Properties

Label 624.4.bc.d.31.11
Level $624$
Weight $4$
Character 624.31
Analytic conductor $36.817$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [624,4,Mod(31,624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("624.31"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(624, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 0, 3])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.bc (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,0,4,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8171918436\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 31.11
Character \(\chi\) \(=\) 624.31
Dual form 624.4.bc.d.463.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{3} +(7.87509 - 7.87509i) q^{5} +(15.6298 - 15.6298i) q^{7} -9.00000 q^{9} +(35.2280 - 35.2280i) q^{11} +(39.8595 - 24.6622i) q^{13} +(23.6253 + 23.6253i) q^{15} -8.37246i q^{17} +(-3.94192 - 3.94192i) q^{19} +(46.8895 + 46.8895i) q^{21} -192.968 q^{23} +0.965900i q^{25} -27.0000i q^{27} -8.58178 q^{29} +(-214.896 - 214.896i) q^{31} +(105.684 + 105.684i) q^{33} -246.173i q^{35} +(-86.7849 - 86.7849i) q^{37} +(73.9866 + 119.578i) q^{39} +(210.866 - 210.866i) q^{41} -23.0221 q^{43} +(-70.8758 + 70.8758i) q^{45} +(-201.405 + 201.405i) q^{47} -145.584i q^{49} +25.1174 q^{51} +73.3118 q^{53} -554.848i q^{55} +(11.8258 - 11.8258i) q^{57} +(-240.499 + 240.499i) q^{59} -244.071 q^{61} +(-140.669 + 140.669i) q^{63} +(119.680 - 508.114i) q^{65} +(579.283 + 579.283i) q^{67} -578.905i q^{69} +(15.1455 + 15.1455i) q^{71} +(564.626 + 564.626i) q^{73} -2.89770 q^{75} -1101.22i q^{77} -507.987i q^{79} +81.0000 q^{81} +(-316.388 - 316.388i) q^{83} +(-65.9339 - 65.9339i) q^{85} -25.7453i q^{87} +(818.249 + 818.249i) q^{89} +(237.531 - 1008.46i) q^{91} +(644.688 - 644.688i) q^{93} -62.0860 q^{95} +(1161.89 - 1161.89i) q^{97} +(-317.052 + 317.052i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 4 q^{5} + 8 q^{7} - 252 q^{9} - 64 q^{11} - 32 q^{13} + 12 q^{15} - 56 q^{19} + 24 q^{21} - 384 q^{23} - 32 q^{29} + 168 q^{31} - 192 q^{33} + 412 q^{37} - 252 q^{39} + 1340 q^{41} - 624 q^{43} - 36 q^{45}+ \cdots + 576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) 7.87509 7.87509i 0.704370 0.704370i −0.260976 0.965345i \(-0.584044\pi\)
0.965345 + 0.260976i \(0.0840443\pi\)
\(6\) 0 0
\(7\) 15.6298 15.6298i 0.843933 0.843933i −0.145435 0.989368i \(-0.546458\pi\)
0.989368 + 0.145435i \(0.0464582\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 35.2280 35.2280i 0.965604 0.965604i −0.0338234 0.999428i \(-0.510768\pi\)
0.999428 + 0.0338234i \(0.0107684\pi\)
\(12\) 0 0
\(13\) 39.8595 24.6622i 0.850386 0.526159i
\(14\) 0 0
\(15\) 23.6253 + 23.6253i 0.406668 + 0.406668i
\(16\) 0 0
\(17\) 8.37246i 0.119448i −0.998215 0.0597241i \(-0.980978\pi\)
0.998215 0.0597241i \(-0.0190221\pi\)
\(18\) 0 0
\(19\) −3.94192 3.94192i −0.0475968 0.0475968i 0.682908 0.730505i \(-0.260715\pi\)
−0.730505 + 0.682908i \(0.760715\pi\)
\(20\) 0 0
\(21\) 46.8895 + 46.8895i 0.487245 + 0.487245i
\(22\) 0 0
\(23\) −192.968 −1.74942 −0.874711 0.484645i \(-0.838949\pi\)
−0.874711 + 0.484645i \(0.838949\pi\)
\(24\) 0 0
\(25\) 0.965900i 0.00772720i
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) −8.58178 −0.0549516 −0.0274758 0.999622i \(-0.508747\pi\)
−0.0274758 + 0.999622i \(0.508747\pi\)
\(30\) 0 0
\(31\) −214.896 214.896i −1.24505 1.24505i −0.957881 0.287166i \(-0.907287\pi\)
−0.287166 0.957881i \(-0.592713\pi\)
\(32\) 0 0
\(33\) 105.684 + 105.684i 0.557492 + 0.557492i
\(34\) 0 0
\(35\) 246.173i 1.18888i
\(36\) 0 0
\(37\) −86.7849 86.7849i −0.385604 0.385604i 0.487512 0.873116i \(-0.337904\pi\)
−0.873116 + 0.487512i \(0.837904\pi\)
\(38\) 0 0
\(39\) 73.9866 + 119.578i 0.303778 + 0.490971i
\(40\) 0 0
\(41\) 210.866 210.866i 0.803213 0.803213i −0.180383 0.983596i \(-0.557734\pi\)
0.983596 + 0.180383i \(0.0577338\pi\)
\(42\) 0 0
\(43\) −23.0221 −0.0816474 −0.0408237 0.999166i \(-0.512998\pi\)
−0.0408237 + 0.999166i \(0.512998\pi\)
\(44\) 0 0
\(45\) −70.8758 + 70.8758i −0.234790 + 0.234790i
\(46\) 0 0
\(47\) −201.405 + 201.405i −0.625062 + 0.625062i −0.946821 0.321760i \(-0.895726\pi\)
0.321760 + 0.946821i \(0.395726\pi\)
\(48\) 0 0
\(49\) 145.584i 0.424444i
\(50\) 0 0
\(51\) 25.1174 0.0689635
\(52\) 0 0
\(53\) 73.3118 0.190003 0.0950014 0.995477i \(-0.469714\pi\)
0.0950014 + 0.995477i \(0.469714\pi\)
\(54\) 0 0
\(55\) 554.848i 1.36028i
\(56\) 0 0
\(57\) 11.8258 11.8258i 0.0274800 0.0274800i
\(58\) 0 0
\(59\) −240.499 + 240.499i −0.530684 + 0.530684i −0.920776 0.390092i \(-0.872443\pi\)
0.390092 + 0.920776i \(0.372443\pi\)
\(60\) 0 0
\(61\) −244.071 −0.512296 −0.256148 0.966638i \(-0.582454\pi\)
−0.256148 + 0.966638i \(0.582454\pi\)
\(62\) 0 0
\(63\) −140.669 + 140.669i −0.281311 + 0.281311i
\(64\) 0 0
\(65\) 119.680 508.114i 0.228376 0.969596i
\(66\) 0 0
\(67\) 579.283 + 579.283i 1.05628 + 1.05628i 0.998319 + 0.0579591i \(0.0184593\pi\)
0.0579591 + 0.998319i \(0.481541\pi\)
\(68\) 0 0
\(69\) 578.905i 1.01003i
