916\) 0 0
\(917\) 4.00000 0.132092
\(918\) 0 0
\(919\) −17.0000 −0.560778 −0.280389 0.959886i \(-0.590464\pi\)
−0.280389 + 0.959886i \(0.590464\pi\)
\(920\) 0 0
\(921\) −7.00000 −0.230658
\(922\) 0 0
\(923\) 9.00000 0.296239
\(924\) 0 0
\(925\) −7.00000 −0.230159
\(926\) 0 0
\(927\) −4.00000 −0.131377
\(928\) 0 0
\(929\) 15.0000 0.492134 0.246067 0.969253i \(-0.420862\pi\)
0.246067 + 0.969253i \(0.420862\pi\)
\(930\) 0 0
\(931\) −12.0000 −0.393284
\(932\) 0 0
\(933\) 18.0000 0.589294
\(934\) 0 0
\(935\) 5.00000 0.163517
\(936\) 0 0
\(937\) 48.0000 1.56809 0.784046 0.620703i \(-0.213153\pi\)
0.784046 + 0.620703i \(0.213153\pi\)
\(938\) 0 0
\(939\) 14.0000 0.456873
\(940\) 0 0
\(941\) 15.0000 0.488986 0.244493 0.969651i \(-0.421378\pi\)
0.244493 + 0.969651i \(0.421378\pi\)
\(942\) 0 0
\(943\) −77.0000 −2.50746
\(944\) 0 0
\(945\) 1.00000 0.0325300
\(946\) 0 0
\(947\) −24.0000 −0.779895 −0.389948 0.920837i \(-0.627507\pi\)
−0.389948 + 0.920837i \(0.627507\pi\)
\(948\) 0 0
\(949\) −2.00000 −0.0649227
\(950\) 0 0
\(951\) 26.0000 0.843108
\(952\) 0 0
\(953\) −9.00000 −0.291539 −0.145769 0.989319i \(-0.546566\pi\)
−0.145769 + 0.989319i \(0.546566\pi\)
\(954\) 0 0
\(955\) −18.0000 −0.582466
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −14.0000 −0.452084
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) −13.0000 −0.418919
\(964\) 0 0
\(965\) −11.0000 −0.354103
\(966\) 0 0
\(967\) −16.0000 −0.514525 −0.257263 0.966342i \(-0.582821\pi\)
−0.257263 + 0.966342i \(0.582821\pi\)
\(968\) 0 0
\(969\) 10.0000 0.321246
\(970\) 0 0
\(971\) 10.0000 0.320915 0.160458 0.987043i \(-0.448703\pi\)
0.160458 + 0.987043i \(0.448703\pi\)
\(972\) 0 0
\(973\) 15.0000 0.480878
\(974\) 0 0
\(975\) 1.00000 0.0320256
\(976\) 0 0
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) −3.00000 −0.0958804
\(980\) 0 0
\(981\) −4.00000 −0.127710
\(982\) 0 0
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 0 0
\(985\) 14.0000 0.446077
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 42.0000 1.33552
\(990\) 0 0
\(991\) 9.00000 0.285894 0.142947 0.989730i \(-0.454342\pi\)
0.142947 + 0.989730i \(0.454342\pi\)
\(992\) 0 0
\(993\) 6.00000 0.190404
\(994\) 0 0
\(995\) −8.00000 −0.253617
\(996\) 0 0
\(997\) −16.0000 −0.506725 −0.253363 0.967371i \(-0.581537\pi\)
−0.253363 + 0.967371i \(0.581537\pi\)
\(998\) 0 0
\(999\) 7.00000 0.221470
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6240.2.a.i.1.1 1
4.3 odd 2 6240.2.a.bf.1.1 yes 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6240.2.a.i.1.1 1 1.1 even 1 trivial
6240.2.a.bf.1.1 yes 1 4.3 odd 2