Properties

Label 624.4.cv
Level $624$
Weight $4$
Character orbit 624.cv
Rep. character $\chi_{624}(61,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $672$
Sturm bound $448$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.cv (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 208 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(448\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(624, [\chi])\).

Total New Old
Modular forms 1360 672 688
Cusp forms 1328 672 656
Eisenstein series 32 0 32

Trace form

\( 672 q - 48 q^{12} + 416 q^{14} + 80 q^{20} + 36 q^{22} - 40 q^{26} - 344 q^{28} + 408 q^{30} - 960 q^{32} + 1000 q^{34} - 440 q^{38} - 3200 q^{40} + 660 q^{42} - 432 q^{43} + 2464 q^{44} + 740 q^{46} + 16464 q^{49}+ \cdots + 2628 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(624, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(624, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(624, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 2}\)