\(70\) 0 0
\(71\) 15.1455 + 15.1455i 0.0253161 + 0.0253161i 0.719652 0.694335i \(-0.244302\pi\)
−0.694335 + 0.719652i \(0.744302\pi\)
\(72\) 0 0
\(73\) 564.626 + 564.626i 0.905266 + 0.905266i 0.995886 0.0906193i \(-0.0288846\pi\)
−0.0906193 + 0.995886i \(0.528885\pi\)
\(74\) 0 0
\(75\) −2.89770 −0.00446130
\(76\) 0 0
\(77\) 1101.22i 1.62981i
\(78\) 0 0
\(79\) 507.987i 0.723456i −0.932284 0.361728i \(-0.882187\pi\)
0.932284 0.361728i \(-0.117813\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −316.388 316.388i −0.418411 0.418411i 0.466245 0.884656i \(-0.345607\pi\)
−0.884656 + 0.466245i \(0.845607\pi\)
\(84\) 0 0
\(85\) −65.9339 65.9339i −0.0841357 0.0841357i
\(86\) 0 0
\(87\) 25.7453i 0.0317263i
\(88\) 0 0
\(89\) 818.249 + 818.249i 0.974542 + 0.974542i 0.999684 0.0251422i \(-0.00800386\pi\)
−0.0251422 + 0.999684i \(0.508004\pi\)
\(90\) 0 0
\(91\) 237.531 1008.46i 0.273627 1.16171i
\(92\) 0 0
\(93\) 644.688 644.688i 0.718828 0.718828i
\(94\) 0 0
\(95\) −62.0860 −0.0670515
\(96\) 0 0
\(97\) 1161.89 1161.89i 1.21621 1.21621i 0.247257 0.968950i \(-0.420471\pi\)
0.968950 0.247257i \(-0.0795292\pi\)
\(98\) 0 0
\(99\) −317.052 + 317.052i −0.321868 + 0.321868i
\(100\) 0 0
\(101\) 304.846i 0.300330i 0.988661 + 0.150165i \(0.0479804\pi\)
−0.988661 + 0.150165i \(0.952020\pi\)
\(102\) 0 0
\(103\) 24.5435 0.0234791 0.0117395 0.999931i \(-0.496263\pi\)
0.0117395 + 0.999931i \(0.496263\pi\)
\(104\) 0 0
\(105\) 738.519 0.686401
\(106\) 0 0
\(107\) 1262.45i 1.14062i −0.821430 0.570309i \(-0.806824\pi\)
0.821430 0.570309i \(-0.193176\pi\)
\(108\) 0 0
\(109\) 1461.12 1461.12i 1.28394 1.28394i 0.345539 0.938405i \(-0.387696\pi\)
0.938405 0.345539i \(-0.112304\pi\)
\(110\) 0 0
\(111\) 260.355 260.355i 0.222629 0.222629i
\(112\) 0 0
\(113\) 598.613 0.498343 0.249171 0.968459i \(-0.419842\pi\)
0.249171 + 0.968459i \(0.419842\pi\)
\(114\) 0 0
\(115\) −1519.64 + 1519.64i −1.23224 + 1.23224i
\(116\) 0 0
\(117\) −358.735 + 221.960i −0.283462 + 0.175386i
\(118\) 0 0
\(119\) −130.860 130.860i −0.100806 0.100806i
\(120\) 0 0
\(121\) 1151.03i 0.864784i
\(122\) 0 0
\(123\) 632.598 + 632.598i 0.463735 + 0.463735i
\(124\) 0 0
\(125\) 991.993 + 991.993i 0.709812 + 0.709812i
\(126\) 0 0
\(127\) −246.923 −0.172527 −0.0862634 0.996272i \(-0.527493\pi\)
−0.0862634 + 0.996272i \(0.527493\pi\)
\(128\) 0 0
\(129\) 69.0663i 0.0471392i
\(130\) 0 0
\(131\) 2212.73i 1.47578i −0.674921 0.737890i \(-0.735822\pi\)
0.674921 0.737890i \(-0.264178\pi\)
\(132\) 0 0
\(133\) −123.223 −0.0803370
\(134\) 0 0
\(135\) −212.627 212.627i −0.135556 0.135556i
\(136\) 0 0
\(137\) −229.920 229.920i −0.143383 0.143383i 0.631772 0.775154i \(-0.282328\pi\)
−0.775154 + 0.631772i \(0.782328\pi\)
\(138\) 0 0
\(139\) 1989.55i 1.21404i 0.794686 + 0.607020i \(0.207635\pi\)
−0.794686 + 0.607020i \(0.792365\pi\)
\(140\) 0 0
\(141\) −604.214 604.214i −0.360879 0.360879i
\(142\) 0 0
\(143\) 535.370 2272.97i 0.313076 1.32920i
\(144\) 0 0
\(145\) −67.5823 + 67.5823i −0.0387062 + 0.0387062i
\(146\) 0 0
\(147\) 436.753 0.245053
\(148\) 0 0
\(149\) −2206.26 + 2206.26i −1.21305 + 1.21305i −0.243029 + 0.970019i \(0.578141\pi\)
−0.970019 + 0.243029i \(0.921859\pi\)
\(150\) 0 0
\(151\) 703.639 703.639i 0.379214 0.379214i −0.491604 0.870819i \(-0.663589\pi\)
0.870819 + 0.491604i \(0.163589\pi\)
\(152\) 0 0
\(153\) 75.3522i 0.0398161i
\(154\) 0 0
\(155\) −3384.65 −1.75395
\(156\) 0 0
\(157\) 746.179 0.379309 0.189655 0.981851i \(-0.439263\pi\)
0.189655 + 0.981851i \(0.439263\pi\)
\(158\) 0 0
\(159\) 219.935i 0.109698i
\(160\) 0 0
\(161\) −3016.07 + 3016.07i −1.47639 + 1.47639i
\(162\) 0 0
\(163\) −1255.72 + 1255.72i −0.603408 + 0.603408i −0.941215 0.337807i \(-0.890315\pi\)
0.337807 + 0.941215i \(0.390315\pi\)
\(164\) 0 0
\(165\) 1664.54 0.785361
\(166\) 0 0
\(167\) −1777.63 + 1777.63i −0.823697 + 0.823697i −0.986636 0.162939i \(-0.947903\pi\)
0.162939 + 0.986636i \(0.447903\pi\)
\(168\) 0 0
\(169\) 980.553 1966.04i 0.446314 0.894876i
\(170\) 0 0
\(171\) 35.4773 + 35.4773i 0.0158656 + 0.0158656i
\(172\) 0 0
\(173\) 4341.26i 1.90786i −0.300027 0.953931i \(-0.596996\pi\)
0.300027 0.953931i \(-0.403004\pi\)
\(174\) 0 0
\(175\) 15.0969 + 15.0969i 0.00652124 + 0.00652124i
\(176\) 0 0
\(177\) −721.498 721.498i −0.306391 0.306391i
\(178\) 0 0
\(179\) 1781.56 0.743910 0.371955 0.928251i \(-0.378688\pi\)
0.371955 + 0.928251i \(0.378688\pi\)
\(180\) 0 0
\(181\) 3016.00i 1.23855i 0.785174 + 0.619276i \(0.212574\pi\)
−0.785174 + 0.619276i \(0.787426\pi\)
\(182\) 0 0
\(183\) 732.213i 0.295774i
\(184\) 0 0
\(185\) −1366.88 −0.543216
\(186\) 0 0
\(187\) −294.945 294.945i −0.115340 0.115340i
\(188\) 0 0
\(189\) −422.006 422.006i −0.162415 0.162415i
\(190\) 0 0
\(191\) 2870.78i 1.08755i −0.839231 0.543775i \(-0.816994\pi\)
0.839231 0.543775i \(-0.183006\pi\)
\(192\) 0 0
\(193\) 919.381 + 919.381i 0.342894 + 0.342894i 0.857454 0.514560i \(-0.172045\pi\)
−0.514560 + 0.857454i \(0.672045\pi\)
\(194\) 0 0
\(195\) 1524.34 + 359.040i 0.559797 + 0.131853i
