Properties

Label 624.4.c.e
Level $624$
Weight $4$
Character orbit 624.c
Analytic conductor $36.817$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [624,4,Mod(337,624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("624.337"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(624, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,12,0,0,0,0,0,36,0,0,0,-72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8171918436\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.5054412.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 29x^{2} + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} - \beta_{2} q^{5} + 3 \beta_1 q^{7} + 9 q^{9} + ( - \beta_{2} + \beta_1) q^{11} + (\beta_{3} + 3 \beta_{2} - 18) q^{13} - 3 \beta_{2} q^{15} + 54 q^{17} + ( - 6 \beta_{2} + 3 \beta_1) q^{19}+ \cdots + ( - 9 \beta_{2} + 9 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{3} + 36 q^{9} - 72 q^{13} + 216 q^{17} - 120 q^{23} - 44 q^{25} + 108 q^{27} - 48 q^{29} - 120 q^{35} - 216 q^{39} - 1064 q^{43} - 716 q^{49} + 648 q^{51} - 864 q^{53} - 584 q^{55} - 2280 q^{61}+ \cdots - 3384 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 29x^{2} + 48 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 25\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 29 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 29 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4\beta_{2} - 25\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
1.32750i
5.21898i
5.21898i
1.32750i
0 3.00000 0 15.4241i 0 7.96501i 0 9.00000 0
337.2 0 3.00000 0 5.83936i 0 31.3139i 0 9.00000 0
337.3 0 3.00000 0 5.83936i 0 31.3139i 0 9.00000 0
337.4 0 3.00000 0 15.4241i 0 7.96501i 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 624.4.c.e 4
4.b odd 2 1 39.4.b.a 4
12.b even 2 1 117.4.b.d 4
13.b even 2 1 inner 624.4.c.e 4
52.b odd 2 1 39.4.b.a 4
52.f even 4 2 507.4.a.j 4
156.h even 2 1 117.4.b.d 4
156.l odd 4 2 1521.4.a.x 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.4.b.a 4 4.b odd 2 1
39.4.b.a 4 52.b odd 2 1
117.4.b.d 4 12.b even 2 1
117.4.b.d 4 156.h even 2 1
507.4.a.j 4 52.f even 4 2
624.4.c.e 4 1.a even 1 1 trivial
624.4.c.e 4 13.b even 2 1 inner
1521.4.a.x 4 156.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 272T_{5}^{2} + 8112 \) acting on \(S_{4}^{\mathrm{new}}(624, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T - 3)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 272T^{2} + 8112 \) Copy content Toggle raw display
$7$ \( T^{4} + 1044 T^{2} + 62208 \) Copy content Toggle raw display
$11$ \( T^{4} + 428 T^{2} + 43200 \) Copy content Toggle raw display
$13$ \( T^{4} + 72 T^{3} + \cdots + 4826809 \) Copy content Toggle raw display
$17$ \( (T - 54)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 11556 T^{2} + 31492800 \) Copy content Toggle raw display
$23$ \( (T^{2} + 60 T - 22464)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 24 T - 23220)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 17028 T^{2} + 47044800 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 2293235712 \) Copy content Toggle raw display
$41$ \( T^{4} + 45392 T^{2} + 128314800 \) Copy content Toggle raw display
$43$ \( (T^{2} + 532 T + 47392)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 62387841792 \) Copy content Toggle raw display
$53$ \( (T^{2} + 432 T - 163620)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 2436066048 \) Copy content Toggle raw display
$61$ \( (T^{2} + 1140 T + 314516)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 727668 T^{2} + 143327232 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 3298756800 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 68976790272 \) Copy content Toggle raw display
$79$ \( (T^{2} + 144 T - 160960)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 106682723328 \) Copy content Toggle raw display
$89$ \( T^{4} + 60464 T^{2} + 249304368 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 3383532000000 \) Copy content Toggle raw display
show more
show less