\(196\) 0 0
\(197\) −394.046 + 394.046i −0.142511 + 0.142511i −0.774763 0.632252i \(-0.782131\pi\)
0.632252 + 0.774763i \(0.282131\pi\)
\(198\) 0 0
\(199\) 4471.48 1.59284 0.796419 0.604745i \(-0.206725\pi\)
0.796419 + 0.604745i \(0.206725\pi\)
\(200\) 0 0
\(201\) −1737.85 + 1737.85i −0.609842 + 0.609842i
\(202\) 0 0
\(203\) −134.132 + 134.132i −0.0463754 + 0.0463754i
\(204\) 0 0
\(205\) 3321.18i 1.13152i
\(206\) 0 0
\(207\) 1736.72 0.583141
\(208\) 0 0
\(209\) −277.732 −0.0919194
\(210\) 0 0
\(211\) 1440.66i 0.470042i 0.971990 + 0.235021i \(0.0755159\pi\)
−0.971990 + 0.235021i \(0.924484\pi\)
\(212\) 0 0
\(213\) −45.4366 + 45.4366i −0.0146163 + 0.0146163i
\(214\) 0 0
\(215\) −181.301 + 181.301i −0.0575100 + 0.0575100i
\(216\) 0 0
\(217\) −6717.58 −2.10147
\(218\) 0 0
\(219\) −1693.88 + 1693.88i −0.522656 + 0.522656i
\(220\) 0 0
\(221\) −206.483 333.722i −0.0628487 0.101577i
\(222\) 0 0
\(223\) 3840.12 + 3840.12i 1.15316 + 1.15316i 0.985916 + 0.167239i \(0.0534851\pi\)
0.167239 + 0.985916i \(0.446515\pi\)
\(224\) 0 0
\(225\) 8.69310i 0.00257573i
\(226\) 0 0
\(227\) −3233.77 3233.77i −0.945520 0.945520i 0.0530709 0.998591i \(-0.483099\pi\)
−0.998591 + 0.0530709i \(0.983099\pi\)
\(228\) 0 0
\(229\) 4729.09 + 4729.09i 1.36466 + 1.36466i 0.867872 + 0.496788i \(0.165487\pi\)
0.496788 + 0.867872i \(0.334513\pi\)
\(230\) 0 0
\(231\) 3303.65 0.940971
\(232\) 0 0
\(233\) 1546.78i 0.434907i 0.976071 + 0.217453i \(0.0697750\pi\)
−0.976071 + 0.217453i \(0.930225\pi\)
\(234\) 0 0
\(235\) 3172.16i 0.880549i
\(236\) 0 0
\(237\) 1523.96 0.417687
\(238\) 0 0
\(239\) −871.277 871.277i −0.235808 0.235808i 0.579304 0.815112i \(-0.303325\pi\)
−0.815112 + 0.579304i \(0.803325\pi\)
\(240\) 0 0
\(241\) 176.781 + 176.781i 0.0472510 + 0.0472510i 0.730337 0.683086i \(-0.239363\pi\)
−0.683086 + 0.730337i \(0.739363\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) −1146.49 1146.49i −0.298966 0.298966i
\(246\) 0 0
\(247\) −254.339 59.9065i −0.0655192 0.0154322i
\(248\) 0 0
\(249\) 949.165 949.165i 0.241570 0.241570i
\(250\) 0 0
\(251\) −5266.78 −1.32445 −0.662223 0.749307i \(-0.730387\pi\)
−0.662223 + 0.749307i \(0.730387\pi\)
\(252\) 0 0
\(253\) −6797.90 + 6797.90i −1.68925 + 1.68925i
\(254\) 0 0
\(255\) 197.802 197.802i 0.0485758 0.0485758i
\(256\) 0 0
\(257\) 5569.67i 1.35185i 0.736969 + 0.675927i \(0.236257\pi\)
−0.736969 + 0.675927i \(0.763743\pi\)
\(258\) 0 0
\(259\) −2712.87 −0.650848
\(260\) 0 0
\(261\) 77.2360 0.0183172
\(262\) 0 0
\(263\) 533.982i 0.125197i 0.998039 + 0.0625984i \(0.0199387\pi\)
−0.998039 + 0.0625984i \(0.980061\pi\)
\(264\) 0 0
\(265\) 577.337 577.337i 0.133832 0.133832i
\(266\) 0 0
\(267\) −2454.75 + 2454.75i −0.562652 + 0.562652i
\(268\) 0 0
\(269\) −4298.36 −0.974258 −0.487129 0.873330i \(-0.661956\pi\)
−0.487129 + 0.873330i \(0.661956\pi\)
\(270\) 0 0
\(271\) 4154.32 4154.32i 0.931207 0.931207i −0.0665741 0.997781i \(-0.521207\pi\)
0.997781 + 0.0665741i \(0.0212069\pi\)
\(272\) 0 0
\(273\) 3025.39 + 712.593i 0.670714 + 0.157978i
\(274\) 0 0
\(275\) 34.0268 + 34.0268i 0.00746142 + 0.00746142i
\(276\) 0 0
\(277\) 1458.60i 0.316385i 0.987408 + 0.158192i \(0.0505666\pi\)
−0.987408 + 0.158192i \(0.949433\pi\)
\(278\) 0 0
\(279\) 1934.06 + 1934.06i 0.415015 + 0.415015i
\(280\) 0 0
\(281\) −97.1163 97.1163i −0.0206173 0.0206173i 0.696723 0.717340i \(-0.254641\pi\)
−0.717340 + 0.696723i \(0.754641\pi\)
\(282\) 0 0
\(283\) 6162.01 1.29432 0.647161 0.762353i \(-0.275956\pi\)
0.647161 + 0.762353i \(0.275956\pi\)
\(284\) 0 0
\(285\) 186.258i 0.0387122i
\(286\) 0 0
\(287\) 6591.61i 1.35572i
\(288\) 0 0
\(289\) 4842.90 0.985732
\(290\) 0 0
\(291\) 3485.67 + 3485.67i 0.702177 + 0.702177i
\(292\) 0 0
\(293\) −625.073 625.073i −0.124632 0.124632i 0.642040 0.766671i \(-0.278088\pi\)
−0.766671 + 0.642040i \(0.778088\pi\)
\(294\) 0 0
\(295\) 3787.91i 0.747596i
\(296\) 0 0
\(297\) −951.157 951.157i −0.185831 0.185831i
\(298\) 0 0
\(299\) −7691.62 + 4759.03i −1.48768 + 0.920473i
\(300\) 0 0
\(301\) −359.832 + 359.832i −0.0689049 + 0.0689049i
\(302\) 0 0
\(303\) −914.538 −0.173395
\(304\) 0 0
\(305\) −1922.08 + 1922.08i −0.360846 + 0.360846i
\(306\) 0 0
\(307\) −174.883 + 174.883i −0.0325117 + 0.0325117i −0.723176 0.690664i \(-0.757318\pi\)
0.690664 + 0.723176i \(0.257318\pi\)
\(308\) 0 0
\(309\) 73.6306i 0.0135557i
\(310\) 0 0
\(311\) 5212.31 0.950364 0.475182 0.879888i \(-0.342382\pi\)
0.475182 + 0.879888i \(0.342382\pi\)
\(312\) 0 0
\(313\) 1177.63 0.212664 0.106332 0.994331i \(-0.466089\pi\)
0.106332 + 0.994331i \(0.466089\pi\)
\(314\) 0 0
\(315\) 2215.56i 0.396294i
\(316\) 0 0
\(317\) −3067.58 + 3067.58i −0.543509 + 0.543509i −0.924556 0.381047i \(-0.875564\pi\)
0.381047 + 0.924556i \(0.375564\pi\)
\(318\) 0 0
\(319\) −302.319 + 302.319i −0.0530615 + 0.0530615i
\(320\) 0 0
\(321\) 3787.36 0.658536
\(322\) 0 0
\(323\) −33.0036 + 33.0036i −0.00568536 + 0.00568536i
\(324\) 0 0
\(325\) 23.8212 + 38.5003i 0.00406573 + 0.00657111i
\(326\) 0 0
\(327\) 4383.36 + 4383.36i 0.741285 + 0.741285i
\(328\) 0 0
\(329\) 6295.85i 1.05502i
\(330\) 0 0
\(331\) 2828.55 + 2828.55i 0.469701 + 0.469701i 0.901818 0.432116i \(-0.142233\pi\)
−0.432116 + 0.901818i \(0.642233\pi\)
\(332\) 0 0
\(333\) 781.064 + 781.064i 0.128535 + 0.128535i
\(334\) 0 0
\(335\) 9123.81 1.48802
\(336\) 0 0
\(337\) 6960.82i 1.12516i −0.826742 0.562582i \(-0.809808\pi\)
0.826742 0.562582i \(-0.190192\pi\)
\(338\) 0 0
\(339\) 1795.84i 0.287718i
\(340\) 0 0
\(341\) −15140.7 −2.40444
\(342\) 0 0
\(343\) 3085.58 + 3085.58i 0.485730 + 0.485730i
\(344\) 0 0
\(345\) −4558.93 4558.93i −0.711434 0.711434i
\(346\) 0 0
\(347\) 5431.42i 0.840270i 0.907462 + 0.420135i \(0.138017\pi\)
−0.907462 + 0.420135i \(0.861983\pi\)
\(348\) 0 0
\(349\) −3546.35 3546.35i −0.543931 0.543931i 0.380748 0.924679i \(-0.375666\pi\)
−0.924679 + 0.380748i \(0.875666\pi\)
\(350\) 0 0
\(351\) −665.879 1076.21i −0.101259 0.163657i
\(352\) 0 0
\(353\) −753.905 + 753.905i −0.113672 + 0.113672i −0.761655 0.647983i \(-0.775613\pi\)
0.647983 + 0.761655i \(0.275613\pi\)
\(354\) 0 0
\(355\) 238.545 0.0356638
\(356\) 0 0
\(357\) 392.581 392.581i 0.0582005 0.0582005i
\(358\) 0 0
\(359\) 4239.39 4239.39i 0.623249 0.623249i −0.323112 0.946361i \(-0.604729\pi\)
0.946361 + 0.323112i \(0.104729\pi\)
\(360\) 0 0
\(361\) 6827.92i 0.995469i
\(362\) 0 0
\(363\) 3453.08 0.499283
\(364\) 0 0
\(365\) 8892.96 1.27528
\(366\) 0 0
\(367\) 6816.88i 0.969587i −0.874629 0.484793i \(-0.838895\pi\)
0.874629 0.484793i \(-0.161105\pi\)
\(368\) 0 0
\(369\) −1897.79 + 1897.79i −0.267738 + 0.267738i
\(370\) 0 0
\(371\) 1145.85 1145.85i 0.160350 0.160350i
\(372\) 0 0
\(373\) −13586.9 −1.88607 −0.943034 0.332696i \(-0.892042\pi\)
−0.943034 + 0.332696i \(0.892042\pi\)
\(374\) 0 0
\(375\) −2975.98 + 2975.98i −0.409810 + 0.409810i
\(376\) 0 0
\(377\) −342.065 + 211.645i −0.0467301 + 0.0289133i
\(378\) 0 0
\(379\) 3877.63 + 3877.63i 0.525542 + 0.525542i 0.919240 0.393698i \(-0.128804\pi\)
−0.393698 + 0.919240i \(0.628804\pi\)
\(380\) 0 0
\(381\) 740.770i 0.0996084i
\(382\) 0 0
\(383\) −5793.77 5793.77i −0.772971 0.772971i 0.205653 0.978625i \(-0.434068\pi\)
−0.978625 + 0.205653i \(0.934068\pi\)
\(384\) 0 0
\(385\) −8672.19 8672.19i −1.14799 1.14799i
\(386\) 0 0
\(387\) 207.199 0.0272158
\(388\) 0 0
\(389\) 10524.7i 1.37178i 0.727707 + 0.685888i \(0.240586\pi\)
−0.727707 + 0.685888i \(0.759414\pi\)
\(390\) 0 0
\(391\) 1615.62i 0.208965i
\(392\) 0 0
\(393\) 6638.19 0.852042
\(394\) 0 0
\(395\) −4000.44 4000.44i −0.509580 0.509580i
\(396\) 0 0
\(397\) 5328.39 + 5328.39i 0.673613 + 0.673613i 0.958547 0.284934i \(-0.0919717\pi\)
−0.284934 + 0.958547i \(0.591972\pi\)
\(398\) 0 0
\(399\) 369.670i 0.0463826i
\(400\) 0 0
\(401\) 5848.99 + 5848.99i 0.728391 + 0.728391i 0.970299 0.241908i \(-0.0777733\pi\)
−0.241908 + 0.970299i \(0.577773\pi\)
\(402\) 0 0
\(403\) −13865.4 3265.83i −1.71386 0.403679i
\(404\) 0 0
\(405\) 637.882 637.882i 0.0782633 0.0782633i
\(406\) 0 0
\(407\) −6114.52 −0.744682
\(408\) 0 0
\(409\) −6023.19 + 6023.19i −0.728185 + 0.728185i −0.970258 0.242073i \(-0.922173\pi\)
0.242073 + 0.970258i \(0.422173\pi\)
\(410\) 0 0
\(411\) 689.761 689.761i 0.0827820 0.0827820i
\(412\) 0 0
\(413\) 7517.94i 0.895723i
\(414\) 0 0
\(415\) −4983.17 −0.589432
\(416\) 0 0
\(417\) −5968.66 −0.700926
\(418\) 0 0
\(419\) 15642.7i 1.82386i 0.410350 + 0.911928i \(0.365407\pi\)
−0.410350 + 0.911928i \(0.634593\pi\)
\(420\) 0 0
\(421\) 11307.0 11307.0i 1.30895 1.30895i 0.386775 0.922174i \(-0.373589\pi\)
0.922174 0.386775i \(-0.126411\pi\)
\(422\) 0 0
\(423\) 1812.64 1812.64i 0.208354 0.208354i
\(424\) 0 0
\(425\) 8.08697 0.000923001
\(426\) 0 0
\(427\) −3814.79 + 3814.79i −0.432344 + 0.432344i
\(428\) 0 0
\(429\) 6818.91 + 1606.11i 0.767413 + 0.180754i
\(430\) 0 0
\(431\) −6393.46 6393.46i −0.714530 0.714530i 0.252950 0.967479i \(-0.418599\pi\)
−0.967479 + 0.252950i \(0.918599\pi\)
\(432\) 0 0
\(433\) 14458.3i 1.60467i 0.596876 + 0.802334i \(0.296409\pi\)
−0.596876 + 0.802334i \(0.703591\pi\)
\(434\) 0 0
\(435\) −202.747 202.747i −0.0223471 0.0223471i
\(436\) 0 0
\(437\) 760.667 + 760.667i 0.0832669 + 0.0832669i
\(438\) 0 0
\(439\) −6741.89 −0.732968 −0.366484 0.930424i \(-0.619439\pi\)
−0.366484 + 0.930424i \(0.619439\pi\)
\(440\) 0 0
\(441\) 1310.26i 0.141481i
\(442\) 0 0
\(443\) 3196.98i 0.342874i −0.985195 0.171437i \(-0.945159\pi\)
0.985195 0.171437i \(-0.0548409\pi\)
\(444\) 0 0
\(445\) 12887.6 1.37287
\(446\) 0 0
\(447\) −6618.79 6618.79i −0.700353 0.700353i
\(448\) 0 0
\(449\) −8595.58 8595.58i −0.903453 0.903453i 0.0922800 0.995733i \(-0.470585\pi\)
−0.995733 + 0.0922800i \(0.970585\pi\)
\(450\) 0 0
\(451\) 14856.8i 1.55117i
\(452\) 0 0
\(453\) 2110.92 + 2110.92i 0.218939 + 0.218939i
\(454\) 0 0
\(455\) −6071.16 9812.32i −0.625540 1.01101i
\(456\) 0 0
\(457\) 2439.24 2439.24i 0.249678 0.249678i −0.571160 0.820838i \(-0.693507\pi\)
0.820838 + 0.571160i \(0.193507\pi\)
\(458\) 0 0
\(459\) −226.057 −0.0229878
\(460\) 0 0
\(461\) 3601.15 3601.15i 0.363822 0.363822i −0.501396 0.865218i \(-0.667180\pi\)
0.865218 + 0.501396i \(0.167180\pi\)
\(462\) 0 0
\(463\) 6014.74 6014.74i 0.603733 0.603733i −0.337568 0.941301i \(-0.609604\pi\)
0.941301 + 0.337568i \(0.109604\pi\)
\(464\) 0 0
\(465\) 10153.9i 1.01264i
\(466\) 0 0
\(467\) 5617.63 0.556645 0.278322 0.960488i \(-0.410222\pi\)
0.278322 + 0.960488i \(0.410222\pi\)
\(468\) 0 0
\(469\) 18108.2 1.78285
\(470\) 0 0
\(471\) 2238.54i 0.218994i
\(472\) 0 0
\(473\) −811.024 + 811.024i −0.0788391 + 0.0788391i
\(474\) 0 0
\(475\) 3.80751 3.80751i 0.000367790 0.000367790i
\(476\) 0 0
\(477\) −659.806 −0.0633343
\(478\) 0 0
\(479\) 29.5141 29.5141i 0.00281531 0.00281531i −0.705698 0.708513i \(-0.749366\pi\)
0.708513 + 0.705698i \(0.249366\pi\)
\(480\) 0 0
\(481\) −5599.51 1318.89i −0.530801 0.125024i
\(482\) 0 0
\(483\) −9048.20 9048.20i −0.852397 0.852397i
\(484\) 0 0
\(485\) 18300.0i 1.71332i
\(486\) 0 0
\(487\) 12267.5 + 12267.5i 1.14147 + 1.14147i 0.988182 + 0.153288i \(0.0489863\pi\)
0.153288 + 0.988182i \(0.451014\pi\)
\(488\) 0 0
\(489\) −3767.16 3767.16i −0.348378 0.348378i
\(490\) 0 0
\(491\) −7011.53 −0.644452 −0.322226 0.946663i \(-0.604431\pi\)
−0.322226 + 0.946663i \(0.604431\pi\)
\(492\) 0 0
\(493\) 71.8506i 0.00656387i
\(494\) 0 0
\(495\) 4993.63i 0.453428i
\(496\) 0 0
\(497\) 473.444 0.0427301
\(498\) 0 0
\(499\) −648.254 648.254i −0.0581560 0.0581560i 0.677431 0.735587i \(-0.263093\pi\)
−0.735587 + 0.677431i \(0.763093\pi\)
\(500\) 0 0
\(501\) −5332.90 5332.90i −0.475562 0.475562i
\(502\) 0 0
\(503\) 21365.7i 1.89394i −0.321327 0.946968i \(-0.604129\pi\)
0.321327 0.946968i \(-0.395871\pi\)
\(504\) 0 0
\(505\) 2400.69 + 2400.69i 0.211543 + 0.211543i
\(506\) 0 0
\(507\) 5898.13 + 2941.66i 0.516657 + 0.257680i
\(508\) 0 0
\(509\) 8100.99 8100.99i 0.705442 0.705442i −0.260131 0.965573i \(-0.583766\pi\)
0.965573 + 0.260131i \(0.0837657\pi\)
\(510\) 0 0
\(511\) 17650.0 1.52797
\(512\) 0 0
\(513\) −106.432 + 106.432i −0.00916001 + 0.00916001i
\(514\) 0 0
\(515\) 193.283 193.283i 0.0165380 0.0165380i
\(516\) 0 0
\(517\) 14190.2i 1.20712i
\(518\) 0 0
\(519\) 13023.8 1.10150
\(520\) 0 0
\(521\) 12194.6 1.02544 0.512722 0.858555i \(-0.328637\pi\)
0.512722 + 0.858555i \(0.328637\pi\)
\(522\) 0 0
\(523\) 6928.86i 0.579308i 0.957131 + 0.289654i \(0.0935402\pi\)
−0.957131 + 0.289654i \(0.906460\pi\)
\(524\) 0 0
\(525\) −45.2906 + 45.2906i −0.00376504 + 0.00376504i
\(526\) 0 0
\(527\) −1799.21 + 1799.21i −0.148719 + 0.148719i
\(528\) 0 0
\(529\) 25069.8 2.06048
\(530\) 0 0
\(531\) 2164.50 2164.50i 0.176895 0.176895i
\(532\) 0 0
\(533\) 3204.59 13605.4i 0.260424 1.10566i
\(534\) 0 0
\(535\) −9941.94 9941.94i −0.803416 0.803416i
\(536\) 0 0
\(537\) 5344.67i 0.429497i
\(538\) 0 0
\(539\) −5128.65 5128.65i −0.409845 0.409845i
\(540\) 0 0
\(541\) −6864.60 6864.60i −0.545531 0.545531i 0.379614 0.925145i \(-0.376057\pi\)
−0.925145 + 0.379614i \(0.876057\pi\)
\(542\) 0 0
\(543\) −9048.01 −0.715078
\(544\) 0 0
\(545\) 23012.9i 1.80874i
\(546\) 0 0
\(547\) 19880.5i 1.55398i 0.629513 + 0.776990i \(0.283254\pi\)
−0.629513 + 0.776990i \(0.716746\pi\)
\(548\) 0 0
\(549\) 2196.64 0.170765
\(550\) 0 0
\(551\) 33.8287 + 33.8287i 0.00261552 + 0.00261552i
\(552\) 0 0
\(553\) −7939.76 7939.76i −0.610548 0.610548i
\(554\) 0 0
\(555\) 4100.63i 0.313626i
\(556\) 0 0
\(557\) 12147.8 + 12147.8i 0.924091 + 0.924091i 0.997315 0.0732243i \(-0.0233289\pi\)
−0.0732243 + 0.997315i \(0.523329\pi\)
\(558\) 0 0
\(559\) −917.649 + 567.776i −0.0694319 + 0.0429595i
\(560\) 0 0
\(561\) 884.836 884.836i 0.0665915 0.0665915i
\(562\) 0 0
\(563\) 8869.57 0.663957 0.331979 0.943287i \(-0.392284\pi\)
0.331979 + 0.943287i \(0.392284\pi\)
\(564\) 0 0
\(565\) 4714.13 4714.13i 0.351017 0.351017i
\(566\) 0 0
\(567\) 1266.02 1266.02i 0.0937703 0.0937703i
\(568\) 0 0
\(569\) 2730.47i 0.201173i −0.994928 0.100586i \(-0.967928\pi\)
0.994928 0.100586i \(-0.0320719\pi\)
\(570\) 0 0
\(571\) −10603.6 −0.777142 −0.388571 0.921419i \(-0.627031\pi\)
−0.388571 + 0.921419i \(0.627031\pi\)
\(572\) 0 0
\(573\) 8612.33 0.627898
\(574\) 0 0
\(575\) 186.388i 0.0135181i
\(576\) 0 0
\(577\) 8873.32 8873.32i 0.640210 0.640210i −0.310397 0.950607i \(-0.600462\pi\)
0.950607 + 0.310397i \(0.100462\pi\)
\(578\) 0 0
\(579\) −2758.14 + 2758.14i −0.197970 + 0.197970i
\(580\) 0 0
\(581\) −9890.20 −0.706222
\(582\) 0 0
\(583\) 2582.63 2582.63i 0.183468 0.183468i
\(584\) 0 0
\(585\) −1077.12 + 4573.02i −0.0761254 + 0.323199i
\(586\) 0 0
\(587\) −12112.4 12112.4i −0.851670 0.851670i 0.138669 0.990339i \(-0.455718\pi\)
−0.990339 + 0.138669i \(0.955718\pi\)
\(588\) 0 0
\(589\) 1694.21i 0.118520i
\(590\) 0 0
\(591\) −1182.14 1182.14i −0.0822786 0.0822786i
\(592\) 0 0
\(593\) 1189.13 + 1189.13i 0.0823471 + 0.0823471i 0.747081 0.664733i \(-0.231455\pi\)
−0.664733 + 0.747081i \(0.731455\pi\)
\(594\) 0 0
\(595\) −2061.07 −0.142010
\(596\) 0 0
\(597\) 13414.4i 0.919625i
\(598\) 0 0
\(599\) 14970.3i 1.02115i 0.859833 + 0.510575i \(0.170567\pi\)
−0.859833 + 0.510575i \(0.829433\pi\)
\(600\) 0 0
\(601\) −24874.2 −1.68826 −0.844128 0.536142i \(-0.819881\pi\)
−0.844128 + 0.536142i \(0.819881\pi\)
\(602\) 0 0
\(603\) −5213.54 5213.54i −0.352093 0.352093i
\(604\) 0 0
\(605\) −9064.44 9064.44i −0.609127 0.609127i
\(606\) 0 0
\(607\) 3789.57i 0.253400i −0.991941 0.126700i \(-0.959561\pi\)
0.991941 0.126700i \(-0.0404386\pi\)
\(608\) 0 0
\(609\) −402.396 402.396i −0.0267749 0.0267749i
\(610\) 0 0
\(611\) −3060.80 + 12995.0i −0.202662 + 0.860425i
\(612\) 0 0
\(613\) 12063.2 12063.2i 0.794828 0.794828i −0.187447 0.982275i \(-0.560021\pi\)
0.982275 + 0.187447i \(0.0600212\pi\)
\(614\) 0 0
\(615\) 9963.53 0.653282
\(616\) 0 0
\(617\) 16604.5 16604.5i 1.08342 1.08342i 0.0872335 0.996188i \(-0.472197\pi\)
0.996188 0.0872335i \(-0.0278026\pi\)
\(618\) 0 0
\(619\) −6058.60 + 6058.60i −0.393402 + 0.393402i −0.875898 0.482496i \(-0.839730\pi\)
0.482496 + 0.875898i \(0.339730\pi\)
\(620\) 0 0
\(621\) 5210.15i 0.336676i
\(622\) 0 0
\(623\) 25578.2 1.64489
\(624\) 0 0
\(625\) 15503.3 0.992213
\(626\) 0 0
\(627\) 833.197i 0.0530697i
\(628\) 0 0
\(629\) −726.604 + 726.604i −0.0460597 + 0.0460597i
\(630\) 0 0
\(631\) −16088.2 + 16088.2i −1.01499 + 1.01499i −0.0151063 + 0.999886i \(0.504809\pi\)
−0.999886 + 0.0151063i \(0.995191\pi\)
\(632\) 0 0
\(633\) −4321.97 −0.271379
\(634\) 0 0
\(635\) −1944.54 + 1944.54i −0.121523 + 0.121523i
\(636\) 0 0
\(637\) −3590.43 5802.91i −0.223325 0.360942i
\(638\) 0 0
\(639\) −136.310 136.310i −0.00843870 0.00843870i
\(640\) 0 0
\(641\) 22122.1i 1.36314i 0.731754 + 0.681568i \(0.238702\pi\)
−0.731754 + 0.681568i \(0.761298\pi\)
\(642\) 0 0
\(643\) 1944.51 + 1944.51i 0.119260 + 0.119260i 0.764218 0.644958i \(-0.223125\pi\)
−0.644958 + 0.764218i \(0.723125\pi\)
\(644\) 0 0
\(645\) −543.904 543.904i −0.0332034 0.0332034i
\(646\) 0 0
\(647\) 2320.56 0.141006 0.0705028 0.997512i \(-0.477540\pi\)
0.0705028 + 0.997512i \(0.477540\pi\)
\(648\) 0 0
\(649\) 16944.6i 1.02486i
\(650\) 0 0
\(651\) 20152.7i 1.21328i
\(652\) 0 0
\(653\) −18218.4 −1.09179 −0.545896 0.837853i \(-0.683811\pi\)
−0.545896 + 0.837853i \(0.683811\pi\)
\(654\) 0 0
\(655\) −17425.5 17425.5i −1.03949 1.03949i
\(656\) 0 0
\(657\) −5081.63 5081.63i −0.301755 0.301755i
\(658\) 0 0
\(659\) 17994.1i 1.06366i 0.846852 + 0.531829i \(0.178495\pi\)
−0.846852 + 0.531829i \(0.821505\pi\)
\(660\) 0 0
\(661\) −11466.1 11466.1i −0.674705 0.674705i 0.284092 0.958797i \(-0.408308\pi\)
−0.958797 + 0.284092i \(0.908308\pi\)
\(662\) 0 0
\(663\) 1001.17 619.450i 0.0586456 0.0362857i
\(664\) 0 0
\(665\) −970.395 + 970.395i −0.0565869 + 0.0565869i
\(666\) 0 0
\(667\) 1656.01 0.0961335
\(668\) 0 0
\(669\) −11520.4 + 11520.4i −0.665774 + 0.665774i
\(670\) 0 0
\(671\) −8598.14 + 8598.14i −0.494676 + 0.494676i
\(672\) 0 0
\(673\) 3575.50i 0.204792i −0.994744 0.102396i \(-0.967349\pi\)
0.994744 0.102396i \(-0.0326509\pi\)
\(674\) 0 0
\(675\) 26.0793 0.00148710
\(676\) 0 0
\(677\) 9007.53 0.511355 0.255678 0.966762i \(-0.417701\pi\)
0.255678 + 0.966762i \(0.417701\pi\)
\(678\) 0 0
\(679\) 36320.3i 2.05279i
\(680\) 0 0
\(681\) 9701.32 9701.32i 0.545896 0.545896i
\(682\) 0 0
\(683\) −825.076 + 825.076i −0.0462235 + 0.0462235i −0.729841 0.683617i \(-0.760406\pi\)
0.683617 + 0.729841i \(0.260406\pi\)
\(684\) 0 0
\(685\) −3621.29 −0.201989
\(686\) 0 0
\(687\) −14187.3 + 14187.3i −0.787887 + 0.787887i
\(688\) 0 0
\(689\) 2922.17 1808.03i 0.161576 0.0999716i
\(690\) 0 0
\(691\) 10601.0 + 10601.0i 0.583617 + 0.583617i 0.935895 0.352278i \(-0.114593\pi\)
−0.352278 + 0.935895i \(0.614593\pi\)
\(692\) 0 0
\(693\) 9910.96i 0.543270i
\(694\) 0 0
\(695\) 15667.9 + 15667.9i 0.855133 + 0.855133i
\(696\) 0 0
\(697\) −1765.47 1765.47i −0.0959424 0.0959424i
\(698\) 0 0
\(699\) −4640.35 −0.251093
\(700\) 0 0
\(701\) 32056.3i 1.72718i −0.504197 0.863588i \(-0.668212\pi\)
0.504197 0.863588i \(-0.331788\pi\)
\(702\) 0 0
\(703\) 684.199i 0.0367071i
\(704\) 0 0
\(705\) −9516.48 −0.508385
\(706\) 0 0
\(707\) 4764.69 + 4764.69i 0.253458 + 0.253458i
\(708\) 0 0
\(709\) −3432.70 3432.70i −0.181830 0.181830i 0.610323 0.792153i \(-0.291040\pi\)
−0.792153 + 0.610323i \(0.791040\pi\)
\(710\) 0 0
\(711\) 4571.88i 0.241152i
\(712\) 0 0
\(713\) 41468.1 + 41468.1i 2.17811 + 2.17811i
\(714\) 0 0
\(715\) −13683.8 22115.9i −0.715725 1.15677i
\(716\) 0 0
\(717\) 2613.83 2613.83i 0.136144 0.136144i
\(718\) 0 0
\(719\) 17064.7 0.885128 0.442564 0.896737i \(-0.354069\pi\)
0.442564 + 0.896737i \(0.354069\pi\)
\(720\) 0 0
\(721\) 383.612 383.612i 0.0198148 0.0198148i
\(722\) 0 0
\(723\) −530.344 + 530.344i −0.0272804 + 0.0272804i
\(724\) 0 0
\(725\) 8.28914i 0.000424622i
\(726\) 0 0
\(727\) 11157.5 0.569200 0.284600 0.958646i \(-0.408139\pi\)
0.284600 + 0.958646i \(0.408139\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 192.752i 0.00975264i
\(732\) 0 0
\(733\) 7238.76 7238.76i 0.364761 0.364761i −0.500801 0.865562i \(-0.666961\pi\)
0.865562 + 0.500801i \(0.166961\pi\)
\(734\) 0 0
\(735\) 3439.47 3439.47i 0.172608 0.172608i
\(736\) 0 0
\(737\) 40814.0 2.03989
\(738\) 0 0
\(739\) 15140.2 15140.2i 0.753643 0.753643i −0.221514 0.975157i \(-0.571100\pi\)
0.975157 + 0.221514i \(0.0710998\pi\)
\(740\) 0 0
\(741\) 179.719 763.018i 0.00890980 0.0378275i
\(742\) 0 0
\(743\) 18909.8 + 18909.8i 0.933693 + 0.933693i 0.997934 0.0642418i \(-0.0204629\pi\)
−0.0642418 + 0.997934i \(0.520463\pi\)
\(744\) 0 0
\(745\) 34749.0i 1.70887i
\(746\) 0 0
\(747\) 2847.49 + 2847.49i 0.139470 + 0.139470i
\(748\) 0 0
\(749\) −19732.0 19732.0i −0.962604 0.962604i
\(750\) 0 0
\(751\) −13628.9 −0.662220 −0.331110 0.943592i \(-0.607423\pi\)
−0.331110 + 0.943592i \(0.607423\pi\)
\(752\) 0 0
\(753\) 15800.3i 0.764669i
\(754\) 0 0
\(755\) 11082.4i 0.534214i
\(756\) 0 0
\(757\) −31792.6 −1.52645 −0.763225 0.646133i \(-0.776385\pi\)
−0.763225 + 0.646133i \(0.776385\pi\)
\(758\) 0 0
\(759\) −20393.7 20393.7i −0.975289 0.975289i
\(760\) 0 0
\(761\) 2581.48 + 2581.48i 0.122968 + 0.122968i 0.765913 0.642945i \(-0.222287\pi\)
−0.642945 + 0.765913i \(0.722287\pi\)
\(762\) 0 0
\(763\) 45674.1i 2.16712i
\(764\) 0 0
\(765\) 593.405 + 593.405i 0.0280452 + 0.0280452i
\(766\) 0 0
\(767\) −3654.93 + 15517.4i −0.172063 + 0.730511i
\(768\) 0 0
\(769\) 3404.92 3404.92i 0.159668 0.159668i −0.622752 0.782420i \(-0.713985\pi\)
0.782420 + 0.622752i \(0.213985\pi\)
\(770\) 0 0
\(771\) −16709.0 −0.780493
\(772\) 0 0
\(773\) −4722.42 + 4722.42i −0.219733 + 0.219733i −0.808386 0.588653i \(-0.799659\pi\)
0.588653 + 0.808386i \(0.299659\pi\)
\(774\) 0 0
\(775\) 207.568 207.568i 0.00962073 0.00962073i
\(776\) 0 0
\(777\) 8138.61i 0.375767i
\(778\) 0 0
\(779\) −1662.44 −0.0764608
\(780\) 0 0
\(781\) 1067.09 0.0488907
\(782\) 0 0
\(783\) 231.708i 0.0105754i
\(784\) 0 0
\(785\) 5876.23 5876.23i 0.267174 0.267174i
\(786\) 0 0
\(787\) −18437.3 + 18437.3i −0.835095 + 0.835095i −0.988209 0.153114i \(-0.951070\pi\)
0.153114 + 0.988209i \(0.451070\pi\)
\(788\) 0 0
\(789\) −1601.95 −0.0722824
\(790\) 0 0
\(791\) 9356.22 9356.22i 0.420568 0.420568i
\(792\) 0 0
\(793\) −9728.54 + 6019.32i −0.435650 + 0.269549i
\(794\) 0 0
\(795\) 1732.01 + 1732.01i 0.0772680 + 0.0772680i
\(796\) 0 0
\(797\) 43195.3i 1.91977i 0.280393 + 0.959885i \(0.409535\pi\)
−0.280393 + 0.959885i \(0.590465\pi\)
\(798\) 0 0
\(799\) 1686.25 + 1686.25i 0.0746625 + 0.0746625i
\(800\) 0 0
\(801\) −7364.24 7364.24i −0.324847 0.324847i
\(802\) 0 0
\(803\) 39781.3 1.74826
\(804\) 0 0
\(805\) 47503.6i 2.07985i
\(806\) 0 0
\(807\) 12895.1i 0.562488i
\(808\) 0 0
\(809\) −38190.2 −1.65970 −0.829850 0.557987i \(-0.811574\pi\)
−0.829850 + 0.557987i \(0.811574\pi\)
\(810\) 0 0
\(811\) 6568.48 + 6568.48i 0.284403 + 0.284403i 0.834862 0.550459i \(-0.185547\pi\)
−0.550459 + 0.834862i \(0.685547\pi\)
\(812\) 0 0
\(813\) 12463.0 + 12463.0i 0.537633 + 0.537633i
\(814\) 0 0
\(815\) 19777.8i 0.850045i
\(816\) 0 0
\(817\) 90.7514 + 90.7514i 0.00388616 + 0.00388616i
\(818\) 0 0
\(819\) −2137.78 + 9076.17i −0.0912088 + 0.387237i
\(820\) 0 0
\(821\) −6419.09 + 6419.09i −0.272872 + 0.272872i −0.830255 0.557383i \(-0.811805\pi\)
0.557383 + 0.830255i \(0.311805\pi\)
\(822\) 0 0
\(823\) 2865.12 0.121351 0.0606755 0.998158i \(-0.480675\pi\)
0.0606755 + 0.998158i \(0.480675\pi\)
\(824\) 0 0
\(825\) −102.080 + 102.080i −0.00430785 + 0.00430785i
\(826\) 0 0
\(827\) −1314.26 + 1314.26i −0.0552615 + 0.0552615i −0.734197 0.678936i \(-0.762441\pi\)
0.678936 + 0.734197i \(0.262441\pi\)
\(828\) 0 0
\(829\) 3356.65i 0.140629i −0.997525 0.0703145i \(-0.977600\pi\)
0.997525 0.0703145i \(-0.0224003\pi\)
\(830\) 0 0
\(831\) −4375.79 −0.182665
\(832\) 0 0
\(833\) −1218.90 −0.0506991
\(834\) 0 0
\(835\) 27998.1i 1.16037i
\(836\) 0 0
\(837\) −5802.19 + 5802.19i −0.239609 + 0.239609i
\(838\) 0 0
\(839\) −19905.6 + 19905.6i −0.819091 + 0.819091i −0.985976 0.166885i \(-0.946629\pi\)
0.166885 + 0.985976i \(0.446629\pi\)
\(840\) 0 0
\(841\) −24315.4 −0.996980
\(842\) 0 0
\(843\) 291.349 291.349i 0.0119034 0.0119034i
\(844\) 0 0
\(845\) −7760.83 23204.7i −0.315953 0.944694i
\(846\) 0 0
\(847\) −17990.4 17990.4i −0.729819 0.729819i
\(848\) 0 0
\(849\) 18486.0i 0.747277i
\(850\) 0 0
\(851\) 16746.8 + 16746.8i 0.674584 + 0.674584i
\(852\) 0 0
\(853\) 1279.01 + 1279.01i 0.0513393 + 0.0513393i 0.732310 0.680971i \(-0.238442\pi\)
−0.680971 + 0.732310i \(0.738442\pi\)
\(854\) 0 0
\(855\) 558.774 0.0223505
\(856\) 0 0
\(857\) 23349.3i 0.930686i 0.885130 + 0.465343i \(0.154069\pi\)
−0.885130 + 0.465343i \(0.845931\pi\)
\(858\) 0 0
\(859\) 27894.6i 1.10798i −0.832525 0.553988i \(-0.813106\pi\)
0.832525 0.553988i \(-0.186894\pi\)
\(860\) 0 0
\(861\) 19774.8 0.782723
\(862\) 0 0
\(863\) 4168.46 + 4168.46i 0.164422 + 0.164422i 0.784522 0.620100i \(-0.212908\pi\)
−0.620100 + 0.784522i \(0.712908\pi\)
\(864\) 0 0
\(865\) −34187.8 34187.8i −1.34384 1.34384i
\(866\) 0 0
\(867\) 14528.7i 0.569113i
\(868\) 0 0
\(869\) −17895.4 17895.4i −0.698572 0.698572i
\(870\) 0 0
\(871\) 37376.3 + 8803.51i 1.45401 + 0.342475i
\(872\) 0 0
\(873\) −10457.0 + 10457.0i −0.405402 + 0.405402i
\(874\) 0 0
\(875\) 31009.4 1.19807
\(876\) 0 0
\(877\) −35863.9 + 35863.9i −1.38089 + 1.38089i −0.537845 + 0.843044i \(0.680761\pi\)
−0.843044 + 0.537845i \(0.819239\pi\)
\(878\) 0 0
\(879\) 1875.22 1875.22i 0.0719562 0.0719562i
\(880\) 0 0
\(881\) 7488.76i 0.286382i 0.989695 + 0.143191i \(0.0457364\pi\)
−0.989695 + 0.143191i \(0.954264\pi\)
\(882\) 0 0
\(883\) −11940.9 −0.455090 −0.227545 0.973768i \(-0.573070\pi\)
−0.227545 + 0.973768i \(0.573070\pi\)
\(884\) 0 0
\(885\) −11363.7 −0.431624
\(886\) 0 0
\(887\) 29433.4i 1.11418i 0.830452 + 0.557090i \(0.188082\pi\)
−0.830452 + 0.557090i \(0.811918\pi\)
\(888\) 0 0
\(889\) −3859.38 + 3859.38i −0.145601 + 0.145601i
\(890\) 0 0
\(891\) 2853.47 2853.47i 0.107289 0.107289i
\(892\) 0 0
\(893\) 1587.84 0.0595019
\(894\) 0 0
\(895\) 14029.9 14029.9i 0.523988 0.523988i
\(896\) 0 0
\(897\) −14277.1 23074.9i −0.531436 0.858915i
\(898\) 0 0
\(899\) 1844.19 + 1844.19i 0.0684173 + 0.0684173i
\(900\) 0 0
\(901\) 613.800i 0.0226955i
\(902\) 0 0
\(903\) −1079.50 1079.50i −0.0397823 0.0397823i
\(904\) 0 0
\(905\) 23751.3 + 23751.3i 0.872398 + 0.872398i
\(906\) 0 0
\(907\) −1273.14 −0.0466085 −0.0233043 0.999728i \(-0.507419\pi\)
−0.0233043 + 0.999728i \(0.507419\pi\)
\(908\) 0 0
\(909\) 2743.61i 0.100110i
\(910\) 0 0
\(911\) 10065.0i 0.366048i −0.983108 0.183024i \(-0.941411\pi\)
0.983108 0.183024i \(-0.0585885\pi\)
\(912\) 0 0
\(913\) −22291.5 −0.808039
\(914\) 0 0
\(915\) −5766.24 5766.24i −0.208335 0.208335i
\(916\) 0 0
\(917\) −34584.6 34584.6i −1.24546 1.24546i
\(918\) 0 0
\(919\) 26052.4i 0.935134i 0.883958 + 0.467567i \(0.154869\pi\)
−0.883958 + 0.467567i \(0.845131\pi\)
\(920\) 0 0
\(921\) −524.648 524.648i −0.0187706 0.0187706i
\(922\) 0 0
\(923\) 977.214 + 230.170i 0.0348487 + 0.00820818i
\(924\) 0 0
\(925\) 83.8256 83.8256i 0.00297964 0.00297964i
\(926\) 0 0
\(927\) −220.892 −0.00782636
\(928\) 0 0
\(929\) −30557.8 + 30557.8i −1.07919 + 1.07919i −0.0826101 + 0.996582i \(0.526326\pi\)
−0.996582 + 0.0826101i \(0.973674\pi\)
\(930\) 0 0
\(931\) −573.883 + 573.883i −0.0202022 + 0.0202022i
\(932\) 0 0
\(933\) 15636.9i 0.548693i
\(934\) 0 0
\(935\) −4645.44 −0.162484
\(936\) 0 0
\(937\) −18637.7 −0.649804 −0.324902 0.945748i \(-0.605331\pi\)
−0.324902 + 0.945748i \(0.605331\pi\)
\(938\) 0 0
\(939\) 3532.90i 0.122782i
\(940\) 0 0
\(941\) 35335.6 35335.6i 1.22413 1.22413i 0.257983 0.966149i \(-0.416942\pi\)
0.966149 0.257983i \(-0.0830578\pi\)
\(942\) 0 0
\(943\) −40690.5 + 40690.5i −1.40516 + 1.40516i
\(944\) 0 0
\(945\) −6646.67 −0.228800
\(946\) 0 0
\(947\) 9672.77 9672.77i 0.331914 0.331914i −0.521399 0.853313i \(-0.674590\pi\)
0.853313 + 0.521399i \(0.174590\pi\)
\(948\) 0 0
\(949\) 36430.6 + 8580.77i 1.24614 + 0.293513i
\(950\) 0 0
\(951\) −9202.73 9202.73i −0.313795 0.313795i
\(952\) 0 0
\(953\) 29068.9i 0.988073i 0.869441 + 0.494036i \(0.164479\pi\)
−0.869441 + 0.494036i \(0.835521\pi\)
\(954\) 0 0
\(955\) −22607.6 22607.6i −0.766038 0.766038i
\(956\) 0 0
\(957\) −906.957 906.957i −0.0306351 0.0306351i
\(958\) 0 0
\(959\) −7187.24 −0.242011
\(960\) 0 0
\(961\) 62569.5i 2.10028i
\(962\) 0 0
\(963\) 11362.1i 0.380206i
\(964\) 0 0
\(965\) 14480.4 0.483048
\(966\) 0 0
\(967\) 9547.99 + 9547.99i 0.317521 + 0.317521i 0.847814 0.530293i \(-0.177918\pi\)
−0.530293 + 0.847814i \(0.677918\pi\)
\(968\) 0 0
\(969\) −99.0109 99.0109i −0.00328244 0.00328244i
\(970\) 0 0
\(971\) 52005.1i 1.71877i 0.511332 + 0.859383i \(0.329152\pi\)
−0.511332 + 0.859383i \(0.670848\pi\)
\(972\) 0 0
\(973\) 31096.4 + 31096.4i 1.02457 + 1.02457i
\(974\) 0 0
\(975\) −115.501 + 71.4636i −0.00379383 + 0.00234735i
\(976\) 0 0
\(977\) 29823.1 29823.1i 0.976588 0.976588i −0.0231437 0.999732i \(-0.507368\pi\)
0.999732 + 0.0231437i \(0.00736751\pi\)
\(978\) 0 0
\(979\) 57650.6 1.88204
\(980\) 0 0
\(981\) −13150.1 + 13150.1i −0.427981 + 0.427981i
\(982\) 0 0
\(983\) −40171.9 + 40171.9i −1.30344 + 1.30344i −0.377388 + 0.926055i \(0.623178\pi\)
−0.926055 + 0.377388i \(0.876822\pi\)
\(984\) 0 0
\(985\) 6206.29i 0.200760i
\(986\) 0 0
\(987\) −18887.5 −0.609116
\(988\) 0 0
\(989\) 4442.54 0.142836
\(990\) 0 0
\(991\) 29902.3i 0.958506i 0.877677 + 0.479253i \(0.159092\pi\)
−0.877677 + 0.479253i \(0.840908\pi\)
\(992\) 0 0
\(993\) −8485.65 + 8485.65i −0.271182 + 0.271182i
\(994\) 0 0
\(995\) 35213.3 35213.3i 1.12195 1.12195i
\(996\) 0 0
\(997\) 11037.5 0.350613 0.175307 0.984514i \(-0.443908\pi\)
0.175307 + 0.984514i \(0.443908\pi\)
\(998\) 0 0
\(999\) −2343.19 + 2343.19i −0.0742095 + 0.0742095i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.4.bc.d.31.11 yes 28
4.3 odd 2 624.4.bc.c.31.11 28
13.8 odd 4 624.4.bc.c.463.11 yes 28
52.47 even 4 inner 624.4.bc.d.463.11 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
624.4.bc.c.31.11 28 4.3 odd 2
624.4.bc.c.463.11 yes 28 13.8 odd 4
624.4.bc.d.31.11 yes 28 1.1 even 1 trivial
624.4.bc.d.463.11 yes 28 52.47 even 4 inner